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Abstract. In this chapter we present the design and implementation of
a robust passivity-based controller for a rolling-balancing system known
as the disk-on-disk. The control design aims to asymptotically stabilize
the desired equilibrium of the disk-on-disk by shaping the energy func-
tion of the system and injecting damping. This first design is further
augmented by the addition of a nonlinear PID controller to compensate
for disturbances. We incorporate in the nonlinear PID the possibility of
stabilizing either a set-point of angular positions of the disks or their
angular velocities while keeping the balance of the system. Although
the underactuation feature of the system and the disturbances hamper
the control design, we show that the passivity-based framework offers
the necessary tools to prove the desired stability properties of the close
loop. Finally, we evaluate the practical applicability of the control design
by implementing the controller on a real hardware for the disk-on-disk
system and asses the performance of the control system.

Keywords: Rolling-balancing system · Nonlinear control · Passivity-
based control · Integral action

1 Introduction

Control theory has provided a rich variety of methods for control design of non-
linear systems [5,6]. In the context of robotics and mechanical systems, nonlinear
methods have been widely used for control design (see e.g. [17,18]). A class of
mechanical systems posing a particularly challenging control problem is that
of underactuated mechanical systems. Underactuation refers to the fact that
number of the inputs is smaller than the number of the degrees of freedom.
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Passivity-based control (PBC) has shown to be a successful technique for
control design of underactuated systems [11]. A standard constructive method
for stabilization of mechanical system is the so-called interconnection and damp-
ing assignment (IDA) [12]. This technique is based on Lagrange–Dirichlet result
on stability of mechanical systems, which states that an isolated minimum of the
potential energy is Lyapunov stable (see Theorem 3.1 in [9] for further details).
The basic idea of IDA-PBC is to shape the energy of the system and assign
a minimum at the desired equilibrium by using feedback measurements and
the control input. A further injection of damping is needed to ensure asymp-
totic stability [13]. To stabilize a desired equilibrium for fully actuated systems,
only the potential energy of the system is needed to be shaped. However, both
the potential and kinetic energies have to be shaped to stabilize underactuated
systems, a procedure known as total energy shaping. Although passivity-based
controllers are known to be robust against parameter uncertainties, the action
of external disturbances can deteriorate the performance of the closed loop or,
even worse, produce instabilities. To address this problem, a classical addition of
control actions has been proposed in [2,10]. This integral action design has been
specialized for fully actuated and underactuated mechanical system by [3,14],
respectively.

In this work, we consider the control problem of the disk-on-disk (DoD),
which is an underactuated rolling-balancing system [16]. The DoD is a case study
of nonprehensile manipulation and has been used as testbed for control designs in
this context [4,16]. In addition to the stabilization problems of angular position
set-points or tracking constant angular velocity references while keeping balance,
we also consider input disturbances, which complicate the design and extend the
result in [1]. Previous works have considered the stabilization problem of the DoD
using exact-feedback linearization [8], and energy shaping [4], but none of these
works consider disturbances in the design. The work in [15] considers constant
speed tracking but disturbances were no considered. In our work, we explicitly
consider the disturbances and we design a robust IDA-PBC controller following
the approach proposed by [3]. This controller results in a classical IDA-PBC
inner controller plus a nonlinear PID-type outer-loop controller, which rejects
the disturbance. In addition, we implement the control laws in a real hardware
for the disk-on-disk prototype, and run a set of experiments. These experiments
allow assessing the performance of the controllers and evaluating the practical
applicability of the methods provided in the literature of control theory.

The rest of the chapter is organized as follows: Sect. 2 reviews the basic
background on port-Hamiltonian framework and IDA-PBC. The control design
for the disk-on-disk is developed in Sect. 3. Section 4 presents simulations and
experiment results, respectively. Finally, the chapter is wrapped-up with the
conclusions.
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2 Port-Hamiltonian Systems

2.1 Hamiltonian Models

A broad class of mechanical systems can be described by the Euler–Lagrange
equations of motion

d

dt
[∇q̇L (q, q̇)] − ∇qL (q, q̇) = G(q)u, (1)

where q ∈ R
n is the generalized position, u the input force, G : Rn → R

n×m is
the input matrix and L the Lagrangian, which has the following form

L (q, q̇) =
1
2
q̇�M(q)q̇ − V (q),

where V : Rn → R is the potential energy and M : Rn → R
n×n is the mass

matrix and satisfies the condition M(q) = M�(q) > 0. Applying the Legendre
transformation and defining the generalized momentum p = M(q)q̇ [7], we can
express the dynamics (1) in the Hamiltonian form as follows

[
q̇
ṗ

]
=

[
0n×n In

−In 0n×n

] [∇qH
∇pH

]
+

[
0n×m

G(q)

]
u, (2)

where p ∈ R
n and H : Rn×n → R is the total energy system given as

H(q, p) =
1
2
p�M−1(q)p + V (q). (3)

2.2 Energy Shaping and Damping Assignment

The stabilization problem of the system (2) using IDA-PBC is to find a control
input u such that the dynamics of the closed loop can be written as a port-
Hamiltonian system as follows

[
q̇
ṗ

]
=

[
0n×n M−1Md

−MdM
−1 J2 − R�

d

] [∇qHd

∇pHd

]
, (4)

where the matrices J2(q, p) = J�
2 (q, p) and Rd(q) = G�(q)KvG(q) represent the

desired interconnection and damping structures, respectively, and Kv > 0 is a
free symmetric matrix to be chosen. The function Hd : Rn → R is the desired
energy in closed loop which has the form

Hd(q, p) =
1
2
p�M−1

d (q)p + Vd(q), (5)

where Md(q) = M�
d (q) > 0 and Vd(q) are the desired mass matrix and the

desired potential energy of the closed loop, respectively. In addition, if q� is
a minimum of the potential energy, then the desired energy Hd qualifies as a
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Lyapunov candidate function, and its time derivative along the solutions of (4)
results as follows

Ḣd = −p�M−1
d G�KvGM−1

d p ≤ 0, (6)

which ensures that q� is a stable equilibrium of the closed-loop system. Moreover,
asymptotic stability follows if the signal yd = GM−1

d p is detectable [12].
The classical approach to design an IDA-PBC controller is to compute the

control in two steps. First, the energy shaping control uES, and second the damp-
ing injection uDI. Then, the control input is obtained as u = uES + uDI. The
energy shaping controller is computed by matching the open dynamics (2) and
the desired closed loop (4) assuming Rd = 0. This procedure results in the
following matching equation

[
0n×n In

−In 0n×n

] [∇qH
∇pH

]
+

[
0n×m

G(q)

]
ues =

[
0n×n M−1Md

−MdM
−1 J2

] [∇qHd

∇pHd

]
, (7)

which should be solve for uES. For the nontrivial case of underactuated systems,
where G(q) is full column rank but non invertible matrix, the solution of (7) can
be found by solving the following two equations:

• Kinetic-energy matching equation (KE-ME)

G⊥
{

∇q

[
p�M−1p

] − MdM
−1∇q

[
p�M−1

d p
]
+ 2J2M

−1
d p

}
= 0. (8)

• Potential-energy matching equation (PE-ME)

G⊥
{

∇qV − MdM
−1∇qVd

}
= 0, (9)

where G⊥ ∈ R
(n−m)×n is the full rank left annihilator of G, i.e. G⊥G = 0. Then,

the energy shaping control law is given by

uES = (G�G)−1G�
[
∇qH − MdM

−1∇qHd + J2∇pHd

]
. (10)

The second step in the design is the damping injection, which is given by the
control law

uDI = −KvG
�M−1

d p. (11)

As discussed by [12], the injection of damping together with the detectability
condition are needed for asymptotic stability.

3 Control Design for the Disk-on-Disk

3.1 Dynamic Model

The DoD is a rolling-balancing system shown in Fig. 1. Disk 1 is actuated by a
controlled torque whilst Disk 2 is non-actuated (see [16] for a detailed modelling
development). We consider two control objectives:
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Disk 1

Disk 2

Fig. 1. A schematic of the DoD system

O.1. Stabilization of the Disk 2 at the upright position while driving the angle
of Disk 1 to a target angular reference.

O.2. Tracking of constant angular velocities reference for Disk 1 while keeping
the Disk 2 at the upright position.

The dynamic model of the DoD can be described by the Lagrangian equations
in coordinates (θ, ϕ), where θ is the angle of Disk 1, and ϕ is the deviation angle
of Disk 2 respect to the upright position. The Langrangian for the DoD is given
by

L (q, q̇) =
1
2

[
θ̇ ϕ̇

]� [
M11 M12

M21 M22

] [
θ̇ ϕ̇

]
− V (q), (12)

where
V (q) = V0 cos(ϕ),

with V0 = mog(ro + rh). The function V represents the potential energy and M
is the mass matrix whose entries are

M11 = r2h(mo + mh),
M12 = M21 = −morh(ro + rh),

M22 = 2mo(ro + rh)2.

Equivalently, as explained in Sect. 2, the DoD model can be written in the Hamil-
tonian form as follows [

q̇
ṗ

]
=

[
0 I

−I 0

] [∇qH
∇pH

]
+

[
0
G

]
u, (13)

where the coordinates q =
[
θ ϕ

]�, the momenta p = Mq̇ and the input matrix

G =
[
1 0

]�. The Hamiltonian function is

H(q, p) =
1
2
p�M−1p + V (q).
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3.2 Energy Shaping and Damping Assignment Control

The objective in this section is to design a IDA-PBC controller for the DoD
system that stabilizes the point q∗ = (θ∗, 0), where θ∗ is the desired equilibrium
for Disk 1 angle. This control objective corresponds to the task O.1 described in
Sect. 3.1. To solve this problem, we design a controller using energy shaping and
damping injection as described in Sect. 2. That is, we search for the function
Vd and the matrices Md and J2 that solve the KE-ME and PE-ME, (8) and
(9) respectively. Thus, the energy shaping control is obtained from (10) and the
damping injection control from (11).

Since the mass matrix of the DoD is constant and does not depend on the
coordinates q, we select Md as a constant matrix as follows

Md =
[
N11 N12

N12 N22

]
,

where N11, N12 and N22 are free constants parameters. To simplify the notation,
we note

MdM
−1 =

[
a b
c d

]
.

Then, the PE-ME (9) is as follows

[
0 1

] {[
0

V0 sin(ϕ)

]
+

[
a b
c d

] [∇θVd

∇ϕVd

] }
= 0

V0 sin(ϕ) + c ∇θVd + d ∇ϕVd = 0.

(14)

We solve the partial differential equation (14) for Vd, and we obtain, using a
symbolic software (e.g. Mathematical, Maple), a solution as follows

Vd(q) =
1
d
V0 cos(ϕ) +

k2
2

(
θ − c

d
ϕ − k1

)2

, (15)

where k1 and k2 are free constant parameters to be chosen to assign a minimum
at the desired equilibrium.

From the previous selection of Md, it is clear that the KE-ME (8) is satisfied
by choosing J2(q, p) = 0. In addition, we need to ensure that Md > 0 and that
Vd has an isolated minimum at the desired equilibrium q�.

The minimum of Vd is assigned by requiring that the Jacobian and Hessian
evaluated at q� are zero and positive definite respectively. Then, we compute

(I) ∇qVd(q)
∣∣
q=q∗ = 0 ⇔

[
k2

(
θ − c

dϕ − k1
)

−V0
d sin(ϕ) − k2c

d

(
θ − c

dϕ − k1
)
]∣∣∣∣∣

q=q∗

= 0,

which is satisfied if k1 = θ∗.

(II) ∇2
qVd(q)

∣∣
q=q∗ > 0 ⇔

[
k2 −k2

c
d

−k2
c
d

−V0
d cos(ϕ) + k2

(
c
d

)2
]∣∣∣∣

q=q∗
> 0,

which is satisfied provided that k2 > 0 and d < 0 (equivalently N12M12 −
N22M11 > 0).
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Fig. 2. Desired potential energy

The positive definiteness of Md is ensured if N11 > 0 and N11N22 − N2
12 > 0.

Notice that effectively, the potential energy has a minimum at the desired
equilibrium (θ�, ϕ�) = (0, 0) as shown in Fig. 2, where we have used the values
of the parameters as in Sect. 4.1 for illustrative purpose.

Finally, the control law is computed from (10) and (11) as follows

u = ues + uDI = − b

d
∇ϕV − k2

(
ad − bc

d

)(
θ − c

d
ϕ − θ�

)
− Kv d σ

(
θ̇ − c

d
ϕ̇
)

, (16)

where σ = M11M22−M2
12

N11N22−N2
12

and the free parameters N11, N12, N22, k2 and Kv should
satisfy

N11 > 0, k2 > 0, Kv > 0,

N11N22 − N2
12 > 0,

N12M12 − N22M11 > 0.

Thus, the dynamics of the DoD system (13) in closed loop with the controller
(16) can be written in the Hamiltonian form

[
q̇
ṗ

]
=

[
0 M−1Md

−MdM
−1 −GKvG

�

] [∇qHd

∇pHd

]
. (17)

To analyse the stability of the closed loop (17), we consider the desired Hamil-
tonian in (5) as a Lyapunov function and we compute its time derivative as
follows

Ḣd(q, p) = p�M−1
d ṗ + q̇�V̇d(q)

= p�M−1
d

(
−MdM

−1V̇d − GKvG
�M−1

d p
)

+ q̇�V̇d(q)

= −p�M−1
d GKvG

�M−1
d p ≤ 0,

which ensures stability of the desired equilibrium. Asymptotic stability follows
from LaSalle’s invariance principle [6], or equivalently from detectability of the
signal yd = KvG

�M−1
d p [19].
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3.3 Effect of Input Disturbances

Now, we consider the presence of a matched disturbance δ in the closed loop
(17). In this case, the closed-loop dynamics is[

q̇
ṗ

]
=

[
0 M−1Md

−MdM
−1 −GKvG

�

] [∇qHd

∇pHd

]
+

[
0
G

]
(v + δ), (18)

where δ is the matched constant disturbance and v is a control input that will
be used to reject the unknown disturbance. To obtain the dynamics (18), we use
the control u = ues+uDI+v in (13), and we add the disturbance. Notice that the
disturbance shifts the equilibrium of the closed loop, defined by zero velocities
(equivalently p = 0), from the desired equilibrium q� to a new equilibrium q̄,
which is the solution of

−MdM
−1∇qVd + Gδ = 0,

which implies that q̄ = (θ̄, ϕ̄) with θ̄ = θ� + d
(ad−bc)k2

δ and ϕ̄ = 0. This shows
that the control objective is not achieved by the controller in the presence of
constant disturbances, since θ will not reach the desired value at steady state as
desired. This motivates us to implement outer-loop controllers to reject constant
unknown disturbances.

3.4 Robust Energy Shaping

In this section, we implement three integral based controllers proposed in [3]
to enhance the robustness of the energy shaping controller. We develop these
integral controllers for the disk-on-disk in closed loop with the control (16).
That is, for the closed-loop dynamics (17) we design a control law v to reject
constant disturbances δ. We first present the most complex controller which is a
nonlinear PID, and subsequently we present two simpler versions, which results
in a type of PI and PID controllers. We also extend this control design to ensure
the second control objective O.2, which ensures tracking of constant angular
velocities.

Integral control. The fundamental idea proposed in [3] is to find a dynamic
control law v(q, p, ζ), where ζ is the state of the controller, and a change of
coordinates such that the closed loop in the new coordinates can be written as
a Hamiltonian system, thus stability is ensured. For the DoD closed loop (18),
we proposed a target Hamiltonian system in new coordinates z ∈ R

5, where
we have augmented the state vector by adding the controller state. The target
Hamiltonian system is⎡

⎣ż1
ż2
ż3

⎤
⎦ =

⎡
⎣ −Γ1 M−1Md −Γ2

−MdM
−1 −GKvG

� −GK3

ΓT
2 KT

3 GT −Γ3

⎤
⎦

⎡
⎣∇z1Hz

∇z2Hz

∇z3Hz

⎤
⎦ , (19)

with Hamiltonian

Hz(z) =
1
2
z�
2 M−1

d z2 + Vz(z1) +
1
2
KI(z3 − z�

3)2, (20)
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where

Vz(z1) = Vd(q)
∣∣∣
q=z1

=
1
d
V0 cos(z12) +

k2
2

(
z11 − c

d
z12 − k1

)2

, (21)

with z1 =
[
z11 z12

]� and constant gains equal to

Γ1 � M−1GK1G
T M−1,

Γ2 � M−1GK2,

Γ3 � KT
3 GT M−1

d GK2,

z�
3 � δ

KI

(
KvGT M−1

d GK2 + K3

) ,

where the new coordinates z = ψ(q, p, ζ) are obtained by the state transforma-
tion

z1 = q − G(α t + β), (22)
z2 = p + GK1G

T M−1∇Vz + GK2KI(ζ − z�
3) − MGα, (23)

z3 = ζ, (24)

with Kv > 0, KI > 0, K1 > 0, K3 > 0 and K2 =
(
G�M−1

d G
)−1

. The values of α
and β characterizes the ramp profile of the angle reference that should be tracked
by the Disk 1. Notice that when z1 converge to zero, then q converge to G(αt+β).
Therefore, we look for a control law that render the closed-loop dynamics in the
form (19), and we study the stability properties of such system at the origin. To
obtain such control law, we first notice that if we differentiate (22) and replace
the derivative of the states by their corresponding state equations from (18) and
(19), we obtain

ż1 = q̇ − Gα

= M−1p − Gα

= M−1
[
z2 − GK1G

T M−1∇Vz − GK2KI(ζ − z�
3) + MGα

] − Gα

= −Γ1∇z1Hz + M−1Md∇z2Hz − Γ2∇z3Hz, (25)

which implies that the dynamics of z1 expressed in the new coordinates z is
exactly the first row of (19).

Similarly, to construct the dynamics of z2 as in the second row of (19), we
differentiate (23) as follows

ż2 = ṗ + GK1G
T M−1∇2Vz ż1 + GK2KI ż3

= −MdM−1∇Vd − GKvG
�M−1

d p + Gv + Gδ + GK 1G
T M−1∇2Vz(q̇ − Gα) +

GK2KI ż3, (26)
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from where we can see that to obtain the desired dynamics for z2, the control
law should satisfy

Gv = ż2 + MdM
−1∇Vd + GKvG

�M−1
d p − Gδ − GK 1G

T M−1∇2Vz(q̇ − Gα) −
GK2KI ż3. (27)

Replacing ż2 and ż3 in (27) for the second and third row of (19), respectively,
and noticing that G⊥[MdM

−1∇Vz − MdM
−1∇Vd] = 0, then the control law as

a function of (q, p, ζ) results, after some calculations, as follows

v = −
[
KvG

�M−1
d GK1G

�M−1 + K2KI

(
K�

2 + K�
3 G�M−1

d GK1

)
G�M−1

]
∇Vd −

[
K1G

�M−1∇2VdM−1 + K2KIK�
3 G�M−1

d

]
p −
(
KvG

�M−1
d GK2 + K3

)
KIζ +

[
KvG

�M−1
d + K1G

�M−1∇2VdM−1 + K2KIK�
3 G�M−1

d

]
MGα −

(G�G)−1G�MdM−1

[
∇Vz − ∇Vd

]
. (28)

Finally, the dynamics of z3, or equivalently ζ, can be freely set as in the third
row of (19), which can be written as follows

ζ̇ =
(
K�

2 + K�
3 G�M−1

d GK1

)
G�M−1∇Vd + K�

3 G�M−1
d p −

K�
3 G�M−1

d MGα. (29)

The controller, composed by the control law (28) and the integrator (29), does
not require the information of the constant disturbance δ.

We have shown that the dynamics (18) in closed loop with the nonlinear PID
controller (28)–(29) can be written in the form (19). The Hamiltonian form of
the closed-loop dynamics ensures its stability. Indeed, the Hamiltonian in (20)
has a minimum at the desired equilibrium (z1, z2, z3) = (0, 0, z�

3) if k1 = 0, and
it qualifies as a Lyapunov function for the dynamics (19). The time derivative
of Hz is

Ḣz = −∇�Vd(z1)M
−1GK1G

�M−1∇Vz − z�
2 M−1

d GKvG
�M−1

d z2 − Γ3K
2
I (z3 − z�

3)2

≤ 0,

which ensures stability. Asymptotic stability follows using LaSalle argu-
ments and noticing that the maximum invariant set included in S =
{(z1, z2, z3)|G�M−1∇Vz = 0, G�M−1

d z2 = 0, z3 = z�
3} is the desired equilib-

rium (0, 0, z�
3).

Notice that the controller (28) is a nonlinear PID, which we will refer to as
NLPID2. Moreover, two simpler versions of this controller can be obtained by
setting the controller parameters to particular values. Indeed, a simpler nonlinear
PID can be obtained by considering K2 = 0 and K3 = 1, which we will refer
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to as NLPID1, and a nonlinear PI controller is obtained by setting K1 = 0 and
K3 = 0, which will refer to as NLPI.

In addition, we point out that a controller with only the integral of the passive
outputs, which are the velocities for mechanical systems, can be obtained by
setting K1 = 0, K2 = 0 and K3 = K−1

I . We will refer to this controller as
IA. It has been shown in [14] that this type of IA controllers does not reject
disturbances, destroys the detectability of the passive outputs and creates a
manifold of equilibrium. Thus asymptotic stability is not achieved, a fact that
is seen in the experiments.

4 Simulations and Experiments

In this section, we present simulation and experiment results to assess the per-
formance of the controllers presented in Sect. 3 and verify their applicability in
a real setup. The simulations are performed using Matlab and the experiments
are carried out on the prototype shown in Fig. 3, available at PRISMA Lab.
The model parameters of the disk-on-disk are mh = 0.335 Kg, mo = 0.22 Kg,
rh = 0.15 m and ro = 0.075 m.

The prototype consists of two disks placed in between two plastic panels.
Disk 1 is actuated by a DC motor (Harmonic Drive RH–8D 3006) equipped
with a harmonic drive whose gearhead ratio is 100 : 1, and a 500 p/r quadrature
encoder. A rubber band of about 1 mm encircles both disks to avoid slipping.
The commands to the motor are provided by an ARM CORTEX M3 microcon-
troller (32 bit, 75 MHz). This microcontroller receives current references from an
external PC through a USB cable. The measurements of Disk 1 are provided by
an encoder while the measurements of Disk 2 are provided by an external visual

Fig. 3. Prototype of the disk-on-disk available at PRISMA Lab
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system. This consists of a uEye UI-122-xLE camera providing (376 × 240) pixel
images to the PC at 75 Hz, that is also the controller sample rate. In order to
speed up computations, a (15× 15) pixel RoI is employed by the image elabora-
tion algorithm running on the same external PC. The control algorithm, which is
written in C++, runs on the external PC with a Linux-based operating system.

We have tested five different controllers in the prototype: (i) the standard
IDA-PBC controller, (ii) the IDA-PBC controller augmented with the IA, (iii)
the IDA-PBC controller enhanced with the NLPID1, (iv) the IDA-PBC con-
troller enhanced with the NLPID2, and (v) the IDA-PBC controller enhanced
with the NLPI. The experiments are executed under the following scenario: the
initial conditions of the balancing and Disk 1 angles are ϕ(0) = 7 deg and
θ(0) = 0 deg respectively, whilst the angular velocities at starting time are zero.
The set-point reference for the position of Disk 1 position is set to zero (θ� = 0),
while Disk 2 has to be stabilized at the upright position. A constant matched dis-
turbance of value δ = 0.01 Nm is added to the system to evaluate the disturbance
rejection properties of the controller.

4.1 Standard IDA-PBC

In the first experiment, we evaluate the performance of the IDA-PBC controller
(16) stand alone. The parameters of the controller used in the experiment are
N11 = 0.41, N12 = −0.03, N22 = 0.003, k2 = 0.0005 and Kv = 0.08.

The results of this experiment are shown in Figs. 4, 5 and 6. As expected, the
controller stabilizes Disk 2 at the upright position as shown in Fig. 4. However,
it is unable to ensure convergence of the angle of Disk 1 to the desired reference
due to the disturbance (see Fig. 5). The time history of the control torque is
shown in Fig. 6, which shows that the controller demands a reasonable torque
without large sparks.
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Fig. 4. Time history of the balancing angle with the IDA-PBC controller
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Fig. 5. Time history of Disk 1 angle with the IDA-PBC controller
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Fig. 6. Time history of the control torque and its value at steady state with the IDA-
PBC controller

4.2 IDA-PBC Plus IA

In the second experiment, we test the performance of the IDA-PBC controller
plus the IA, that is the controller (16) plus (28) with K1 = 0, K2 = 0 and K3 =
K−1

I . The parameters of the controller used in the experiment are N11 = 0.41,
N12 = −0.03, N22 = 0.003, k2 = 0.0005, Kv = 0.08, α = 0, β = 0 and KI = 20.

The results of this experiment are shown in Figs. 7, 8, 9 and 10. Similar to the
previous experiment, the controller balances Disk 2 at the upright position, but
does not make the angle of Disk 1 converge to zero, which approaches a value of
−160 degrees instead (see Figs. 7 and 8). The state of the controller is shown in
Fig. 9, which reaches a value in the equilibrium manifold that has no relation with
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Fig. 7. Time history of the balancing angle with the IDA-PBC plus IA controller
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Fig. 8. Time history of Disk 1 angle with the IDA-PBC plus IA controller

the disturbance. Finally, the control torque is plotted in Fig. 10. This experiment
illustrates that the integral action on the velocities does not produce any benefit
when used to reject disturbances, as predicted by the theory.

4.3 IDA-PBC Plus NLPI

In this fourth experiment, we evaluate the performance of the IDA-PBC con-
troller plus the NLPI, that is the controller (16) plus (28) with K1 = 0 and
K3 = 0. The parameters of the controller used in the experiment are N11 = 0.41,
N12 = −0.03, N22 = 0.003, k2 = 0.0006, Kv = 1.5, K2 =

(
G�M−1

d G
)−1

and
KI = 1.6.
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Fig. 9. Time history of the controller state and its value at steady state with the
IDA-PBC plus IA controller
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Fig. 10. Time history of the control torque and its value at steady state with the
IDA-PBC plus IA controller

The results of this experiment are shown in Figs. 11, 12, 13 and 14. The
plots in Figs. 11 and 12 show that the controller stabilizes Disk 2 at the upright
position and drives Disk 1 to the desired reference angle despite the action of the
disturbance. However, a small error (less than one degree) on the angle ϕ can be
seen in steady state. Figure 13 shows that the state of the controller converges to
the value needed to compensate the disturbance, and Fig. 14 depicts the control
torque, which is bounded between admissible limits.
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Fig. 11. Time history of the balancing angle with the IDA-PBC plus the NLPI con-
troller
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Fig. 12. Time history of Disk 1 angle with the IDA-PBC plus the NLPI controller

4.4 IDA-PBC Plus NLPID1

In the second set of experiments, we evaluate the performance of the IDA-PBC
controller plus the NLPID1, that is the controller (16) plus (28) with K2 = 0
and K3 = 1. The parameters of the controller are as follows: N11 = 0.41, N12 =
−0.03, N22 = 0.003, k2 = 0.00048, K1 = 0.00905, Kv = 0.35, α = 0, β = 0 and
KI = 2.3.

Figures 15, 16, 17 and 18 show the results of this experiment. The time history
of the deviation angle of Disk 2 respect to the upright position is depicted in
Fig. 15. This figure shows that Disk 2 is balanced as desired. Figure 16 shows
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Fig. 13. Time history of the controller state and its value at steady state with the
IDA-PBC plus the NLPI controller
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Fig. 14. Time history of the control torque and its value at steady state with the
IDA-PBC plus the NLPI controller

that the angle of Disk 1 reaches the reference value, and the controller rejects
the disturbance. Also, it can be seen in Fig. 17 that the controller state produces
an estimate of the disturbance, which is used to compensate it. In addition, the
control input is shown in Fig. 18.

4.5 IDA-PBC Plus NLPID2

In the last experiment, we evaluate the performance of the IDA-PBC controller
plus the NLPID2, that is the controller (16) plus (28). The parameters of the
controller are as follows: N11 = 0.41, N12 = −0.03, N22 = 0.003, k2 = 0.00025,
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Fig. 15. Time history of the balancing angle with the IDA-PBC plus the NLPID1
controller
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Fig. 16. Time history of Disk 1 angle with the IDA-PBC plus the NLPID1 controller

K1 = 0.012, K2 =
(
G�M−1

d G
)−1

, K3 = 0.06, Kv = 0.3, α = 0, β = 0 and
KI = 2.2.

The time history of the most significant variables are shown in Figs. 19, 20, 21
and 22. As can be seen in Figs. 19 and 20, the controller is able to balance Disk
2 at the upright position while stabilizing the angle of Disk 1 at the desired set-
point. The controller state and the control torque are shown in Figs. 21 and 22,
respectively. These plots evidence that the controller ensures internal stability,
output regulation and disturbance rejection showing very good performance.
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Fig. 17. Time history of the controller state and its value at steady state with the
IDA-PBC plus the NLPID1 controller
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Fig. 18. Time history of the control torque and its value at steady state with the
IDA-PBC plus the NLPID1 controller

4.6 Tracking Angle Ramp References for the Disk 1

Finally, we present simulations to assess the performance of the IDA-PBC con-
troller plus the NLPID2 when the reference for the angle of the Disk 1 is a
ramp. The ramp reference is θ�(t) = αt + β, where the constants α and β
are chosen to change the shape of the ramp. The controller parameters are
as follows: N11 = 0.41, N12 = −0.03, N22 = 0.003, k2 = 0.25, K1 = 0.012,
K2 =

(
G�M−1

d G
)−1

, K3 = 0.2, Kv = 0.5 and KI = 3. The disturbance is set
at δ = 0.25 Nm. To increase the realism of the simulations, we have include in
the feedback loop a zero-order hold (75 Hz), a time delay and noise in the mea-
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Fig. 19. Time history of the balancing angle with the IDA-PBC plus the NLPID2
controller

0 1 2 3 4 5 6 7 8
−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

Time [s]

D
is

k 
1 

an
gl

e 
   

 (
t)

  [
de

g]

Fig. 20. Time history of Disk 1 angle with the IDA-PBC plus the NLPID2 controller

surements. We also modify the model parameters up to a 10% of their nominal
values to emulate uncertainties.

The simulation results are shown in Figs. 23, 24, 25, 26 and 27. The ramp
references and the time history of the Disk 1 angle are depicted in Fig. 23. This
figure shows that the Disk 1 tracks the desired ramp profile, while Fig. 24 shows
that the Disk 2 is kept balanced at the upright position. Figure 25 shows that
the tracking error of the Disk 1 angle converges to zero, as expected. As can
be seen in Fig. 26, the angular velocity of the Disk 1 reaches constant values
when the ramp is active, and converges to zero when the reference of the Disk 1
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Fig. 21. Time history of the controller state and its value at steady state with the
IDA-PBC plus the NLPID2 controller
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Fig. 22. Time history of the control torque and its value at steady state with the
IDA-PBC plus the NLPID2 controller

angle is constant. The same figure shows that the angular velocity related to the
balancing angle converges to zero. Finally, Fig. 27 shows that the control input
is sufficiently smooth and bounded between reasonable values.

4.7 Discussion

As shown in the experiments, the IDA-PBC controller presented in Sect. 3.2 may
be robust against parameter uncertainties. The action of disturbance, however,
deteriorate the performance of the control system. Indeed, the experiments in
Sect. 4.1 show that the IDA-PBC controller balances Disk 2, but the steady-state
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Fig. 23. Time history of the Disk 1 angle with angular ramp references
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Fig. 24. Time history of the balancing angle

error of Disk 1 angle is significantly large. The classical solution of adding integral
action on the passive output does not improve the performance of the controller
respect to the standard IDA-PBC as shown in Sect. 4.2. This fact was previously
reported in [14], however, no experiment has illustrated this theoretical result
before.

The experiments in Sects. 4.3, 4.4 and 4.5 show that controllers presented in
Sect. 3.4 are able to balance Disk 2 and simultaneously stabilize the angle of Disk
1, thanks to the action of the outer NLPID. However, from the time histories
of the states we can see that the rate of convergence of the DoD variables using
the controller NLPI is faster that the NLPID1, and produces less oscillations.
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Fig. 26. Time history of the angular velocities

This better transient performance is, however, darken by the steady state error,
which is not present in the NLPID1. Also, the overshoot of Disk 1 angle is greater
when using NLPI compared with the NLPID1 at expense of a more demanding
control torque. On the other side, the last experiment shows that the controller
NLPID2 performs better than the controller NLPI and NLPID1. Indeed, the
transient performance of the NLPID2 is better that the other controllers with
less overshoot in both the balancing angle ϕ related to Disk 2 and the angle
θ of Disk 1. These angles reach their desired values with less oscillations and
with a faster rate of convergency. In addition, the control torque demanded by
the controller NLPID2 looks less demanding and smoother than that of the
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Fig. 27. Time history of the control torque

controllers NLPI and NLPID1. As one may expect, all these benefits are at
expenses of a more complex controller.

The simulations presented in Sect. 4.6 show that the controller NLPID2 can
also track an angle ramp reference for the Disk 1 while keeping the Disk 2 at
the balancing position. The integral action of the controller reject the action
of constant matched disturbance while ensuring stability. The simulations show
that the control system can follow a continuous profile of ramps and constant
references for the actuated Disk without losing balancing of the non-actuated
Disk.

The experiments of the disk-on-disk prototype described in Sects. 4.3, 4.4 and
4.5 were recorded and are summarize in a multimedia video that can be watched
on https://youtu.be/B0k8JtYZjrY.

5 Conclusion

In this chapter, we present an IDA-PBC controllers for the disk-on-disk system
that is robust to constant matched disturbances. This controller is able to track
ramp references for the angle of the actuated disk while keeping the balance
of the non-actuated disk. The stabilization of constant angles for the actuated
disk can be considered as a particular case of the ramp reference. We also show
simulations and experimental results to evaluate the performance of the control
system and evaluate the applicability of nonlinear control techniques based on
passivity in a real setup. The robust IDA-PBC proposed in this work exhibit very
good performance in both simulations and experiments, which validate the use
of this technique on a practical application. Future research will aim to design
controllers for more complex robotic systems performing more involved tasks.

https://youtu.be/B0k8JtYZjrY
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