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Abstract. This paper presents a novel method to optimize the motion
of a paddle within a nonprehensile batting task. The proposed approach
shows that it is possible to online predict the impact time and the con-
figuration of the paddle, in terms of its linear velocity and orientation, to
re-direct a ball towards a desired location, imposing also a desired spin
during the free flight. While exploiting the hybrid dynamics of the task
during the minimization process, the obtained position and orientation
paths are planned by minimizing the acceleration function of the paddle
in SE(3). The batting paths are then tracked by a semi-humanoid robot
through a closed-loop kinematic inversion. Numerical tests are imple-
mented to compare different metrics to define the optimal impact time.
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1 Introduction

Research in the field of dynamic nonprehensile manipulation is essential to
achieve robots with human-like task execution capabilities. Humans can indeed
perform several nonprehensile manipulation actions everyday, both with and
without hands, such as pushing objects, folding clothes, serving a dish on a tray,
flipping a pancake in a pan, or rolling in a wok. A general taxonomy about
manipulation is presented in [1], where four main categories emerge: kinematic,
static, quasi-static and dynamic manipulation. Kinematic manipulation is often
related to slow tasks: motion of the object can be retrieved by movements of the
robotic hand and its kinematics. Static manipulation, instead, can be studied
using both kinematics and static forces, while quasi-static manipulation makes
use of quasi-static forces (such as frictional forces) in the formulation. Within
dynamic manipulation, instead, a relevant role is played by forces and accelera-
tions which are used together with kinematics, static and quasi-static forces, to
achieve a general description of a manipulation task.
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Dynamic nonprehensile manipulation offers some potential advantages, such
as [2]: reduction of the task execution time; extension of the workspace of the
robot; increased dexterity of the robotic system; cheap and simple design of
grippers; minimal deformation of the manipulated objects, and so on. On the
other hand, the complexity of such nonprehensile tasks leads to adopt a “divide
et impera” strategy for motion planning and control. This means to split the
complex task in simpler primitives of motion, and design a motion planner for
each of them separately. A supervisory controller is then assumed to identify
the primitives that compose the task and switch between them. Batting, throw-
ing, catching, rolling, sliding are typical examples of nonprehensile manipulation
primitives [3].

1.1 Overview and Outline of the Paper

In this paper, the focus is on the design of an optimal motion planner for one of
the above mentioned nonprehensile manipulation primitives, the batting one. The
batting primitive is an agile nonprehensile manipulation task that is typically
used by athletes in sports like baseball, cricket, or table tennis. It definitely repre-
sents an engaging challenge for existing robotic software and hardware resources,
because of its inherent unpredictability, velocity, and complexity. A novel app-
roach to derive the optimal path for a semi-humanoid robot to bat a ball with
a paddle and direct it to a desired location is here proposed. As displayed in
Fig. 1, the considered application is the table tennis game. The same application
is considered in [4], where an algorithm to select position and velocity of the

Fig. 1. Semi-humanoid playing table tennis in the V-Rep simulation environment
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paddle is designed so as to intercept the upcoming ball. The minimum acceler-
ation path for the paddle accomplishing the batting task is planned considering
a predefined impact time. The technique presented in [4] improves the control
accuracy in comparison to the state of the art by considering a full aerodynamic
model of the ball, and taking into account drag and lift forces; additionally,
it requires a computation time comparable to real-time. In detail, the approach
consists of two main phases. In the former phase, position, orientation and linear
velocity of the paddle are computed at the predefined impact time, such that the
goal of driving back the ball towards the other paddle is satisfied. Then, in the
latter phase, an optimization of the path in SE(3) gives the angular and linear
trajectory of the paddle up to the predefined impact time. In this work, instead,
an extension of the algorithm proposed in [4] is presented. The assumption of
having a constant predefined impact time is relaxed, while different metrics are
compared to define the optimal impact time. Numerical tests are implemented
to evaluate the algorithm.

The paper is organized as follows. Section 2 presents the state of the art about
planning methods for the batting motion, typically applied to the robotic table
tennis game. Section 3 introduces the hybrid dynamics of the system. Section 4
presents the workflow of the proposed batting algorithm, and describes the
method employed for predicting the state of the ball at the impact time, and
the following computation of the desired configuration of the paddle. The details
about the minimum acceleration planner in SE(3) for the paddle are introduced
in Sect. 5. Section 6 shows the numerical evaluation of the different versions of
the algorithm, and its application to a semi-humanoid robot equipped with a
paddle as an end-effector. Finally, Sect. 7 concludes the paper.

2 State of the Art About the Robotic Batting Primitive

One of the first real-time table tennis robot prototype is proposed by Andersson
in [5]. It is built on a commercial PUMA 260 robot arm, which is a 5 degrees
of freedom (DoF) industrial robot. In [6], the same author employs fifth-order
polynomials to generate a trajectory for the paddle intercepting the ball. The
trajectory of the arm of the robot is adjusted while the ball is in free flight
through a sensor-driven approach. A low-cost ping-pong player prototype is pro-
posed in [7]. The authors propose to detect the location of the ball combining
the information about the ball and its shadow on the table. An expert module
defines the desired return point for the ball. A high-speed trajectory planner is
presented in [8], where the authors propose to split the motion in two phases: a
high speed phase and a reactive one, named swing and hitting motion, respec-
tively. The hitting point is estimated before the impact, while the batting task
is accomplished by modifying this point through a visual feedback. An app-
roach to keep stability of a biped humanoid robot while playing table tennis
is presented in [9]. In that work, an optimal momentum compensation method
using lower body joints to cancel the momentum generated by arms is discussed.
The authors of [10] propose an algorithm for returning a table tennis ball to a
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desired position with a desired spin. An approximated hybrid aerodynamics of
the ball is exploited to compute the configuration of the paddle at impact time
to accomplish the batting task.

In the field of artificial intelligence, learning techniques exploiting data-driven
perspectives instead of inverse kinematics and physical models are often applied
to the robotic table tennis game, through offline training of the system. The
study shown in [11] predicts the ball trajectory using a fuzzy adaptive resonance
theory network, and self-learns the behavior for each strike using a reinforce-
ment learning network imitating human learning behavior. The work presented
in [12] shows instead some experiments on two humanoid robots playing ping
pong. The approach employs an adjustment of the trajectory prediction from
an offline training of the model parameters based on a neural network. In [13],
the robot first learns a set of elementary table tennis hitting movements from
a human teacher, and then it generalizes those movements in a wider range of
situations using a mixture of motor primitives approach. The authors of [14]
present an active learning approach, where the initial parameters of the paddle
are computed through a locally weighted regression method. In [15], the authors
find optimal striking points for a table tennis robot. The choice is based on a
reward function, measuring how well the trajectory of the ball and the move-
ment of the paddle coincide. Given the striking point, a stochastic policy over
the reward is derived to evaluate prospective striking points sampled from the
predicted rebound trajectory. In that approach, the resulting learning method
takes into account the amount of experience data and its confidence. The work
in [16] presents an approach for robotic table tennis game consisting in two
stages: a first regression phase, in which the joint trajectories are generated to
strike the incoming ball, and a second reinforcement learning phase, where the
joint trajectories are updated to properly return the ball. The authors of [17]
present a probabilistic approach to intercept a table tennis ball in space. A prob-
abilistic representation is employed to find the initial time and the duration of
the movement primitive maximizing the likelihood of hitting the ball.

Moreover, aerial robotics researchers have also been interested in planning
the motion of an aerial vehicle to implement the batting motion primitive. An
algorithm to generate an open loop trajectory guiding a prototype quadcopter to
a predicted impact point is proposed in [18] by exploiting a Kalman filter. The
authors of [19] implement the hitting primitive on a commercial drone. Finally, a
trajectory tracking control strategy for a ball juggling task on a quadrotor, based
on the subspace stabilization approach, is presented in [20]. An optimal trajec-
tory generation method is adopted to obtain a dynamically feasible minimum
jerk trajectory.

3 Hybrid Dynamic Equations of the System

The main methodology employed in this work consists in an optimization based
planning of the robot trajectories using the hybrid dynamic model of the ball
together with the motion of the paddle. The analytic model here considered for
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the hybrid ball and paddle dynamics is derived in [4]. The hybrid dynamics of
the ball is made up of the free fall and the rebound equations. Since the mass of
the ball is usually smaller than the mass of the paddle, the velocity of the paddle
is assumed to be not affected by the collision: therefore, the rebound equations
are only related to velocity of the ball. Additionally, a point contact is assumed
between the ball and the paddle at impact time. Other assumptions related to
the hybrid model of the ball motion are detailed in [21].

Let ΣW be the world frame, ΣB be the frame placed at the center of the ball,
and ΣP be the frame placed at the center of the paddle, with the z-axis as the
outward normal. Let pB =

[
pBx pBy pBz

]T ∈ R
3, vB =

[
vBx vBy vBz

]T ∈ R
3

and ωB =
[
ωBx ωBy ωBz

]T ∈ R
3 be the position, linear velocity and spin of the

ball, respectively, with respect to ΣW . The spin of the ball is assumed to be con-
stant before and after the rebound. Moreover, let pP =

[
pPx pPy pPz

]T ∈ R
3,

vP =
[
vPx vPy vPz

]T ∈ R
3 and ωP =

[
ωPx ωPy ωPz

]T ∈ R
3 be the position, lin-

ear and angular velocity of the paddle, respectively, all expressed in ΣW . Finally,
let RP ∈ SO(3) be the rotation matrix of ΣP with respect to ΣW . Assuming
that the drag and lift coefficients kd and kl, respectively, are represented by

kd = 1
2mρπr2(κd

1 + κd
2μ), kl = 1

mρ4πr3(κl
1 + κl

2μ), (1)

where

μ =
(

1 +
(v2

Bx + v2
Bx)ω2

Bz

(vBxωBy − vByωBx)2

)− 1
2

, (2)

while the other symbols are listed in Table 1, the continuous ball and paddle
dynamics is given by

ṗB = vB , (3a)

v̇B = −g − kd||vB ||vB + klS(ωB)vB , (3b)
ṗP = vP , (3c)

ṘP = RPS(ωP ), (3d)

where g =
[
0 0 g

]T is the gravity acceleration, || · || is the Euclidean norm and
S(·) ∈ R

3×3 is the skew-symmetric matrix operator.
A method to identify the aerodynamic and rebound coefficients for differ-

ent kind of rebound materials is presented in [21]. Within this framework, the
aerodynamics of the ball (3b) models the magnitude of the drag and lift forces,
and the respective parameters depend on the spin of the ball. This last is thus
included in the formulation since it is relevant in the table tennis game, distin-
guishing an expert player form an amateur one. In particular, the type of spin is
identified by the sign of the components of ωB , i.e. topspin, if ωBy < 0, backspin,
if ωBy > 0, and sidespin, if ωBz > 0.
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Table 1. List of symbols

r Radius of the ball

rp Radius of the paddle

m Mass of the ball

ρ Density of the air at (25 ◦C)

g Gravity constant

εv Velocity rebound coefficient

εω Spin rebound coefficient

εr Linear rebound coefficient

κd
1 Drag coefficient

κd
2 Drag coefficient

κl
1 Lift coefficient

κl
2 Lift coefficient

ζd Simplified drag coefficient

Assuming that the superscripts − and + represent the state before and after
the impact time, respectively, the linear and angular velocity of the ball after
the impact can be retrieved from

v+
B = vP + RPAvvRT

P (v−
B − vP ) + RPAvωRT

Pω−
B , (4a)

ω+
B = RPAωvRT

P (v−
B − vP ) + RPAωωRT

Pω−
B , (4b)

where the matrices of rebound parameters are defined as

Avv = diag(1 − εv, 1 − εv, εr),Avω = −εvrS(e3), (5)

Aωv = εωrS(e3),Aωω = diag(1 − εωr2, 1 − εωr2, 1),

and εv and εw are detailed in Table 1, whereas ei ∈ R
3 is the unit vector along

the ith-axis, i = {1, 2, 3}.
Notice that the hybrid system (3) and (4) is characterized by the fact that

its input, corresponding to the paddle linear and angular velocities, enters the
ball dynamics exclusively through the rebound Eq. (4) since, as stated above,
the paddle can modify the ball velocity only at impact time.

4 Time-Optimal Prediction

4.1 Workflow of the Algorithm

In order to generate the optimal motion for the paddle to bat a table tennis ball
towards a desired position with a desired spin, the paddle has to intercept the
ball with a specific orientation and velocity. The algorithm to realize such batting
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Fig. 2. Graphic representation of the stages of the algorithm

motion primitive can be roughly divided in three main phases: the prediction of
the motion of the ball, the selection of the configuration of the paddle at impact
time, and the trajectory planning for the paddle. A graphical representation of
the phases generating the optimal path for the paddle is showed in Fig. 2.

1. In the first stage, the impact time ti, the impacting position
pi
B =

[
piBx piBy piBz

]T ∈ R
3 and the pre-impact velocity v−

B of the ball
are predicted assuming to know the initial position of the ball p0

B =
[
p0Bx p0By p0Bz

]T ∈ R
3 and its linear and angular velocity, respectively, v0

B =
[
v0
Bx v0

By v0
Bz

]T ∈ R
3 and ω0

B =
[
ω0
Bx ω0

By ω0
Bz

]T ∈ R
3. These are produced

by the opponent’s hit and obtained from the visual measurement system. This
step is accomplished by solving forward the model (3a) and (3b). Notice that
the main novelty of the paper is introduced in this first stage: the impact time
is not a priori defined, as in [4], but it is predicted online. Afterwards, choos-
ing the goal configuration of the ball given by pd

B =
[
pdBx pdBy pdBz

]T ∈ R
3,

ω+d
B ∈ R

3, and the desired final time td, the post-impact velocity of the ball
v+
B ∈ R

3 is obtained through the backward solution of (3a) and (3b).
2. In the second stage, once the spin and velocity of the ball before and after

the impact are computed from the previous stage, the algorithm selects the
orientation Ri

P and the velocity vi
P of the paddle at impact time through the

solution of the reset map (4).



Time-Optimal Paths for a Robotic Batting Task 263

3. In the third stage, the optimal trajectory planner for the paddle receives
as input the desired configuration of the paddle at impact time. A bound-
ary value problem is solved to compute the linear and angular trajectories
of the paddle without specifying any representation of the angular coordi-
nates. At this point, the linear and angular path of the paddle, namely
pP (t),vP (t),RP (t),ωP (t), can be tracked by the end effector of the semi-
humanoid robot with a classical second order closed loop kinematic inver-
sion [22].

In the following, the accurate description of the first two stages will be carried
out. Section 5 is instead entirely devoted to present the third stage.

4.2 Stage 1: Prediction of the Impacting Time, Position
and Velocities of the Ball

In order to predict the impact time and position of the ball, and its linear
pre- and post-impact velocity such that it reaches the desired location after the
batting action, the Eqs. (3a) and (3b) of the aerodynamic model are employed.
However, this model is nonlinear and coupled, thus an analytic solution does not
exist. Other approaches such as in [7] and in [18] employ linearized or simplified
models with the aim to cut down the elaboration time. For example, the following
simplified model of (3a) and (3b) is employed in [10] since it directly provides
an analytic solution

v̇Bx = −ζd|vBx|vBx, ṗBx = vBx, (6a)

v̇By = −ζd|vBy|vBy, ṗBy = vBy, (6b)
v̇Bz = −g, ṗBz = vBz, (6c)

where ζd = ρ
2mπr2kd, with kd considered as a suitable constant coefficient. The

approach here proposed goes instead in a different direction: it exploits a proper
numerical solver suitable for real-time processing.

Three different optimization problems are considered to predict the impact
time and position of the ball, as well as its velocity before the rebound. The
general methodology consists in the solution of nonlinear curve fitting problems.

Prediction with a Predefined Impact Time. A first approach to predict
the impact position and the pre-impact velocity of the ball is showed in [4].
By assigning the impact time, the impact configuration of the ball is predicted
according to its initial position and velocity produced by the opponent’s hit. The
following minimization problem is then considered

min
pi

B ,v−
B

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[
p̃0
B

ṽ0
B

]
−

[
p0
B

v0
B

] ∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

, (7)

where pi
B and v−

B are the optimizing variables, p̃0
B = p̃0

B(pi
B ,v−

B) and ṽ0
B = ṽ0

B

(pi
B ,v−

B) are the position and the velocity of the ball at the initial time t0, respec-
tively, numerically obtained by backward integrating (3a) and (3b) starting from
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the optimization variables pi
B ,v−

B at the predefined impact time ti. In this case,
the determination of the impact position and pre-impact velocity of the ball is
addressed at run-time, differently from other approaches in the literature, such
as [10,23].

Prediction of a Variable Impact Time. In a second possible optimization
problem the impact time is predicted as well as the impact position and the
pre-impact velocity of the ball. Starting from the initial state of the ball, the
following minimization problem is equivalent to (7) but it includes the impact
time as a decision variable

min
ti,pi

B ,v−
B

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[
p̃0
B

ṽ0
B

]
−

[
p0
B

v0
B

] ∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

. (8)

In this case, the resulting impact time is optimized in the sense that it best fits
the numerical curve.

Prediction of a Variable Impact Time Minimizing the Motion of the
Paddle. The third possible approach consists in the computation of the impact
time minimizing the distance between the initial position of the paddle and its
impact position. The following minimization problem is thus considered

min
ti,pi

B ,v−
B

||p̃i
B − p0

P ||2, (9)

where p̃i
B = p̃i

B(p0
B ,v0

B) is the position of the ball at impact time numerically
obtained by forward integrating (3a) and (3b) starting from the optimization
variables p0

B ,v0
B at time t0. In this case, the resulting impact time is optimized

in the sense that the paddle travels the shortest distance to intercept the ball.
Therefore, the introduction of this metric in the prediction stage allows not only
to predict the position of the ball and its pre-impact velocity but even, more
interestingly, to optimize the impact time with respect to the length of the path
that the paddle should cover.

Another optimization is considered in order to compute the post-impact
velocity of the ball v+

B such that it reaches the goal pd
B at the desired time

td. The following curve fitting is implemented

min
v+
B

‖p̃d
B(v+

B) − pd
B‖2, (10)

where v+
B is the decision variable, and p̃d

B(v+
B) is the position of the ball at time

td, numerically obtained by forward integrating (3a) and (3b) starting from the
ball position pi

B at impact time ti, computed through one of the metrics given
above. This solution ensures that the post-impact motion of the ball is such that
it reaches the desired location at the time td as close as possible. An initial guess
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for the solution of the minimization problem (10) is analytically calculated from
(6) as

v+
Bx =

(pdBx − piBx)(eζd|pd
Bx−pi

Bx| − 1)
ζd|pdBx − piBx|(td − ti)

, (11a)

v+
By =

(pdBy − piBy)(e
ζd|pd

By−pi
By| − 1)

ζd|pdBy − piBy|(td − ti)
, (11b)

v+
Bz = −g(td − ti)

2
+

pdBz − piBz

td − ti
. (11c)

4.3 Stage 2: Desired Configuration of the Paddle at Impact

Once the impact time ti, the impact position pi
B of the ball and its pre- and

post-impact velocities, v−
B and v+

B respectively, are computed as in Sect. 4.2, the
paddle configuration is derived solving the rebound model of the ball.

Consider the YX-Euler angles (θ, φ) as a parametric representation of the
orientation of the paddle, with φ ∈ [−π/2, π/2] and θ ∈ [0, π], and define ṽ =
[
ṽx ṽy ṽz

]T = v+
B − v−

B and ω̃ =
[
ω̃x ω̃y ω̃z

]T = ω+d
B − ω−

B . The velocity and
orientation of the paddle at impact time are respectively computed through

vi
P = v−

B + Ri
P (I3 − Avv)−1(RiT

P ṽ − Avωω−
B), (12a)

Ri
P = RY (θ)RX(φ), (12b)

where I3 ∈ R
3×3 is the identity matrix, Ri(·) ∈ SO(3) is the elementary rotation

matrix with i = {X,Y }, representing the rotation of an angle around the i-axis,
and θ, φ are such that

ṽz cos φ sin θ − ṽx cos φ cos θ = ω̃y, (13a)

e2c ||ṽ||2 sin2 φ − 2ece2S(ṽ)ω̃ sin φ + (e1 + e3)||ω̃||2 − ece2||ṽ||2 = 0, (13b)

where ec = εωr/εv, and the other symbols are listed in Table 1. In order to obtain
a well-posed solution of the reset map, the ball motions must comply with the
Proposition 1 in Sect. III -A of [10].

5 Minimum Acceleration Path in SE(3)

The third stage of the workflow of the proposed algorithm is described in this
section. In detail, the generation of an optimal trajectory in SE(3) for the paddle
is addressed. By knowing the initial configuration of the paddle, and after having
computed its desired configuration at the impact (see Sect. 4.3), many different
paths and trajectories can be followed to fulfill the requirements. A wiser method
would be to found this path such that a certain objective function is optimized.
As in [4], the optimization of the acceleration functional of the paddle along the
path in SE(3) is pursued. In the following, a brief background about differential
geometry is provided. Afterwards, the theory about the minimum acceleration
planner for the paddle is reported.
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5.1 Brief Background About Differential Geometry

Within this context, trajectories for which it is possible to specify both the initial
and final position and velocity are of interest. The motion can be specified in
either the joint space, which is a torus, or the task space, which is SE(3). At this
stage, to be general, it is assumed that the path is generated on an arbitrary
Riemannian manifold M (see [24] for more details).

Let γ : (a, b) −→ M be the path, and 〈〈·, ·〉〉 be the metric on M. Let f :
(−ε, ε) × (a, b) −→ M be a proper variation of γ satisfying

f(0, t) = γ(t), ∀t ∈ (a, b),
f(s, a) = γ(a), and f(s, b) = γ(b).

Two vector fields are relevant along the path γ. The former is the variation field
which is defined by

Sγ(s) :=
∂f(s, t)

∂s
=

dft(s)
ds

.

The latter is the velocity vector field of γ, given by

Vγ(s) :=
dγ(t)

dt
=

∂f(s, t)
∂t

=
dfs(t)

dt
.

Hence, the Levi-Civita connection ∇ is introduced to perform calculus on the
curves of M. Therefore, given a curve γ(t) and a connection, there exists a
covariant derivative denoted by D

dt .
The Levi-Civita connection satisfies the following compatibility and symme-

try conditions:

d
dt

〈〈U,W 〉〉 = 〈〈DU

dt
,W 〉〉 + 〈〈U,

DW

dt
〉〉, (14a)

∇XY − ∇Y X = [X,Y ], (14b)

for any vector fields U and W , along the differentiable curve γ, and any vector
field X,Y ∈ X(M), where X(M) is the set of all vector fields on M.

The curvature R of a Riemannian manifold M associates to every pair X,Y ∈
X(M) a mapping R(X,Y ) : X(M) −→ X(M) given by

R(X,Y )Z = ∇Y ∇XZ − ∇X∇Y Z + ∇[X,Y ]Z,

where Z ∈ X(M). In the next subsection, the following properties related to the
curvature are employed

D
∂t

D
∂s

X − D
∂s

D
∂t

X = R

(
∂f

∂s
,

∂f

∂t

)
X,

〈R(X,Y )Z, T 〉 = 〈R(Z, Y )X,Y 〉.
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5.2 Optimized Path Planning in SE(3)

Following the theory developed in [25], the following acceleration function along
the path of the paddle in SE(3) is minimized within the proposed framework

J =
∫ tb

ta

〈∇V V,∇V V〉 dt, (15)

where [ta, tb] is the time interval over which the trajectory is planned, V =
(ωP ,vP ) ∈ se(3) is the velocity of the paddle along a particular path, and ∇
denotes the Levi-Civita affine connection derived from a particular choice of
metric on SE(3). This latter object allows the differentiation along curves on
any smooth manifold. In particular, the inner product of the acceleration of a
particular path with itself is expressed in (15): this may also be identified by the
squared norm of the acceleration of this path at a particular point. Choosing the
metric on SE(3) as

W =
[
αI3 0
0 βI3

]
,

where α, β > 0 so that for T1,T2 ∈ se(3) then 〈〈T1,T2〉〉 = tT1 Wt2 with t1
and t2 the 6 × 1 components of T1 and T2, the Levi-Civita connection can be
expressed by

∇XY =
{

d
dt

ωy +
1
2
ωx × ωy,

dvy
dt

+ ωx × vy

}
,

where ωx and ωy are the angular components and vx and vy are the linear
components of the rigid body velocities X ∈ se(3) and Y ∈ se(3), respectively.

In order to have necessary conditions to find a path minimizing the acceler-
ation function, the first variation of such a cost (15) has to be equated to zero.
This yields a fourth order boundary problem given by

∇V ∇V ∇V V + R (V,∇V V)V = 0, (16)

where R is the curvature tensor associated with the Levi-Civita affine connec-
tion [24]. Notice that it is possible to write down (16) in terms of the angular
and linear velocity components of the paddle as

ω
(3)
P + ωP × ω̈P = 0, (17a)

p(4)
P = 0, (17b)

where (·)(n) denotes the nth derivative of (·). The obtained ordinary differential
equations (17) turn into a well-defined boundary value problem with the addition
of the boundary conditions. Regarding the rotational path (17a), such boundary
conditions are

RP (ta) = R0
P ωP (ta) = ω0

P , (18a)

RP (tb) = Ri
P , ωP (tb) = ωi

P , (18b)
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where R0
P and ω0

P are the initial orientation and angular velocity of the paddle,
respectively. On the other hand, regarding the translational path (17b), the
boundary conditions are

pP (ta) = p0
P vP (ta) = v0

P , (19a)

pP (tb) = pi
P vP (tb) = vi

P , (19b)

Notice that in the practice, the optimal translational motion of the paddle
is found by merely solving a small scale linear system of equations obtained
by (17b) and (19): this may be performed very fast from an elaboration time
point of view. Nevertheless, in order to determine the rotary motion of the
paddle, a boundary value problem needs to be solved. In general, a boundary
value problem is nonlinear and time invariant, but the forcing function (17a) is
hardly complicated. The computational burden of the proposed planner for an
optimal trajectory of the paddle is analyzed within Sect. 6.3.

6 Simulations

This section presents a discussion about the numerical evaluation of the batting
algorithm. The three metrics introduced in Sect. 4.2 are taken into account. In
detail, Sect. 6.1 shows an exemplar simulation of the proposed technique with a
predefined impact time. Section 6.2 describes instead the evaluation of the app-
roach with the prediction of a variable impact time using the last two metrics (8)
and (9) in Sect. 4.2. Finally, Sect. 6.3 presents some tests focused on the paddle
motion to underline the properties of the planned trajectories.

The values of the parameters of the dynamic model considered to simulate the
physical system (3) and (4) are listed in Table 2 [4]. The Matlab environment
is used for numerical tests. For the hybrid dynamics, the ode45 solver, with
the events option, is employed. The lsqcurvefit function, which is based on
the Levembert-Marquardt’s algorithm, is adopted to solve the nonlinear curve
fittings. The boundary value problem, for the minimum acceleration planner,
is solved through the bvp4c function. In this work, the Levembert-Marquardt’s

Table 2. Numerical values of the considered parameters of the hybrid dynamic model

r 2e-2 m

rp 1.5e-1 m

m 2.7e-3 kg

ρ 1.184
kg/m3

g 9.81 m/s2

κd
1 5.05e-1

κd
2 6.5e-2

κl
1 9.4e-2

κl
2 -2.6e-2

εv 6.15e-1

εω 2.57e3

εr 7.3e-1

ζd 5.4e-1



Time-Optimal Paths for a Robotic Batting Task 269

algorithm is employed to solve the nonlinear least squares problems (7)–(9) since
it guarantees small elaboration time, as explained in [26,27]. In order to speed up
the convergence of the optimization problems, the initial guess for the solution
is obtained solving analytically the approximated model (11).

6.1 Evaluation of the Batting Motion Planner
with a Predefined Impact Time

In this case study the proposed algorithm, depicted in Fig. 2, is simulated consid-
ering a constant predefined impact time. Then, supposing to have at disposition
the estimated trajectory of the ball from the visual system and the desired final
configuration of the ball, the optimal paddle trajectory is derived through the
two minimization problems (7) and (10), and the solution of (12) and (17).

In particular, the initial state of the ball is assumed to be equal to
p0
B =

[
1.2, 0.7, 0.9

]
m, v0

B =
[−3, 0.2, 1.5

]
m/s and ω−

B =
[
0, 150, 0

]
. The

impact time is fixed to ti = 0.5 s and the goal position of the ball after the
rebound is assigned as pd

B =
[
1.9, 0.8, 0.02

]
m. The desired final time corre-

sponds to td = 0.6 s, and the post-impact spin of the ball to
[
ω+

By,ω
+
Bz

]
=

[−100, 0
]

rad/s. The term ω+d
B derives from the expression ṽT

Bω̃B = 0. Notice
that the actual final time is evaluated when the third component of the position
vector of the ball corresponds to the radius of the ball.

With these hypothesis, solving (7) yields pi
B =

[−0.1394, 0.7892, 0.4820
]
m

and v−
B =

[−2.4156, 0.1570, −2.9788
]
m/s, while the solution of the minimiza-

tion (10) yields v+
B =

[
4.0516, 0.0214, 2.0984

]
m/s. Furthermore, the solution of

the rebound model (12) yields

Ri
p =

⎡

⎣
0.8614 0.0054 0.5080

0 0.9999 −0.0106
−0.5080 0.0092 0.8613

⎤

⎦ ,

and vi
P =

[
1.4388, 0.0220, −0.1131

]
m/s. Afterwards, the minimum acceleration

trajectory for the paddle is planned employing (17).
Let Δti be the error between the predefined impact time and the one obtained

during the simulation through the ode45 solver together with the events option.
Let Δpi

B be the Euclidean norm of the error between the planned and actual
impact position of the ball, Δtd be the error between the predefined and actual
final time td, Δpd

B be the Euclidean norm of the error between the goal position
of the ball and the actual one. The first row of Table 3 shows these errors in case
of a predefined impact time. Whereas, the resulting plots are depicted in Fig. 3.
In particular, the 3D trajectories of both the ball and the paddle are represented
in Fig. 3a. The solid line represents the motion of the ball, while the trajectory
for the paddle is depicted by a dashed line. The blue cross represents the final
desired position of the ball pd

B , while the blue circle is the initial position of the
paddle p0

P . A more detailed evaluation of the proposed batting algorithm with
fixed impact time in case of sidespin, backspin, and topspin can be found in [4].
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Table 3. Comparison of the fixed and optimized impact time prediction methods

Δti Δpi
B Δtd Δpd

B

Fixed impact time
prediction

4.5e-3 s 1.73e-2 m 1.9e-3 s 9.4e-3 m

Optimal impact time
prediction

4e-3 s 1.69e-2 m 1.1e-3 s 1.33e-2 m

Moreover, a video which shows this simulation performed in Matlab in con-
nection with the V-Rep virtual simulation environment can be found in [28]. A 21
DoF semi-humanoid robot is used within this simulation. The 7 DoF right arm
is equipped with a parallel jaw gripper firmly grasping the paddle (see Fig. 1).
The rebound model of the ball with the table is given by [29], and a second order
closed loop kinematic inversion is implemented to map the planned Cartesian
variables to the joints space of the robot [22].

6.2 Evaluation of the Optimal Impact Time Prediction

In this case study, the same initial configuration of the ball used in Sect. 6.1 is
considered, and the proposed algorithm is evaluated including the online predic-
tion of the impact time. The results obtained with the two prediction metrics
presented in Sect. 4.2 are here reported.

A first test is done considering the minimization problem (8). In this case, the
solution of the prediction phase is ti = 0.5051 s, pi

B =
[−0.1516, 0.79, 0.4668

]
m,

and v−
B =

[−2.4105, 0.1565, −3.0174
]
m/s. The obtained result is not substan-

tially different from the one got from the simulation considering a pre-defined
impact time. For this reason, figures for this case are not included.

Whereas, another test is done solving (9), (10), (12), and (17). In
this case, the solution of (9) is pi

B =
[−0.3141, 0.8, 0.243

]
m, v−

B =[−2.34, 0.1498, −3.521
]
m/s, and ti = 0.5735 s. The predicted impact time guar-

antees that the paddle follows the minimum length path to intercept the ball.
The plots resulting from this test are displayed in Fig. 4. The 3D paths of the
ball and the paddle are reported in Fig. 4a. The solid and dashed lines represent
the motion of ball and paddle, respectively. The blue cross identifies the goal
position of the ball, whereas the blue circle is the initial position of the paddle.
The second row of Table 3 shows the values of Δti, Δpi

B , Δtd, and Δpd
B for this

numerical test. Now, Δti represents the error between the impact time resulting
from the minimization problem and the one obtained during the simulation. The
results point out that, even if the position error is slightly increased with respect
to the constant impact time prediction case, now the impact time and position
are planned online, and the ball hits the table at a time closer to the desired
one.
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(a) 3D trajectories of the ball and the paddle (respectively solid and dashed
line) obtained from the predefined impact time method. The blue circle repre-
sents the initial position of the paddle, while the blue cross identifies the goal
position of the ball.

(b) Euclidean norm of the linear (top) and angular (center) velocity paths
planned for the paddle, and evaluation of the acceleration functional J in (15)
between the motion plan devised using the Euler angles and the optimal pro-
posed one (bottom). The red star represents the impact time t i .

Fig. 3. Simulation of the batting task with predefined impact time
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(a) 3D trajectories of the ball and the paddle (respectively solid and dashed
line) obtained considering the optimal impact time method. The initial position
of the paddle is represented by the blue circle, while the goal position of the
ball is the blue cross.

(b) Euclidean norm of the linear (top) and angular (center) velocity planned
for the paddle, and evaluation of the acceleration functional J in (15) between
the motion plan devised using the Euler angles and the optimal one (bottom).
The red star represents the impact time ti.

Fig. 4. Simulation of the batting task with optimal impact time
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6.3 Discussion on the Minimum Acceleration Planner

In this section a discussion on the evaluation of the minimum acceleration
planner presented in Sect. 5 is reported. Without loss of generality, the pad-
dle is supposed to start at the origin of the world frame with initial orientation
R0

P = RY (π/2)RX(0) and zero velocity. The path is planned for the paddle
in the time interval [ta, tb] = [t0, ti − ε], with ε = 0.02 s. Following the batting
algorithm, the solution of the rebound model presented in Sect. 4.3 produces the
configuration of the paddle at impact time. The Euclidean norm of the linear
and angular velocities of the paddle, planned with the minimum total accelera-
tion for the two above mentioned case studies, are respectively represented by
the top and middle plots in Figs. 3b and 4b.

Once the desired orientation is achieved with zero angular velocity, the angu-
lar acceleration is set to zero so that the orientation of the paddle remains the
same until the impact occurs. As long as one has the control authority at the
torque level, this control strategy, which switches only once, is straightforward
to implement. After the collision with the ball, in order to stop the paddle its
linear velocity is exponentially decreased with the function exp(−μ(t−(ti+δ))),
where μ = 50 and δ = 0.02.

The L2 norm of the acceleration of the paddle is found through the two-
point boundary value problem (17). Moreover, for comparison with these mini-
mum acceleration paths, third-order polynomials for Euler angles, φ and θ, are
considered. Initial and final orientation and angular velocity constraints are cor-
respondingly imposed. The difference of the acceleration functional between the
motion plan devised using the Euler angles and the optimal motion planner is
displayed in the bottom plots of Figs. 3b and 4b. This difference is positive at
impact time, implying that the optimal motion plan undoubtedly generates a
smaller acceleration than typical polynomial paths on Euler angles.

Regarding computational efficiency, an analysis is done coding the algorithm
in C++ and evaluating it on a computer with specifications Intel Core 2 Quad
CPU Q6600 @ 2.4 GHz, Ubuntu 12.04 32-bit operating system, including the
Levenberg–Marquardt C++ library [30]. The analysis reveals that the boundary
value problem takes less than 30 ms. On account of this, as long as the vision
system provides the ball’s trajectory estimation, about 50 ms are necessary to
calculate the appropriate trajectory for the paddle. If this time constraint is
still excessively tight, after that the desired impact time, position, velocity and
orientation of the paddle are imposed, the paddle can be rapidly controlled
through a classical proportional-derivative controller, and revert to a trajectory
following controller at each time the planner generates the optimal path.

7 Conclusions and Future Work

The presented paper proposes a novel algorithm to plan a robotic batting task. In
this work, the table tennis is considered as application of the batting primitive.
Through the solutions of a two stages curve fitting problem, the prediction of
the impact time, and of the impact state of the ball is implemented. Then, the
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configuration of the paddle is generated to accomplish the goal of driving back
the ball towards a desired location. Finally, an optimization of the path in SE(3)
gives minimum angular acceleration and linear trajectory of the paddle up to
the impact time. Simulations in the Matlab/V-Rep environment validate the
approach.

Experiments on the real robotic prototype will follow in a short future. The
approach could also be integrated with advanced image processing techniques,
with the aim of increasing the potentiality of the visual measurement system.
Possible extensions of this work could be related to the application of the pro-
posed framework to other nonprehensile manipulation tasks, as in [31]. An evo-
lution of the algorithm could be conceived in combination with machine learning
techniques.

Acknowledgements. The research leading to these results has been supported by the
RoDyMan project, which has received funding from the European Research Council
FP7 Ideas under Advanced Grant agreement number 320992.
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