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Abstract— In this paper a method to achieve an human-like
grasp in unstructured environments is presented. The algorithm
is composed of an object surface reconstruction algorithm
and a local grasp planner, evolving in parallel. The former
uses an elastic elliptical reconstruction surface, with axes and
dimensions assigned by a preshaping process, that is let to
evolve dynamically under the action of reconstruction forces.
The reconstruction surface shrinks toward the object until some
parts of the surface intercept the object visual hull. The latter
moves the fingertips on the current available reconstruction
surface towards points which are optimal (in a local sense) with
respect to a certain number of indices weighting both the grasp
quality and the kinematic configuration of the hand. A control
module must ensure that the references given by the planner
are correctly followed by the robotic hand. Experiments are
presented, showing the effectiveness of the proposed algorithm.

I. INTRODUCTION

A challenging question in the robotic research field is how
to perform human-like grasps in unstructured environments.
In general, humans can grasp and manipulate a large variety
of objects with a high level of dexterity. An elaborated
taxonomy of human grasps can be found in [6].

Throughout the literature, two main approaches among
the others can be recognized in the process of transferring
humans manipulation skills to robotic multi-fingered hands.
Namely, they are programming by demonstration and neural
networks and genetic algorithms techniques.

Considering the former case, the humans movements
are recorded and analyzed off-line using a motion capture
system, and therefor the motion is transferred to a robotic
hand [11]. Further, it has been demonstrated that humans
perform different grasps in reason of the task specification,
even if the orientation and location of the objects are kept
the same. A programming by demonstration system showing
how fine manipulations tasks, e.g. screw moves, can be
recognized, is showed in [13], where the recorded trajectory
is analyzed, interpreted and mapped to a manipulator.

In the latter case the space of all feasible grasp configura-
tions is analyzed using genetic algorithm [5]. Since these last
are not suitable for real-time applications, neural networks
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are often adopted. In this way, a neuro-genetic architecture
is exploited in the sense that the genetic algorithms are
used to create a training set for the neural network. In [7],
an human-like grasp is recognized through a biologically
plausible neural network. This last is built upon a hierarchical
model for motion detection using a view-based recognition
approach that is consistent with principles in the human
cortex.

Another approaches to detect and perform human-like
grasps are given in [1], [2], where a qualitative reasoning
approach to the synthesis of dexterous grasps is provided. An
intelligent planner has been developed in order to perform
this synthesis, advantageously adopting qualitative methods
instead of analytical or numerical models. However, only
coarse solutions can be provided, since this approach is an
attempt to strike a compromise in the use of qualitative and
quantitative resources.

When human-like grasps must be achieved in unstructured
environments, real-time performances are necessary and no
pre-recorded trajectories are available. Hence, some visual
sensor has to be considered to represent the object to be
grasped and manipulated. In [8] kinematic parameters of the
human grasp, such as path and preshape, are determined by
the three dimensional geometric structure of the target object,
not the two dimensional projected image of the same object.
Moreover, human object recognition is based on identifying
coarse structures rather then specific features, as underlined
in [3].

In [4], it is stated that the task of autonomous manipula-
tion can be generally divided into object detection, recog-
nition, coarse end-effector alignment, preshaping, vision-
guided grasping and the execution of the desired grasp action.
Starting from this concept, in this paper a method for fast
visual grasping of unknown objects using a camera mounted
on a robot in an eye-in-hand configuration is presented. This
method is composed of an object surface reconstruction
algorithm and of a local grasp planner, which evolve in a
synchronized parallel way. Differently from a classical serial
approach in which the object is first completely reconstructed
and then the evaluation of the optimal grasp under a selected
global criterion is performed, the presented parallel approach
may represent a valid alternative in cases where real-time
grasping and not powerful hardware are required. In fact,
although the modern technologies allow a fast object recon-
struction, the investigation of all the possible combinations of
the grasp points or of the set of surfaces which approximate
the object (depending on the reconstruction method adopted)
could generally require a considerable amount of time. with
the proposed approach, the total computational time is given
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Fig. 1. Block diagram of the visual grasp algorithm.

by the slower between the reconstruction and the planning
stage and these two parallel processes are independent and
can be allocated under different computational resources. The
main drawback of the proposed parallel approach is that the
final grasp is optimal only in a local sense. Further, the local
grasp planner is guided by some heuristic quality measures
to achieve a human-like grasp.

Since the grasp planning is execute on-line on the base
of the acquired data and of the current state of the robotic
hand, a kinematic control of motion can be employed upon
the dynamic of the mechanical system [12]. In fact, if the
robotic system is equipped with high-gain motion controllers
at a low level, the so called resolved-velocity control can be
performed, in which the effects of dynamic or disturbances
are neglected. In this case the system is considered as an
ideal positioning device and the high controller can act
at a velocity level. Since only the kinematics is exploited
to derive such control law, often this approach is called
kinematic motion control and it is well known in the robotic
literature [9], [12] and used also in manipulation tasks [10].

Finally, notice that the proposed method is not dependent
on the particular choice of the hand, hence it is a general
approach and it is suitable not only for human-like robotic
hands.

II. VISUAL GRASP ALGORITHM

The block diagram in Fig. 1 shows the data flow and
the main elaboration steps of the proposed visual grasp
algorithm. The elaboration processes may be arranged into
four main groups: image acquisition and preshaping, object
surface reconstruction algorithm, local grasp planner and
motion control.

During the first stage a set of n images suitable for the
reconstruction process is acquired. Then, the silhouette of the
object for each acquired image is evaluated, and the object
center of mass, assuming a homogeneous mass distribution,
is estimated using a least-squares triangulation method.

The preshaping algorithm, as explained in the next section,
starts to compute, from the bounding box of each silhouette,
a polyhedron in the Cartesian space, which represents an
overestimation of the visual hull. Then, the initial recon-
struction surface, with elliptical shape and centered at the
estimated center of mass of the object, is built on the base
of the dimensions of the polyhedron. Further, the initial grasp
configuration of the hand is evaluated and it depends on the
initial reconstruction surface.

After this preshaping step, both the object model re-
construction process and the local planner start in parallel
and cooperate to the final goal. In particular, as shown in
Fig. 1, the reconstruction algorithm updates in real-time the
estimation of the current reconstructed object surface, while
the local planner, on the base of the current estimation,
computes the fingertips trajectories toward a local optimal
grasp configuration.

The controller guides the robotic multi-fingered hand
imposing the joints velocity, in such way that the trajectories
given by the planner are correctly tracked by the fingers.

The assumptions made throughout the paper are that
an eye-in-hand configuration with a calibrated camera is
available for the reconstruction stage. The observed object
has to be fixed in the space during the images acquisition
and distinguishable with respect to the background and other
objects —from a topological point of view, the object must
be an orientable surface with genus 0.

III. PRESHAPING MODULE

For each of the n silhouettes and from the relative bound-
ing box, one can build four planes in the Cartesian space
containing the camera origin and two adjacent vertices of
the corresponding silhouette’s bounding box, resulting in 4n
Cartesian planes. Obviously, each plane splits the Cartesian
space into two regions, one of which contains the visual
hull. The intersections of all these planes create a polyhedron
which contains the object visual hull, or in other words, is a
polyhedrical overestimation of this last.

The vertices of this polyhedron P can be quickly com-
puted by solving a linear programming problem. Since each
side of each bounding box is associated with a plane, if the
normal unit vector to the plane is chosen pointing outwards
with respect to the interior side of the bounding box, the
inner space of this plane is represented by the following set
of inequalities:

Aix ≤ di,

where subscript i denotes the i-th image, with i = 1, . . . , n,
Ai is a 4 × 3 matrix whose rows are the transpose of the
normal unit vectors, and di is a 4×1 vector whose elements
define uniquely the positions of the planes in the space.
Stacking all the Ai and di in the matrices A and d, the inner
space of the polyhedron is represented by the following set
of inequalities:

Ax ≤ d. (1)

Considering (1) as a set of constraints in a minimization
problem, the vertices of the corresponding polyhedron are



Fig. 2. Examples of preshaped elliptical reconstruction surfaces.

the so called basic feasible solutions, whose computation
is well known in literature. Notice that, since the problem
has been formulated as a linear programming problem, the
computational time is very short and it depends only on the
number n of images.

Once all the nv vertices xv =
[
xvx xvy xvz

]T
of

the polyhedron P have been computed, the central moments
can be evaluated as:

µi,j,k =
∑
xv∈P

(xvx − x̄vx)
i(xvy − x̄vy )

j(xvz − x̄vz )
k,

where x̄v =
[
x̄vx x̄vy x̄vz

]T
= 1

nv

∑nv

i=1 xvi .
Finally, a pseudo-inertia tensor of the polyhedron can be

defined as:

I =

 µ2,0,0 µ1,1,0 µ1,0,1

µ1,1,0 µ0,2,0 µ0,1,1

µ1,0,1 µ0,1,1 µ0,0,2

 ,

where its eigenvalues and eigenvectors define the principal
axes of inertia of an ellipsoid, which is employed here as
the initial shape of the reconstruction surface. Finally, the
ellipsoid is suitably enlarged ensuring that the object is
wrapped, as shown in the examples of Fig. 2.

Depending on the object shape, the ellipsoid may have
one axis bigger than others, one axis smaller than others, or
all axes of a similar dimension. For all these cases, a good
choice for the grasp configuration depends also on the task to
accomplish (e.g. pick-and-place, manipulation, assembling,
etc.), on the type of grasp to perform (firm or fine), on the
environmental constraints (e.g. the ground plane), and on the
hand kinematics and the number of fingers. In this paper, for
simplicity and considering the previous assumptions of fine
manipulation, the initial grasp configuration is chosen as an
equilateral grasp in a plane parallel to the two minor axes of
the ellipsoid, when it is reachable with respect to the hand
and environmental constraints– see [6] for precision grasps
in the circular case.

IV. OBJECT SURFACE RECONSTRUCTION

As described in the previous sections, from the set of n
silhouettes of the object, an elliptical initial reconstruction
surface is generated, virtually placed around the object and
sampled by ns reconstruction points. A virtual mass is
associated to each sample point, and four links are imposed
by springs connecting the closest cross points, resulting in

m k

b

δf

Fig. 3. Cross network topology of the reconstruction surface (on the left),
and the contour of neighbor points (on the right).

a cross reticular topology for the reconstruction surface (see
Fig. 3).

Each parallel of the ellipsoid should have the same nm

number of points, corresponding to the number of meridian,
allowing the construction of a fully linked cross reticulum.
In other words, for each point, the existence of a couple
of corresponding points on the closest parallels of the grid
is guaranteed. Without loss of generality, the number of
parallels np is chosen equal to the number of meridians np =
nm =

√
ns − 2. To avoid that the parallels nearest to the

poles determine an unnecessary initial thickening of sample
points around the poles, a suitable angular distribution of
the parallels has been imposed, by reducing (augmenting)
the density of the parallels near the poles (equator).

The model of the system, defining the deformation motion
of the reconstruction surface, is described by the following
dynamic equations:

mẍi,j + bẋi,j + k(4xi,j − c(xi,j)) = f i,j , (2)

for i = 1, . . . , nm and j = 1, . . . , np, where c(xi,j) =
xi−1,j + xi,j+1 + xi+1,j + xi,j−1, and xi,j is the position
in the workspace of the sampling point at the intersection
of the i-th meridian with the j-th parallel. The parameters
m, k, and b represent the mass associated to the point, the
constant spring linking the point with its nearest four cross
points, and the constant spatial damper, respectively.

Vector f i,j is the reconstruction force acting on the mass
associated to the sample point (i, j), which is attractive with
respect to the border of the visual hull and is progressively
reduced every time the corresponding point comes in or goes
out from the visual hull:

f i,j = αi,j(ti,j)Fani,j , (3)

where ni,j is the unit vector pointing from the current point
(i, j) to the estimated centroid of the object, and αi,j(ti,j)Fa

is the amplitude of the force. Fa is the maximum amplitude
of the force and αi,j(ti,j) ∈ (−1, 1] is a discrete sequence
of scale factors defined as follow:

αi,j(ti,j) = −ϵαi,j(ti,j − 1), (4)

where ϵ ∈ (0, 1), αi,j(0) = 1, and ti,j is an integer index
which starts form zero and is incremented every time the
point (i, j) comes in or goes out the visual hull.



Fig. 4. Visual grasp concept.

V. PLANNER AND CONTROLLER MODULES

The current estimation of the object surface is stored in
a proper buffer, which is continuously updated during the
dynamic evolution of the elastic surface, and is employed by
the local grasp planner for updating the fingertips trajectories.
The local grasp planner, in accordance with the current
reconstructed object surface, generates the fingertips trajec-
tories on the basis of suitable quality indices, but keeping a
fixed floating safety distance δf between the fingertips and
the corresponding reconstruction points, along the outgoing
normal to the surface. The distance is exploited like a security
parameter to avoid undesired collision between the fingers
and the object before the final grasp. See Fig. 4 for an
illustration of the visual grasp concept.

Namely, starting from the initial grasp configuration, the
planner generates the motion of the fingertips from the
current position to a new set of points of the updated
surface, according to a force field associated at each contact
point, until no improvements in the quality of grasp are
reached. This new configuration of the contact points will
be the new initial grasp configuration for the next iteration
of the local grasp planner. The process ends when the
object reconstruction algorithm reaches an equilibrium and
the planner computes the final grasp configuration.

In the next subsections, the adopted quality indices em-
ployed to generate the force field, the finger trajectory
planner and the kinematic motion controller are presented.

A. Motion field of forces

In this paper planar grasps in the 3D space are considered,
assuming that the moments and transversal forces acting
on the object can be neglected. In particular, the desired
optimal grasp is characterized by having all the contact
points of the considered nf -fingered hand lying on the same
grasping plane in an equilateral configuration [6]. This choice
guarantees force closure for a large number of situations and
simplifies the computation of good grasps, although it may
exclude a number of grasp configurations that can be more
effective. Moreover, the area of the grasp polygon, resulting
from the projection of the contact points on the grasp plane,
has to be maximized to improve the quality of the grasp

with respect to possible external moments normal to the grip
plane. Finally, if it is required by the desired application, it
can be also imposed that the current surface reconstruction
center of mass (that is equivalent to the reconstructed object
center of mass at the end of the process) has to be contained
in the current grasping plane, enhancing the minimization of
gravity and inertial effects during manipulation tasks.

To reach this goal, a field of forces defined as the sum
of suitable force contributions is associated at each contact
point.

First, the interpolating plane Π of the current contact
points —i.e., the plane which minimizes the distance from
all the contact points—, and the projections pΠ

i of the contact
point pi on Π, with i = 1, . . . , nf , are computed (see Fig. 5).
Then, the force associated to the i-th contact point is defined
as:

f i = fΠi + f cm + fei + fai + f bi, (5)

where each contribution of force, with reference to Fig. 5,
is defined as follows:

• fΠi = kΠ
(
pΠ
i − pi

)
is the force which moves pi to

pΠ
i , so that all contact points belong to the same grasp

plane;
• f cm = kcm

(
cm − cΠm

)
is the force, equal for all the

contact points, which attracts the grasp plane Π to
cm, where cm is the center of mass of the current
reconstruction surface and cΠm is the projection of the
center of mass on the interpolating plane;

• fei = ke(θi − 2π
nf

)ti is the tangential force which is in
charge of producing an equilateral grasp configuration,
where θi is the angle between the vectors cΠm−pΠ

i and
cΠm − pΠ

j , with j = i + 1 for i = 1, . . . , nf − 1, and
j = 1 for i = nf , and ti is the tangential unit vector
normal to cΠm − pΠ

i , lying on Π and pointing toward
pΠ
j ;

• fai = ka
(
pΠ
i − cΠm

)
/||pΠ

i −cΠm|| is a force component
which tends to enlarge the area of the grasp polygon;

• f bi represents the kinematic barrier force, depending on
the local and global kinematic index, described in the
next subsection.

The parameters kΠ, kcm , ke, ka are positive constant coeffi-
cients, suitably designed to weigh the single force contribu-
tions with respect to the requirements of the single situations
and/or tasks to accomplish.

The force f i is then projected onto the tangential plane
to the current reconstruction surface at the contact point i,
determining the direction of motion for the i-th contact point:

f ′
i = f i − (fT

i vi)vi,

where vi is the unit normal vector to the reconstruction
surface at the point pi.

In particular, the direction of f ′
i individuates one of the

points of the surface close to the current one, as shown in
Fig. 3, employed by the planner to produce the floating
motion of the finger. When ||f ′

i|| is higher than a given
threshold σf , the current grasp configuration changes ac-
cording to the directions of f ′

i. The choice of σf means
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Fig. 5. Force field for the i-th floating contact point.

that forces f ′
i whose norm is under this threshold can be

neglected, and when this happens for all the contact points,
then the reached configuration is the local optimal grasp for
the current iteration. Obviously σf affects both the accuracy
of the grasp solution and the computational time, determining
the number of iterations required to converge to the local
optimum, and thus it must be suitably tuned considering this
trade-off.

B. Kinematic barrier forces

The kinematic barrier force f bi for the i-th floating contact
point is aimed at avoiding the motion of the finger along
directions that cause the reaching of joint limits, joint or
hand singularities, and collisions between fingers or with the
palm. In detail, the barrier force is equal to

f bi = f ji + fsi + f ci,

where each term is related to one of the neighbor points of
the contour, directed from the corresponding contour point
towards the actual contact point:

• f ji is zero when the finger joint positions are far from
their limits, while it quickly increases its magnitude,
with a hyperbolic law, when one or more joint limits
are approached at least for one of the contour points.
Therefore, the force f ji is in charge to move the contact
point far from unreachable positions.

• fsi is zero when the finger configuration is far from
kinematic singularities, while it quickly increases, with
a hyperbolic law, when a kinematic singularity is ap-
proached. Therefore, fsi represents a force that is
repulsive with respect to the directions leading to finger
singularities.

• f ci is zero when the fingers are far from each others and
from the palm, while its magnitude is increased when
a safety distance is violated.

Obviously when the sum of each contribution in (5) for a
finger results in a zero force field, the corresponding contact
point does not change its position in the actual step of
the current iteration of the planner stage. Finally, notice
that the barrier forces can be also employed to cope with
environmental constraints, e.g. object ground plane or other
surrounding objects.

Fig. 6. Steps of the object surface reconstruction process for the teddy-bear
(left) and for the little bottle (right).

C. Finger trajectory planner and motion controller

The local grasp planner produces a sequence of intermedi-
ate target grasp configurations at each iteration of the object
reconstruction algorithm, which ends with the optimal grasp
configuration (in local sense). The intermediate configura-
tions are used to generate the fingertip paths.

Namely, the sequence of intermediate configurations is
suitably filtered by a spatial low-pass filter in order to achieve
a smooth path for the fingers on the object surface. Notice
that only the final configuration needs to be reached exactly,
while the intermediate configurations can be considered
as via points for finger trajectory generation, that can be
computed in real-time with a one step delay.

With respect to the smooth paths through the points of
the filtered configurations, the actual finger paths generated
by the finger trajectory planner keep a distance δf along
the normal to the surface. When the final configuration is
reached, the safety distance is progressively reduced to zero,
producing the desired grasp action, with directions of grasp
perpendicular to the object reconstructed surface.

A kinematic control is used to allow a correct tracking of
the trajectories given by the planner. In particular, a closed-
loop inverse-kinematic algorithm [12] has been exploited to
reach such goal. Such method require as input the desired
position for each finger, and as output it gives the joints
velocity for each finger. High gain low-level controllers
are necessary to physically accomplish the task. Moreover,
an interaction control (e.g. an impedance control) can be
used to touch the object with a desired dynamic, and a
force optimization algorithm could be used for a proper
distribution of the grasp forces.

VI. EXPERIMENTS

The proposed method has been experimentally tested on
different objects considering a different number of fingers
of the available robotic hand of Fig. 4. Obviously, since it
is not an anthropomorphic hand, a human-like grasp here
means that it must by stable and the hand should be in a
feasible and dexterous configuration. In the following, the
results for the objects shown in Fig. 2, a teddy-bear and a
little bottle, are presented.

Images in a number equal to n = 13 have been taken for
all the objects by a common webcam mounted on a robot



Fig. 7. Finger trajectories evaluated by the local grasp planner (green:
approach, red: grasp) and the corresponding sequence of floating grasp
points achieved during the reconstruction process (yellow) for the teddy-
bear (top) and for the little bottle (bottom), both evaluated with kcm = 1
(left) and kcm = 0 (right).

manipulator. The elliptical reconstruction surface is sampled
with ns = 1500 points while the dynamic reconstruction
parameters have been chosen as follows: m = 10−3 kg,
k = 0.3 · 10−3 N/m, b = 0.09 · 10−3 Ns/m, and Fa =
5 N for both the objects. The kΠ, kcm , ke, ka parameters for
the grasp planner have been chosen all equal to 1, so to
have an equivalent weight for all the contributions, while
the threshold σf has been tuned to a value of 0.002 N.

The multi-fingered hand used to simulate the grasp and to
perform the experiments is depicted in Fig. 4. The floating
security distance δf has been set to 2 cm, which is delib-
erately a huge value for a better visualization of the finger
trajectories. The computational time for the whole process
results in about 1.5 s on a Pentium 1.7 GHz.

In Fig. 6 some intermediate steps of the reconstruction
algorithm are shown, while the finger trajectories and the
final grasp configurations, respectively for the teddy-bear and
for the little bottle, are shown in Fig. 7. Both cases of kcm =
1 (on the left) and kcm = 0 (on the right) are considered (the
black/blue bold point represents the position of the object
center of mass of the reconstructed object). In particular, for
the case kcm = 1 it is evident that both the grasp planes of
the final grasps contain the center of mass of the objects,
as desired, while for the case kcm = 0 the plane of the
final grasp is far from the center of mass to achieve a more
extended areas of the grasp polygon.

More in detail, Figure 7 shows how the teddy-bear is
grasped with three fingers achieving a desirable stable planar
equilateral grasp (120o apart) for both cases of kcm = 1
and kcm = 0. The yellow lines represent the sequence
of reconstruction points selected by the planner during the
evolution of the reconstruction surface. The green lines
represent the trajectories that the planner generate for the
fingertips after spatial filtering and considering the safety
distance. Finally, the red lines show the last part of the grasp
trajectory, when the safety distance is progressively reduced
achieving a perpendicular approach to the object surface.

For the case of the little bottle four fingers of the hand has

been considered. The final grasp configuration corresponds
to the equilateral best grasp (90o apart) for the object.
Moreover, the achieved trajectories are very regular due to
the good choice of the initial grasp configuration evaluated
by the preshaping module. This result is common when the
object is symmetric with respect to one or more axes, and so
it is well represented by an ellipsoidal surface. Of course, for
the particular shape of the bottle, the results do not change
significantly when kcm is set to 0.

VII. CONCLUSION

A method to control the motion of a multi-fingered hand
to achieve a human-like grasps of unknown objects has been
presented, which is composed of an iterative object surface
reconstruction algorithm and of a local optimal grasp planner
combined with a kinematic motion controller, evolving in a
synchronized parallel way. The effectiveness of the proposed
method has been confirmed by a number of case studies.
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