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Abstract— Low-cost range sensors represent an interesting
class of sensors which are increasingly used for localization
and mapping purposes in robotics.The combination of depth
data and visual information can be employed to develop
reliable algorithms for localization and environment mapping.
A real-time approach combining a monocular visual odometry
algorithm and range depth data is proposed in this paper.
The scale factor problem is solved combining the depth data
flow and the monocular image data. Moreover, a multiple
resolution approach led by the distance of the sensor from
surrounding obstacles is proposed for the depth data acquisition
process. The visual egomotion estimation algorithm and the 3D
map generation work in parallel improving the system real-
time reliability. Experimental results show how the proposed
integrated framework is able to localize in real-time the device
in an unknown environment and to simultaneously generate an
environment dense and colored map.

I. INTRODUCTION

Low-cost range sensors are an attractive alternative for

expensive laser scanners or 3D cameras in research domains

such as indoor navigation and mapping, surveillance and

autonomous robotics. Consumer-grade range sensing tech-

nology gives the opportunity to choose between different

devices available on the market like Microsoft Kinect sensor

and ASUS Xtion sensor. They were primarily designed

for natural interaction in a computer game environment

(PrimeSense, 2010) using gesture recognition. However, the

richness of the provided data and the low cost of the sensor

have attracted many researchers from the field of mapping,

3D modeling and reconstruction. For example, the newest

ASUS Xtion sensor presents a low weight with respect to

the first generation of RGB-D cameras (around 70g without

the external casing). It does not need external power other

than the USB connection, and it is very compact, giving to

this device some unique characteristics suitable, for example,

for unmanned aerial vehicles applications [1].

A number of Simultaneous Localization and Mapping

(SLAM) systems that make use of these sensors have already

appeared in literature [2], [3], [4], [5], [6]. In particular,

in [2] an RGB-D 3D mapping system utilizes a novel joint
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optimization algorithm combining visual features and shape-

based alignment. In [4] a direct 3D tracking approach is

proposed such that an error is based directly on the intensity

of pixels. Other algorithms are based on fusing depth maps

to a coherent 3D model [5].

Algorithms based on 2D laser scanners [7], [8], 3D scan-

ners [9], monocular cameras [10], [11], Inertial Measurement

Unit (IMU) combined to a mono-camera system [12], [13],

[14], [15] and stereo cameras [16], [17], [18], [19] have been

widely used in the past for visual SLAM and visual odometry

purposes. In [10] a monocular SLAM approach for small

workspace is proposed, splitting the tracking and mapping

process into two separate threads, whereas in [11] the appli-

cation of a monocular technique with scale drift correction

at loop closures is shown for large environments. Actually,

it is worth underlining the promising results obtained with

the application of monocular SLAM techniques to ground

robots [3] and flying vehicles [6], as well as of monocular

camera systems [12], [13], [20]. In [13] a kinect and on-

board vehicle sensors are used to perform state estimation

trough Kalman filtering, while in [12], [20] a dynamic filter

solves the scale factor estimation problem combining visual

information with inertial sensor data. All these approaches

show the feasibility of the adoption of these sensors also on

a limited hardware/resource platform.

In the proposed work the new sensor ASUS Xtion is

employed by coupling the monocular multi-map visual

odometry algorithm proposed in [21] with depth data pro-

vided by the Infrared (IR) camera obtaining a real-time

visual SLAM algorithm and a dense colored map. With

the proposed solution the scale factor missing in [21] is

estimated online such that the absolute map and position

can be computed. The visual odometry algorithm works in

a separate thread with respect to the depth generation map

hence improving the reliability of the proposed algorithm on

a multi-core platform. Moreover, the proposed system relies

on the possibility to use both depth data and 3D features

extracted from the monocular odometry algorithm improving

the overall robustness of the map reconstruction algorithm.

This is useful in case the device is used both in indoor and

outdoor environment where the efficiency of the IR sensor

can be locally compromised. Finally, to avoid memory rising

up in large environment, a spatial multi-resolution approach

is proposed to acquire point cloud data according to local

environment distance. The framework has been developed

under ROS [22] and is available to any user.

The rest of the paper is organized as follows: in Section II

a review of the working principle of the RGB-D sensor
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Fig. 1. Asus Xtion Pro Live Sensor.

is provided showing how 3D points cloud are generated

from depth data. In Section III it is shown how visual

odometry is combined with depth data to estimate the scale

factor. In Section V map generation is presented, whereas

in Section VI experimental results are provided to show

the effectiveness of the proposed approach. Section VII

concludes the paper.

II. SENSOR CHARACTERISTICS

The ASUS Xtion sensor employed in this paper consists

of an infrared laser emitter, an infrared camera and a RGB

camera (see Fig. 1). Both the RGB and the depth images

are provided with 640×480 pixels resolution at 30 Hz. The

measurement of the depth data is achieved by a triangulation

process [23]. The laser source emits a single ray which is

split into multiple rays by a diffraction grating to create a

constant pattern of speckles projected onto the scene. This

pattern is captured by the infrared camera and is correlated

against a reference pattern, which is obtained by capturing a

plane at a known distance from the sensor. When a speckle

is projected on an object whose distance to the sensor is

smaller or larger than the one of the reference plane, the

position of the speckle in the infrared image will be shifted in

the direction of the baseline between the laser projector and

the perspective center of the infrared camera. These shifts are

measured for all speckles by an image correlation procedure,

which yields a disparity image. For each pixel the distance

to the sensor can then be retrieved from the corresponding

disparity. In the following we consider a depth coordinate

system which has origin at the perspective center of the

infrared camera, with the Z axis orthogonal to the image

plane towards the object, the X axis aligned to the direction

of the baseline b between the infrared camera and the RGB

camera. The Y axis is orthogonal to X and Z axis making a

right-handed reference system.

Suppose that an object is on the reference plane at distance

Z f with respect to the sensor and the corresponding speckle is

captured on the image plane of the infrared camera as shown

in Fig. 2. If the object is shifted closer, far with respect to

the sensor, the speckle on the image plane is displaced in the

X direction, that corresponds to a disparity d in image space.

The disparity d is strictly related to D, the displacement of

the point k on the image, and to Zk (depth), which denotes
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Fig. 2. Working Principle of IR Camera.

the distance of the point k as follows

D

b
=

Z f −Zk

Z f

(1)

D

f
=

d

Zk

. (2)

By plugging D extracted from (2) into (1), the following

relation is obtained

Zk =
Z f

1+
Z f

f b
d
, (3)

where b represents the base length between the IR projector

and the infrared camera, while f is the focal length. All these

parameters can be determined with a suitable sensor cali-

bration procedure. The other two coordinates of the object

3D position can be determined by the classical perspective

projection model as follows

Xk =−
Zk

f
(xk − xc +δx) (4)

Yk =−
Zk

f
(yk − yc +δy), (5)

where xc, yc represent the coordinates of the principal point,

δx, δy the lens distortion correction parameters, and xk, yk

the corresponding normalized image coordinates.

The main problem to recover all the coordinates of the

observed environment consists in the impossibility to stream

the actual measured disparities, probably due to bandwidth

limitation. In fact, the disparity values are normalized in the

range 0–2047 and streamed as 11 bit integers. A zero sensor

disparity does not correspond, for this reason, to an infinite

distance. A normalized disparity should be considered in lieu

of the one previously defined, and the sensor disparity is

related to a normalized disparity by the following relation

dn =
1

8
(do −d), (6)

where dn is a normalized disparity, and do is an offset value

particular to a given sensor device. The factor 1
8 appears



because the values of d are in 1
8 pixel units. With a monocular

camera calibration procedure of the infrared camera the focal

length, the distortion parameters, and the lens center of the

camera can be retrieved. Moreover, the parameters b and

do can be measured with a least-squares fitting procedure

by employing in (2) the estimates of the 3D position of

the corners of a calibration chessboard, the corresponding

measured projections of the corners in the infrared image,

and the corresponding disparity values.

III. VISUAL EGOMOTION AND UNSCALED MAPPING

The visual SLAM algorithm PTAMM [21] is employed

in our framework in order to localize the device within

the environment with a single camera. The SLAM task is

split into two parallel task, namely the tracking task and the

mapping task, which are executed with two different threads.

The tracking task is responsible for the tracking of salient

features in the camera image determining camera position.

This is done with the following steps: first, a simple motion

model is applied to predict the new pose of the camera.

Then the stored map points are projected into the camera

frame, and the corresponding features FAST corners [26]

are searched (data association). The orientation and position

of the camera is refined such that the total error between the

observed point features and the projection of the map points

into the actual frame is minimized.

On the other hand, the mapping task uses a subset of all

camera images called key frames, selected through a heuristic

criteria, to build a 3D point map of the environment. After

adding a new key frame, a batch optimization is applied to

refine both the map points and the key frame poses. The main

purpose is the minimization of the total error between the

back-projected map points and the corresponding measures

in the key frames realizing the so-called bundle adjustment.

There are several important differences between the key

frame SLAM algorithm considered here and the standard

filter based approach [25]. The adopted algorithm does not

use an EKF based state estimation and does not consider any

uncertainties, both for the camera and the feature location,

in a way to reduce the computational effort. However,

considering the uncertainty of the state could ease the data

association process. The lack of modeling uncertainties is

compensated by the use of a large number of features and

the global batch optimization. Therefore, despite the use of

a fixed area for feature matches, the algorithm is still able to

track efficiently the point features and to close loops. This

makes the algorithm extremely fast and reliable and the map

very accurate. As demonstrated in [24], the key frame SLAM

outperforms the classical filter-based approach SLAM.

With respect to [10], users can now save the state of a map

to disk, and then later reload it. Maps are saved in an open

format using XML for the map data, and PNG images for

the key frames. Only the salient data is saved, while some

is regenerated on loading (such as FAST corners). A new

class to handle thread synchronization issues is added to the

Map class. The serializer has the complete control of a map,

so other threads cannot corrupt the data during saving and

loading. All threads now have to register to each map and

unregister when leaving. If a map is locked they will signal

an acknowledgement and wait until the map is unlocked.

The key advantage is that multiple maps can be saved in

the background, with only a brief pause in operations in the

current map during saving.

IV. SCALE FACTOR ESTIMATION

The adopted visual SLAM framework based on PTAMM

can provide the translational motion of the sensor in the

environment up to a scale factor, since a single camera

is employed. The estimation of the scale factor parameter

trough the combination of depth data and visual data is

proposed in this paper. We assume that the intrinsic and the

extrinsic calibration parameters are available for both the IR

and for the RGB camera. Let pIR
i be the i-th point, expressed

in the IR frame, which belongs to the point cloud

PIR =
[

pIR
1 , · · · ,p

IR
n

]T
, (7)

which is generated as specified in Section II. The previous

points cloud can be represented into the RGB frame as

follows

pRGB
i = tRGB

IR +RRGB
IR pIR

i , (8)

where RRGB
IR , tRGB

IR are the rotation matrix and the translation

vector of the IR camera with respect to the RGB camera,

respectively, which are provided by the sensor calibration.

The depth values corresponding to each feature extracted

within the visual framework have to be identified to evaluate

the 3D point cloud. The adopted procedure is the same as de-

scribed in Section II since the depth is actually expressed in

the RGB frame. Let cv be the center of mass of the points in

the RGB visual framework, and cd the corresponding center

of mass for the depth points pv,i, with i = 1, . . . ,n. The ratio

between the Euclidean distance of each 3D point, generated

in the visual framework, from the FAST corners [26], with

respect to its center of mass

∆pRGB
i = ‖pRGB

i − cv‖, (9)

and the distance computed for the corresponding depth points

∆pv,i = ‖pv,i − cd‖, (10)

yields a set of scale factors

s =
[

s1, · · · ,sn

]T
, where si =

∆pRGB
i

∆pv,i

. (11)

The current estimation of the scale factor corresponds to the

mean value of s. A statistical procedure is setting up deleting

the values out of the statistics of a normal distribution to

improve the achieved measure. A synthetic representation of

the estimation process is given in Algorithm 1. Notice that

the combination of the depth and visual data to recover global

consistency is strictly required only for the first frame, as

well as the values si could be computed only for the extracted

corners. The proposed solution is computational inexpensive

and allows the evaluation of the environment map directly

from the cloud points given by the IR/depth image.



Algorithm 1 Scale Factor Estimation(RGBimage,Depthimage)

extract image features set(RGBimage)→ F =
[

f1, · · · , fn

]T
;

compute 3D points(RGBimage, f) → pv;
compute center of mass(pv)→ cv;
compute depth points(Depthimage) → pIR

i ;
roto translate(Depthimage) → pRGB

i = tRGB
IR +RRGB

IR pIR
i ;

compute center of mass(pRGB)→ cd ;
for ∀fi do

fi → depthi;
∆pRGB

i = ‖pRGB
i − cv‖;

∆pv,i = ‖pv,i − cd‖;

si =
∆pRGB

i
∆pv,i

;

end for

s =
[

s1, · · · ,sn

]T
;

is deleted = true;
while is deleted do

is deleted = false;
s f = mean(s);
σ = std(s);
for ∀i do

if abs(si − s f )≥ 2σ then

delete si;
is deleted = true;

end if

end for

end while

return s f

V. 3D MAPPING AND RECONSTRUCTION

The environment map generation is computed in parallel

with respect to visual odometry evaluation. The map is

generated through the depth values using the monocular vi-

sual odometry framework. After the algorithm initialization,

when the scale factor estimation is performed, the absolute

position and orientation are computed. These values are then

associated to the point clouds generated from the IR sensor,

which is composed of around 300.000 points if a depth image

of resolution 640 × 480 pixels is considered. The result is a

colored map given by combination of the RGB image pixels

colors with the depth values.
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Fig. 3. Depth image multi-resolution sampling.

To avoid an excessive memory allocation, which can af-

fect computation performances, without reducing the spatial

accuracy of the environment map, a new multi-resolution

approach is proposed for point clouds sampling. For each IR

image, the corresponding point clouds are divided in different

groups trough a virtual image grid, which is composed of

rectangles of size DR ×DC pixels (see Fig. 3). In particular,

for each rectangle of the grid, a spatial sampling with a step

∆R ×∆C is chosen accordingly to the following laws

∆R = ∆R,min +
∆R,max −∆R,min

Zmax −Zmin

(Zmax −ZC) (12)

∆C = ∆C,min +
∆C,max −∆C,min

Zmax −Zmin

(Zmax −ZC), (13)

where ZC is the third component of the point centered into

the current rectangle or the average distance between the

rectangle and the environment expressed into the IR frame.

The terms ∆R,min, ∆R,max, ∆C,min, and ∆C,max represent the

minimum and maximum values for the spatial sampling

distance, respectively. According to the computed value, a

certain number of points is added to the global map. For

each rectangle the number of points, added to the global

map, varies as shown with a linear law between a maximum

distance Zmax and the minimum distance Zmin, which the

sensor is able to detect, according to the distance from the

environment ZC in the current cell.
Moreover, a sampling time is adopted depending on the

sensor linear and angular velocity. In details, the map pub-

lishing thread takes care of the map streaming and pose

visualization in real-time, while the map data storage is

updated according to the following time laws

F = Fmax − (Fmax −Fmin) ·max

(

v

vmax

,

ω

ωmax

)

(14)

where F is the map update frequency, Fmax, Fmin are the

maximum and minimum publication updating frequencies

rate, v and ω are the mean linear and angular velocity norms,

respectively, performed on the last k time instants as follows

v =
1

k

k

∑
i=1

vi ω =
1

k

k

∑
i=1

ωi. (15)

The quantity vi (ωi) is the linear (angular) velocity norm at

time instant i computed as follows

vi =
1

∆T
(pi − pi−1) (16)

ωi =
1

∆T
θ i

i−1, (17)

where ∆T is the time interval between two consecutive

measurements, pi is the position norm at time instant i, while

θ is obtained from the axis-angle orientation representation

of two consecutive time rotations

(RiR
T
i−1)→ (l,θ i

i−1). (18)

The main problem for this kind of sensors is their effi-

ciency in outdoor environments where depth generation is

compromised due to outside light intensity. For this reason

the presented framework gives the opportunity to use, instead

of IR camera points, 3D points in the fixed frame generated

by the visual framework. The main difference with respect

to [21] is that all map points are scaled by the estimated

scale factor generating an absolute environment map.
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Fig. 5. Path trajectory of the sensor (in red) and the corresponding ground-
truth (in blue) provided by the Optitrack motion capture system.

VI. EXPERIMENTAL RESULTS

The OpenNI driver [27] has been employed for the

sensor interfacing, which provides the capability of choosing

between difference configuration in term of image resolution

and updating frequency. For the considered experimental

case study, the RGB and depth data are streamed with a

frequency of 30 Hz and resolution of 640 × 480 pixels. The

proposed framework has been encapsulated in a ROS [22]

node and the time synchronization between RGB image

and depth is realized via the ROS message synchronization

mechanism. The map can be published up to 20 Hz (Fmax =
20 Hz and Fmin = 10 Hz), with ∆R,max = 10, ∆R,min = 5,

∆C,max = 20, ∆C,min = 10.

To show the effectiveness of the proposed approach the

PRISMA Lab has been reconstructed. Figure 4 shows the

original room (on the top) and the corresponding dense

colored map (on the bottom), while the sensor trajectory is

depicted with a blue line inside the map environment.

Moreover, to evaluate the effectiveness of the proposed

scale factor estimation method, the sensor has been moved

along a trajectory of about 8 m long, which is shown in

Fig. 5. In order to provide a ground truth for the proposed

egomotion estimation algorithm, an OptiTrack motion cap-

ture system [28] composed of ten S250e cameras has been

employed to track the sensor during its motion at 250 Hz.

The time history of the norm of the motion estimation

error with respect to the ground truth shown in Fig. 6

highlights a 15 cm peak over a mean of about 3.8 cm,

which confirms the effectiveness of the proposed approach.

In fact, the sensor accuracy for the depth measurement

at 4 m of distance is declared in 3 cm, and thus the

performance of the proposed approach is in line with the

sensor intrinsic performance. The positional norm error is

decreasing after 30 seconds since the camera is back to

previous mapped positions, where keyframes have already
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Fig. 6. Time history of the positional norm error for the path of Fig. 5.

been instantiated. The results can be seen in the video at

http://wpage.unina.it/lippiell/videos/icar2013 video.mp4.

VII. CONCLUSION

In this paper a real-time method for pose estimation

and mapping has been presented. A new scale factor es-

timation method using a combination of RGB monocular

visual odometry and depth map has been proposed. The

map is generated according to a multi-resolution sampling

approach avoiding an unnecessary memory allocation in case

of large environment. By using a multi-thread programming

approach, the algorithm allows a fast localization and colored

dense map reconstruction of the environment suitable for

real-time applications.
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[9] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann, “6D SLAM-

3D mapping outdoor environments: Research articles”, Journal of Field

Robotics, vol. 24, pp. 699–722, August 2007.
[10] G. Klein and D. Murray, “Parallel Tracking and Mapping for Small

AR Workspaces”, International Symposium on Mixed and Augmented

Reality (ISMAR), Nara, Japan, 2007.



Fig. 4. Dense colored map reconstruction: on the top the real environment; on the bottom the achieved map. The blue line indicates the sensor motion
within the environment as measured by the visual egomotion estimation algorithm with the proposed scale factor computation.

[11] H. Strasdat, J. Montiel, and A. J. Davison, “Scale-drift Aware
Large Scale Monocular SLAM”, Robotics Science and Sytems (RSS),
Zaragoza, Spain, 2010.

[12] M. Achtelik, M. Achtelik, S. Weiss, and R. Siegwart, “Onboard IMU
and Monocular Vision Based Control for MAVs in Unknown In- and
Outdoor Environments”, IEEE Int. Conf. on Robotics and Automation,
Shanghai, China, 2011.

[13] S. Sean, N. Michael, and V. Kumar, “Autonomous Multi-Floor Indoor
Navigation with a Computationally Constrained MAV”, IEEE Int. Conf.

on Robotics and Automation, Shangai, China, 2011.

[14] V. Lippiello, G. Loianno, and B. Siciliano, “MAV Indoor Navigation
Based on a Closed-Form Solution for Absolute Scale Velocity Estima-
tion Using Optical Flow and Inertial Data”, 50th IEEE Conference on
Decision and Control and European Control Conference, Orlando, FL,
USA, 2011.

[15] V. Lippiello, R. Mebarki, “Closed-Form Solution for Absolute Scale
Velocity Estimation Using Visual and Inertial Data with a Sliding Least-
Squares Estimation”, 21st Mediterranean Conference on Control and
Automation, Crete, Greece, 2013.

[16] A. Geiger, J. Ziegler, and C. Stiller, “StereoScan: Dense 3d Recon-
struction in Real-time”, IEEE Intelligent Vehicles Symposium, Baden,
Germany, 2011.

[17] R. Voigt, J. Nikolic, C. Huerzeler, S. Weiss, L. Kneip, and R. Sieg-
wart, “Robust Embedded Egomotion Estimation”, IEEE Int. Conf. on

Intelligent Robots and Systems, San Francisco, USA, 2011

[18] F. Donnarumma, V. Lippiello, M. Saveriano, “Fast Incremental Clus-
tering and Representation of a 3D Point Cloud Sequence with Planar
Regions”, 2012 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
Vilamoura, Portugal, 2012.

[19] V. Lippiello, B. Siciliano, “Wall Inspection Control of a VTOL
Unmanned Aerial Vehicle Based on a Stereo Optical Flow”, 2012

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Vilamoura,
Portugal, 2012.

[20] L. Doitsidis, A. Renzaglia, S. Weiss, E. Kosmatopoulos, D. Scara-
muzza, and R. Siegwart, “3D Surveillance Coverage Using Maps
Extracted by a Monocular SLAM Algorithm”, IEEE Int. Conf. on

Intelligent Robots and Systems, San Francisco, USA, 2011.
[21] R.O. Castle, G. Klein, and D. Murray, “Video-rate Localization in

Multiple Maps for Wearable Augmented Reality”, IEEE International

Symposium on Wearable Computers, Pittsburgh, USA, 2008.
[22] ROS, “Robotics Operating System”, www.ros.org.
[23] B. Freedman, A. Shpunt, M. Machline, and Y. Arieli, “Depth mapping

using projected patterns”, Prime Sense Ltd, USA, 2010.
[24] H. Strasdat, J. Montiel, and A. J. Davison, “Realtime monocular

SLAM: Why filter?”, IEEE Int. Conf. on Robotics and Automation,
Anchorage, USA, 2010.

[25] A. Davison, I. Reid, N. Molton, and O. Strasse, “MonoSLAM: Real-
time single camera SLAM”, IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol.29 (6), pp.1052–1067.
[26] E. Rosten and T. Drummond, “Fusing points and lines for high

performance tracking”, IEEE Int. Conf. on Computer Vision, Beijing,
China, 2005.

[27] OpenNI, www.openni.org.
[28] Optitrack, “Optical Motion Capture System and Tracking Software”

http://www.naturalpoint.com/optitrack/.
[29] D. Scaramuzza and F. Fraundorfer, “Visual Odometry Part I: The First

30 Years and Fundamentals”, IEEE Robotics and Automation Magazine,
vol. 18, pp. 80–92, December 2011.

[30] F. Fraundorfer and D. Scaramuzza, “Visual Odometry Part II: Match-
ing, Robustness, Optimization and Applications”, IEEE Robotics and

Automation Magazine,vol.19, pp.78–90, June 2012.


