Compliance Control for a Robot with Elastic Joints
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Abstract

This work focuses on the consideration that the
elasticity in the robot joints is one cause for the
vibrational and chattering phenomena emerging in
the interaction between a robot and the environ-
ment. Hence, a compliance control scheme in the
Cartesian space is proposed as a possible solution to
reduce these effects.

The results reported in the paper demonstrate
that a PD action plus an appropriate relation be-
tween the rotor and the link position variables can
stabilize a robot arm with flexible joints as well as
control its level of compliance.

Asymptotic stability of the control strategy is en-
sured and an application to a particular class of flex-
ible robots, i.e. cable-actuated robots, is proposed,
since their intrinsic mechanical compliance can be
successfully wutilized in applications of biomedical
robotics and assistive robotics.

The compliance control scheme in the Cartesian
space is implemented and experimentally tested on
an 8-degree-of-freedom robot manipulator actuated
through pulleys and steel cables.

1 Introduction

The presence of vibrational phenomena during
the motion of robot manipulators with elastic joints
is a limiting factor in situations of contact and inter-
action with the working environment and becomes
particularly dangerous in applications of biomedi-
cal robotics or else assistive robotics, which require
a very close human-robot interaction. In such a
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context, the need for a human-like behavior and
a high level of safety and reliability is often faced
with mechanical solutions. On one hand, an intrin-
sic compliance in the structure, lightness, and even
an anthropomorphic aspect has to be provided. On
the other, it is required to compensate for the in-
trinsic mechanical elasticity while controlling the
interaction force.

One approach to the mechanical design of
lightweight and low inertia manipulators is the dis-
tributed elastically coupled macro mini parallel ac-
tuation [1], which aims at ensuring high perfor-
mance in position tracking tasks as well as in in-
teraction tasks, through a stiff transmission system
and low inertia actuators for the micro system.

Flexible transmission systems realized through
pulleys and steel cables can be regarded as another
approach to the design of safe robots. They rep-
resent a feasible mechanical solution in biomedical
and assistive robotics since they can ensure human-
like dimensions of the artifact, lightness and anthro-
pomorphic mass distribution, but present the limi-
tation of low performance in tracking tasks in view
of the joint flexibility. To this regard, using control
strategies based on the compensation of the elas-
tic effects can suitably improve manipulator perfor-
mance. Yet, the use for flexible robot manipulators
of interaction control schemes conceived for rigid
robots can determine undesirable effects of chatter-
ing during contact [2].

The control problem of robots interacting with
the working environment is widely treated in robot



control theory. They ranged from the concept
of active compliance to the concept of making
the robot’s end-effector to behave as a mechanical
impedance (see e.g. [3] for a survey), up to the hy-
brid position/force control approach, useful for in-
teraction with a completely structured environment
[4].

The basic assumption of all the cited approaches
is a robot manipulator with rigid joints. In [5] and
[6] it is demonstrated that control algorithms de-
rived for completely rigid robots notably degrade
the system performance when applied to robots
showing a certain degree of elasticity in the actua-
tion system or in the link structure. The robot is
yet stabilized by the closed loop but, during track-
ing tasks, lightly damped vibrational phenomena
are observed.

In view of the dynamic effects of elastic joints
[7], classical techniques used for rigid robots, input-
output decoupling, feedback linearization or else in-
version control, are to be revisited. Hence, one has
to resort to a nonlinear static state feedback, if a
reduced model of the robot can be used [8], whereas
a nonlinear dynamic state feedback is needed in the
case of a complete dynamic model [9].

Whenever regulation is desired, a simple PD con-
trol plus gravity compensation in joint space can be
adopted, as proposed in [10]. Instead, when trajec-
tory tracking is desired, an approximate singular
perturbation model of elastic joint manipulator dy-
namics can be used [11]. This allows compensat-
ing for joint flexibility by introducing a corrective
torque input.

The problem of controlling robot manipulators
with elastic joints in situations of interaction with
the working environment is not widely dealt within
the literature.

The PD control proposed in [10] can be regarded
as a feasible interaction control since it provides a
sort of compliance at joints if the feedback gains
are properly adjusted. On the other hand, the sin-
gularly perturbed model can be suitable exploited
to achieve force control either in a hybrid posi-
tion/force control or impedance control framework
[12], or when a constraint on the environment is
present [13].

Nevertheless, it should be stressed that all the
interaction control schemes for robots with elas-
tic joints proposed in the literature are validated
by means of simulation tests on 2- or 3-degree-of-

freedom (d.o.f.) manipulators.

This paper extends the approach in [10] by
proposing a proportional-derivative control in the
Cartesian space plus gravity compensation.

The controller is analogous to a compliance con-
trol in the Cartesian space for rigid robots but a new
position variable, named the gravity-biased motor
position, is introduced. This means that the po-
sition and velocity information, available from the
position sensors on the rotors, suffices to achieve
an easy regulation of compliance in the Cartesian
space.

Further, the proposed compliance control in the
Cartesian space is applied to an 8-d.o.f. cable-driven
robot manipulator, and experimental results are fi-
nally provided.

2 Robot dynamic model

Robot manipulators with n moving rigid
links driven by electrical motors through =
joints/transmissions subject to small elastic defor-
mations are considered.

Under the assumptions in [8], the dynamic model
of a robot with elastic joints can be expressed as

M(q)i+S(a.9)i+9(g) + K(g—0) = (1)

I0+K@6—q) = u
where ¢ € R" is the vector of link positions and
0 € R™ is the vector of (reflected) motor positions.
It is assumed that only the motor variables 8 and
0 are measurable, or at least obtained by accurate
numerical differentiation.

roter |
Figure 1: Elastic joint

In (1) M(q) is the (n x n) robot link inertia ma-
trix, I is a constant diagonal matrix including the
rotor inertia and the gear ratios, S(q, ¢)q is the vec-
tor of centrifugal and Coriolis torques, K € R™"*"
is the diagonal matrix of joint stiffness coefficients,

T
and g(q) = (aUan(q)) where Uy(q) is the potential

energy due to gravity.

The robot dynamic model (1) presents three im-
portant properties which are useful in the derivation
of the control law.



P1. The inertia matrix M (q) is symmetric and pos-
itive definite for all q.

P2. If a representation in Christoffel symbols is
chosen for the elements of S(g, ), the matrix
M — 28 is skew-symmetric.

P3. A positive constant « exists such that

99(q)

|25 <o

3 Compliance control in the Cartesian

space

Inspired the approach in [10] on the PD control
for robots with elastic joints, a compliance control
scheme in the Cartesian space is developed in order
to regulate robot compliance directly in the oper-
ational space. To this regard, let x € R™ be the
task vector (i.e. the Cartesian end-effector pose),
with m < n, and z4 € R™ the constant desired
value. The direct and differential kinematics are,
respectively,

z = x(q), &= J(q)g (2)
and depend on the link position variables only. If
m = n, a finite number of inverse kinematics so-
lutions gg € R" is associated with x4, i.e., such
that x(qq) = x4. In general, singular configura-
tions are to be avoided, i.e., det J(qq) # 0. Hence,
the vector g4 has to be selected in the same class
of inverse kinematics solutions as the initial con-
figuration qg. If m < n, oo inverse kinematics
solutions ¢, exist and some of them can be singular
(rank J(gq) < m). Also in this case, a nonsingular
inverse kinematic solution has to be selected as gg.

The control law provides the torque vector u of
the robot dynamic model (1) as a combination of
a proportional term, acting on the Cartesian error,
a motor damping (derivative) term, and a constant
compensation of gravity at the desired g :

u=J"(0)Kp %wd —2(0)) - Knd +g(q0)-  (3)

The matrix J(q) is the robot Jacobian matrix,
Kp and Kp denote (nxn) positive definite matrices
of proportional and derivative gains, and

0=0-K 'g(qa)- (4)
The variable § € R" is a ‘gravity-biased’ modifica-
tion of the measured motor position 6.

It is worth noting that the kinematic terms z(6)
(direct kinematics) and J7 (8) (Jacobian transpose)
are evaluated as a function of 6 (instead of the cor-
rect argument ¢); the rationale is that, as shown af-
terwards, these expressions shall provide the correct
values at steady state, even without a direct mea-
sure of q. As a matter of fact, the control law (3)
can be implemented using only motor variables.

n—m

4 Closed-loop equilibria

The equilibrium configurations of the closed-loop
system (1)-(3) are computed by setting ¢ = 6 = 0
and ¢ = 0 = 0. This yields

9(¢) + K(qg—06) =0 (5)
K(0—q)=J"(0)Kp (4 — 2(0)) + g(aa)- (6)

From (5) it follows that, at any equilibrium, § =
g+ K 'g(q). Then, adding (5) to (6) leads to

I" (a+ K7 (9() ~ 9(4a))) Kpaa
—Kpa(q+K " (9(a)—9(aa))) +9(aa)— 9(g) =0. (7)

Indeed
q=q4 andthus 6=q4+ K 'g(qa) =64 (8)

is a closed-loop equilibrium configuration. More-
over, in correspondence to this equilibrium, 04 =
04— K~'9(qq) = qq and consequently x(éd) = z4.

In the hypothesis of m = n, i.e. the robot
is not kinematically redundant for the considered
task, the uniqueness of such equilibrium is now
shown. Adding to both (5) and (6) the term
K(0a — qa) — g(qa) = 0 leads to

K(q—qa) — K(0 —64) + 9(q) — g(qa) =0 (9)
~K(q-90)+K 062+ () Kp((6) ~24)=0 (10)

where the sign of the last equation has been
changed. The following expansion holds true (lo-
cally around 0 = 6,)

z(0) — 24 =z (g4 + (0 — 04)) — za = (qa)
+J(ga)(0 = 0a) + o([|0 — 04]|*) — 4
= J (0+ (84— 0)) (0 04) + 0(]10 — 04lI*)
= J(6)(0 — 6a) + 01(/10 — 8al*) (11)

Therefore, Egs. (9) and (10) can be rearranged as

K -K 3 q—4qd
[ —K K+ J'0)KpJ(0) ] [ 6 — 04 ]

9(qa) = 9(q)

= . 12

[ 0110 — 0al) (12)
Assuming to be close enough to 6,;, the vanish-
ing second-order terms can be neglected. In addi-
tion, away from kinematic singularities, the small-
est (real) eigenvalue Apin(K) of the symmetric ma-
trix



. K

K= -K

K K+ JT@)KpJ(0) ] (13)
can be always bounded away from zero. In fact, in
the above assumptions, a sufficiently large (diago-
nal) Kp can be always selected such that

Amin (K) > Q. (14)
As a consequence, using the inequality
| 9(a1) —9(@)| < allgr — gl (15)

for any ¢1,q2 € R", which follows from property
P3, leads to

K —K ~ q—qd
—-K K+ JY0)KpJ(H) 0— 04
—4qd (K _
> i ()| | 5780 || hon (R =

> allg — qall > llg(qq) — g9(a)l (16)

and thus equality (12), neglecting o0;(||6 — 64]%),
holds only for (gq,0) = (¢4, 04)-

Summarizing, locally around (g, 8)=(qq,04) and
away from kinematic singularities in a non-
redundant robot, (gq,6,4) is a unique isolated equi-
librium configuration of the closed-loop system (1)—

(3).

5 Proof of asymptotic stability

The stability of the proposed control law is
proved by using the direct Lyapunov method and
then invoking La Salle’s theorem.

Consider the function

V' = V!(q.0.d.0)=5d" M(q)i + 56716

1 -1 T -1
+3 (a=0+K"g(a)) K (a—0+K"glas)
1 ~\T ~
+3 (24— 2(0))" Kp (a—2(0))
+Uq(q) — 4" 9(qa)- (17)
The function derived from (17) as V =

V'(q,0,4,0) — V'(q4,04,0,0) is zero in the chosen
equilibrium state, ¢ = ¢4, 0 = 64, ¢ = 6 = 0, and
positive for any other state in an open neighborhood
of this equilibrium, provided that condition (14)
holds (as in [10]). Therefore, V' is a candidate Lya-
punov function.

Along the trajectories of the closed-loop sys-
tem (1)—(3), the time derivative of V' becomes

) _ 1 . NT
V= qTM(q)q + §qTM(q)q +60T710 + (q — 0) X

K (q—e+rlg<qd))— 677 (0)Kp (va—(0))
oU,(q)

o (“50)

+i(~K(a = 0)+ 33100+ K(a - 0) + glao)

+" (9(a) — 9(aa)) + 0"(u—K(0 — q)— K (g~ 9))
+67 (— (qa) — JT(O)K ( d—w(é)))
= éT(JT(H Kp (:ch z(0 ) Kpb + g(qq) —

—q"9(qa)=4" (—S(q.9)q — 9(q))
1

9(ga) )
+07(— I (O) K p (wa—(0)) )=—0"Kp <0 (18)

where the skew-symmetry of matrix M — 28 and

the identity 6 = 6 have been used.
Since V = 0 iff = 0, at the equilibrium the
closed-loop equations give

M(q)G + S(q,4)q + g(q) + Kq = K6 = const (19)
Kq=K0—J"(0— K 'g(qa)Kp x

(wa—2 (60— K" 9(a0))) — 9(as) = const. (20)

From (20), it follows that ¢ = ¢ = 0, which in turn
simplifies (19) to

9(q) + K(g—0) =0. (21)

It has been already shown in Sect. 4 that the system
of (20)—(21) has a unique solution, locally around
a nonsingular (gq, 6,), provided that condition (14)
holds true. Therefore, ¢ = qq4, @ = 04, ¢ = 6=0is
the largest invariant subset contained in the set of
states such that V =0 (locally around the equilib-
rium configuration). By La Salle’s Theorem, local
asymptotic stability of the desired (nonsingular) set
point can be concluded.

6 A modified control law

The control law (3) uses a constant gravity com-
pensation at the desired closed-equilibrium. A bet-
ter transient behavior can be expected if a form
of gravity compensation is performed at any con-
figuration during motion. However, note that the
gravity vector in (1) depends on the link variables g,
which are not directly measurable. This is similar
to the dependence on ¢ of the direct and differential
kinematics of the arm (see (2)) and therefore one
can attempt, by analogy, using the ‘gravity-biased’
variable 6, defined in (4), in place of ¢ also for the
on-line gravity compensation, i.e.,

u=J"(0)Kp (za—2(0)) — Kpf+g(0). (22)



It can be shown that the control law (22) provides
local asymptotic stability of the closed-loop equi-
librium configuration (8), under similar assump-
tions as in (14). The analysis, however, is more
involved and requires in particular a different Lya-
punov function candidate.

7 Experimental results

In order to test the validity of the proposed com-
pliance control scheme in the Cartesian space, the
implementation of (22) has been carried out on
an 8-d.o.f. cable-actuated robot, named the Dexter
arm [14], designed for applications of rehabilitation
robotics.

In the particular case of a cable-actuated robot
manipulator, such as the Dexter arm, the actuators
are not directly connected to the links since, after
the gear reduction, a mechanical transmission sys-
tem realized by pulleys and steel cables is present.
This causes a mechanical coupling among the joints
(Fig. 2).

Figure 2: A cable-actuated joint

The position variables are 16, decomposed in 8
rotor position values measured by incremental en-
coders, and 8 link position values.

The experimental trials are aimed at demon-
strating the stability of the system in reaching
the desired reference position z,; as well as at
showing the capability of the controller to mod-
ulate the level of force in the interaction. To
this purpose, a desired trajectory z4(t) has been
planned from an initial position until the desired
reference position z4. The assumption is made
that at the initial time instant the robot has a
zero position error. The data shown in the fol-
lowing correspond to two different sets of propor-
tional gains Kp = diag{240, 220, 240,5,5,5} and
Kp=diag{100, 100, 100,2,2,2} and to the deriva-
tive gains Kp = diag{20,20,12,10,4.5,5,0.4,0.4}.

Fig. 3 shows the time evolution of the position
error and orientation error when the higher values
Kp are chosen. The robotic system is asymptoti-
cally stable and shows a lower level of fluctuation

and vibration with respect to the case of a compli-
ance controller with the same gains for the equiv-
alent rigid robot [14], that is the case of joints as-
sumed completely rigid, with § = ¢ (Fig. 4). Fur-
ther, convergence to zero is ensured in the elastic
case while the system is stabilized around a value
different from zero in the rigid case.
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Figure 38: Position error and orientation error when
Kp = diag{240, 220, 240, 5, 5, 5}

On the other hand, choosing the lower values for
Kp increases the level of compliance, at the ex-
penses of a larger position and orientation error
(Figs. 5). A comparison between the two choices
has been carried out by means of an impact against
an obstacle equipped with a load cell. It is illus-
trated in Fig. 6, revealing a reduction of the val-
ues of interaction forces with the lower feedback
gains. In any case, the asymptotic stability is al-
ways achieved even if with a different convergence
rate.
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Figure 4: Position error and orientation error in the rigid

case
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Figure 5: Position error and orientation error when
Kp = diag{100, 100, 100, 2, 2, 2}



IMPACT FORCE IMPACT FORCE

2 2
1 1
Zo Zo
A 1
2 2
0 05 1 15 05 1 15
[sec] [sec]

a) B

Figure 6: Interaction force in case of high Kp (left) or
low Kp (right)

8 Conclusions

In order to reduce the vibrational phenomena or
chattering effects in contact situations between a
robot manipulator and the environment, the elas-
ticity in the joint actuation system cannot be ne-
glected in the design of control strategies.

To this purpose, interaction control schemes typ-
ically utilized for rigid robots can be still applied if
suitable corrective terms are introduced.

This paper has demonstrated that a compliance
control scheme in the Cartesian space for rigid
robots can stabilize also a robot with elastic joints,
by using only the sensor information on the ro-
tor positions. A control law with constant grav-
ity compensation has been proved. Then, a modi-
fied version with on-line gravity compensation has
been proposed and successfully implemented on an
8-d.o.f. cable-actuated robot manipulator. The ex-
perimental trials have confirmed asymptotic stabil-
ity of the system and the capability to act on the
robot interaction force by varying its compliance.
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