T TR T e . SR T

-

A GENERAL SOLUTION ALGORITHM TO COORDINATE TRANSFORMATION
FOR ROBOTIC MANIPULATORS

G. De Maria L. Sciavicco B. Siciliano

Dipartimento di Informatica e Sistemistica, University of Naples
via Claudio, 21 - 80125 Naples, lItaly.

ABSTRACT

Coordinate transformation plays one of the most important roles in robotic manipu
lator control. Typical robot tasks are specified in work space coordinates, usually
a Cartesian frame, whereas control actions are developed on joint space coordi
nates. The goal of the paper is to establish a solution algorithm which works for
any nonredundant kinematic structure with the last three revolute axes: concurrent,
two-by-two intersecting, nonintersecting at all. The coordinate transformation is
turned into a dynamic problem, and the solution convergence is assured by means
of the Lyapunov direct method. The resultant algorithms prove effective since they
only make use of direct kinematics. Examples are finally developed.

- INTRODUCTION

As it is well known, a serial-link manipulator consists of a sequence of mechanical
links connected by actuated joints. The relationship between two connective joint
coordinates is well defined through four link parameters; one is a joint variable
and the others are geometric parameters. The basis for all manipulator control tech
niques is the relationship between the Cartesian coordinates of the end effector and
the joint coordinates. As a rule, the direct (joint-to-Cartesian space) relationship
is unique, whereas the inverse (Cartesian-to-joint) transformation is not. Actually,
while there is only one end effector state for a given set of joint coordinates,
there are a number of different joint configurations which all place the end effector
in the same position and orientation. and in each case geometric intuition is re
quired to find one solution. Besides, if one is tempted to apply without exception
the well known trigonometric method |1]|, not all kinematic structures allow for a
closed form solution for the inverse transformation |[2].

The goal of this paper is to present a general solution algorithm for the inverse
kinematic problem which only makes use of direct kinematics of the manipulator.
The kinematics of a general manipulator is formulated and structural kinematic pro
perties are evidenced. The conversion problem is formulated as a dynamical one and
convergent solution algorithms are derived accounting for the kinematic properties
of the three basic mechanical structures considered, as regards the last three
joints geometric parameters. Two robotic arms, the PUMA 560 |7| and the prototype
presented in |2|, are taken as examples in order to apply the proposed coordinate
transformation algorithms along a trajectory specified in the Cartesfan space.

KINEMATICS q

For an N-degree of freedom manipulator there will be conventionally N links and N
joints. The relationship between the intermediate joint coordinate frames n-1 and n
can be expressed in terms of four kinematic parameters |3}, see Fig. 1. A link L
is characterized by its length a , a common normal distance between the axes o
g .. N . o
the two joints related to the link, and by the twist angle s between the two joint
axes. Each joint axis has two normals attributed to it, one for each link. The po
sition of two links, Ln ) and Ln' relative to each other is defined by the distance
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Fig. 2. a) Concurrent axes,
b) 2-by-2 intersecting axes,
Fig. 1. Kinematic parameters. ¢) nonintersecting axes.

d between.the links, and by the angle 8 between the links; dn is the distance
between the normals along the joint ] axis, and & _is the angle between the nor
mals measured in the plane normal to the joint axis. The geometric parameters,
that is a_ and o ,plus d or e for a revolute joint or a prismatic joint respecti
vely, are"those which accogplish The motion of joint .
The structures here considered are characterized through the following constraints
on the geometric parameters of the last three joints,
a) concurrent axes: a =a_=d_=0 (Fig. 2a),
b) two-by-two intersec‘iing axes: =a_=0, d_#0 (Fig. 2b),
¢) nonintersecting axes: a ,#0, a -éé (?ig. 2c).
A robot task is naturally specified in terms of end effector Cartesian coordinates
(p_.,p.+P_,a,8,v) with respect to the base frame; p. 's are the components of the
end effecfor position vector p, and a, 8,y are the Euler angles which define its
orientation (roll, pitch and yaw angles can be adopted as well). The orientation,
however, can be conveniently described through a unit approach vector a, a unit
sliding vector s, and a unit normal vector n, |4}, see Fig. 3. The orientation
- frame {3._5.5} defined with reference to the
Al base coordinates of the manipulator, can be
easily determined starting from the Euler

s angles. Such frame will be referred to in the

at) v "t} following since it allows for a wunique defi
Bl 4.-*™ nition of the orientation in terms of direct re
lationship with the joint variables. Under

xontt) X* these assumptions, for }ny robot kinematic
% (b) structure with known geometric parameters,

the direct kinematics gan be written as

Fig. 3. a) Orientation unit vectors, _ _ e
b) Euler angles. P-'-{p(ﬂ)' s=f (q), a=f (q), (1)

where q is the (6x1) vector of joint coordinates, and f , f , f are nonlinear vec
tor functions which are always unique; n=f (q) is redagda_r?t ;Fnce it can be dete_l:
mined as the vector product sxa. n
At this extent, since the aim of the work is to seek a convergent algorithm which
could solve for g by inverting (1), the dynamics of such an algorithm involves the
differentiation of (1) with respect to time, i.e.
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P = ]pﬂ- 5 = ]sﬂ- a = Jag, (2)
where ] , ] , ] are the Jacobian matrices of the kind J(q)=2/%.
The issBe of de ining the end effector orientation in terms of unit vectors s,a impli
citely requires that the three independent constraints, expressed by
T T T
ss=aa=1 sa-=0 (3)

be satisfied (T denotes the transpose}. Differentiating (3) with respect to time also
yields

s=aa=-0 savas-0 (4)
which involve three independent constraints on velociti;s. Substitution of (2) in (4)
leads to the following useful kinematic properties for the Jacobians ]s‘ ]u . |5}

i) rank(J_) = rank(] ) = 2, ¥q, (5)
T, ° it
ii) N(]s) = span(s), N(]a] = span(a), Vg, (6)
. 3 T T .
iii) given x,y e¢R", ]535 + ]ax = 0 if x espan(s), y espan(a); (7)

the other orientation singularities of iii) are of no interest |5]|. N is null space.

) THE SOLUTION ALGORITHMS
The inverse kinematic problem is reconceived as a dynamic one in order to achieve
a general approach which only involves the computation of direct kinematics (1),
|6]. Denoting by § a solution of (1) relative to the assigned Cartesian vectors
p.$.a4, the following errors can be defined between the above vectors and the corre
sponding ones obtained from the algorithm state variables g,

ep=B-L9). e =8-1(g, e =3-£1(q (8)
In order to assure the convergence of q to §, errors dynamics are involved, i.e.,
via (2},
€, =B-L4 &, =%2-]49 ¢ =-4-]3 (9)
The point then is to relate 3 to e ,e_,e so as to guarantee that such errors go
asymptotically to zero, and conseqdl?entiy i to §. Such a general scheme is showed
in Fig. 4, |5].
However, if one is tempted to find
m a general convergent algorithm cor
J_I’ responding to the above scheme,
eventual simplification  deriving
4 a : . .
l ——1{) from each particular kinematic
structure cannot be accomplished.
To be more specific, with reference
to Fig. 2, the end effector position
o vector p and the approach unit
N vector a are always independent

of the last rotation 86. Hence, as

h —

Fig. 4. General coordinate transformation scheme. B =P - dsg, (10)

in the following p' will be assumed as position vector and indicated by p, without
loss of generality. In addition, depending upon the particular structure, it follows
that the position vector p is only dependent on:

»
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a) the first three joint variables {ql.qz.q3).
b) the first four joint variables (ql.qz,q3,°4
c) the first five joint variables (ql,qz,qs,ﬁé. 5).

respectively. This issue suggests the realization of two stage algorithms which can
be obtained by opportunely partitioning the vector q. while taking into account the
kinematic constraints of the different structures. So far in the following the conver
sion algorithms, relative to the three cases of Fig. 2, will be separately treated.

),
°

a) Concurrent axes.

In this case the position of the end effector does not depend on its orientation
(Fig. 2a), which clearly simplifies the inverse kinematic problem. Indeed for such
structure closed form solutions do exist [1]|, [7], |8], but they suffer from singula
rities and are based on geometric intuition. For this structure, the vector q in (1
can be partitioned as

T T T
= = = (6 o ©), -
9 =@, 9y g, =09 9y q), g = (6 e &) (11)
where q are the joint coordinates which determine the position of the "wrist", and

q, are Phe other joint coordinates which, together with the previous ones, specify
the orientatien of the "hand". Under this assumption (1), (2) become in this case

= Lp‘ipl (12)
P =] (q )4 (13)
R=la)q,

and
s5=£J9), a-=f/(g (14)
§ = }sp(glgp +1,93,, & - ]ap(_q}gp + 1,023, (15)

for the wrist and the hand respectively; in (13) ] is the wrist Jacobian af /q
while in (1%) ] ] and ] ,] are the handp]ncobians of /aq , 3f/g_ﬂ;p akd
of /g, o /3 sPespe&Pvely. Sueh Sartitioning suggests a two sﬁge algo;luth ; spe
i h' =a .2h <
cifying (9) gives

Sp " ﬁl_] L9 (16)
Ts|= [-5- - ljsp] q - P 5]3 . (17)
[Edj é] ]ap Hp ]a h

Assuming first
_Elp = Y]Te s Y = @ + eTﬁ(eT] ]:e)_i, a >0 (18)

PPP P P "PT"PPPP P
guarantees that the wrist position error goes to zero. This issue can be recognized
by considering the error Lyapunov function V =}e e and verifying that its deriva
tive is negative definite in virtue of (18), |5|F: PP
Progressing then _in a similar fashion for the hand, assuming as error Lyapunov
function V. =(e_ e+ e e ), and accounting for the kinematic properties (5)-(7)
lead to the following choice ’

. T. T. : . .
9, = wsen(] 8 + ] a), Y= I§im+lglm+ IQPHM(JSPHHMJSI ), (19)
where A(A) denotes the maximum eigenvalue of matrix A, and (sgn w)' = {sgnwl...

sgnw_), W e R ; such a choice guarantees that e.*0 and ,*0. The reader is refer
red to |5| for further details.
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b) Two-by-two intersecting axes.

In this case the position vector p is not uniquely determined through the first
three degrees of freedom of the structure, since also 6,6 concurs to qetermme it
(Fig. 2b). By four d.o.f. it is allowed to position the vector p by = values of
9..9,,9.,,8,. In order to obtain a unique solution the following mechanical con
straint must be considered

T
& _2_4 = COS n5. (20)

where & is given in the Cartesian space, and z , depends on q, ' q ,9 . So far,
parttt:omng with respect to the first four joint variables cllows %he definition of

the following errors:

e, =8-£0q)
P PP ST.:(qqqa} (21)
T P 1 %2 "3 4

ez=cosa5—££z (g ) .

4 4P
Differentiating with respect to time yields

é p ]

“Pl_] - _ P :

éz = ‘ETEZ ETJZ gp , (22)
4 =4 4

where ] is the (3x4) matrix 23f /32 and ], is the (3x4) matrix 2f, /3q . The
matrix premultiplied to 3% has rank 4 almostaeverywhere. The following’ choice as
f the

sures the convergence o algorithm
T .
. = + e ple e) >0
= yJle +y sgn(tF ae ), ™ °p SRephhed v o (23)
ali’ PPTP z z,— 2 - |3
4 L 4 v = la|] .
z, max

In this way the first stage of the algorithm guarantees that & and a lie on the
same cone of angle ac and vertix P', but they do not necessarlly have the same
direction, as o has not been determined yet. Then, in order to align & with a
and § with s, the second stage of the algorithm must be able to determine a5 and
06. Progressing as for the previous case gives

e =

- 1(g)

g
e, =% (24)
e, = 8- 1,036
and
e | (5] [ k
=s| |- sp| - s|. T
o=l q - . q, = (e_ &), (25)
da) 78] Dagl 7 [la n s %
where ] ] . ] aresubstantially identical to the Jacobians in (17) except

for their pdlmengions. The convergence is then assured by

h = Y]sgn(]si + jag}, Y, < Iilmu-flilmud- is'p"na:x Ik{]sp}|+|a\(]a:p]|) . (26)

Moreover, since the algorithm is guaranteed to converge, the realistic case q(0) =
§(0) avoids any problem of indeterminacy concerned with cos GS =cos (- u5).

c¢) Nonintersecting axes.

In this last case 8, and 8_, together with (q 19, ), concur to determine the po
sition_of the vector p (Fig 2c). By 5 d.o.f. 11 is al owed to position the vector p
by =° values of q_,q 24 #_. As a unique solution is desired, one must account

for the two constraints egpresscsd by

-
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TE = cosa (27)
Ta o1, (28)

I8 |pn

The former concerns with the particular mechanical structure, whereas the latter is
introduced since, by 5 d.o.f., position and direction are uniquely determined. As
a consequence the errors are defined through

=p - f (q)
EP B P S’PT
ez": c05n5T— i iza{ql'qZ'qS' B&) (29)
e = 1-4& ia(gp)

and their derivatives are

ORI J

=p | | P

e =47z |- la") | g T q, q, q,6,0.) (30)
e | -aaj |4&7]

Pa - = - "a

with analogous meanings of the Jacobians in the matrix premultiplied to Sp which

has rank 5 almost everywhere. The choice for 'gpis then
T. T, .T -1

g = v ]Te + ¥ sgn{]T de )+ vy sgn(]T&) YP ) nP +EP (EPJP]PEP) ’ up>0
3p PP-P z; z,= z, a a="' i
724 = Y, = —Imax . (31)

The second stage of the algorithm, now, is only required to align s with §. As by

means of (31) a = &, only 36 performs this task. The error and its derivative are
respectively

e =5 L0q,0) (32)

LI . (33)

The choice

. T .
o = v sgn(]_8), Y, = sl .+ lﬂp'max“(]sp” (34)
assures the convergence.

In sum, once the kinematic structure of the manipulator is known, one can select
the right algorithm to perform the coordinate transformation of (1). Moreover if one
i_s.ir.lterested in obtaining a solution for (2) as well, that is _tl corresponding to
p.5.4, as required by typical advanced control techniques [6|, [9], |10], the sgn
laws in (19), {(23), (26), (31), (34) can be replaced by proportional laws, which
avoid the generation of undesirable joint velocities rich of harmonics; reasonably
small tracking errors occur, but steady-state errors are identically zero |5].
Finally, an appealing feature of the proposed algorithms is that the number of ad
ditions, floating point multiplies and trascendental calls required is contained, al
lowing for a solution sample rate that can be conveniently increased up to the
same values of joint servos sample rate; this issue suggests digital implementation
by means of a single dedicated microprocessor system |11].

" EXAMPLES

In order to show the effectiveness of the proposed coordinate transformation algo
rithms two arms have been chosen: the PUMA 560 {Fig. 5) which has three inter
secting revolute joint axes at the end effector, and whose direct kinematics can be
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Fig. 5. The PUMA 560 arm. Fig. 6. The prototype arm of [2].

found in [7|, and the prototype (Fig. 6) which has two-by-two intersecting revo
lute joint axes at the end effector, and whose direct kinematics is reported in |2].
The assigned trajectory to track in the Cartesian space consists of a 40 cm.
straight line, along with null Euler angles excursions; it should be noted that this
does not imply that some joints must not move. Trapezoidal velocity profiles have
been imposed with two couples of values of maximum velocities and time intervals
el lip I = 0.6m/s, te =1s), (lpl__ = 0.06m/s, t. = 10s); the slower trajectory
is typica{nao’% those tasks where the robot is required to work, whereas the faster
one refers to material handling tasks.

Proportional type laws have been chosen, gaining the inherent advantage to direc
tly generate joint velocities; finite tracking errors are then expected. However,
since the simulated system is a sample data system with a solution sample period
of 2ms, finite tracking errors would have occurred even with sgn type laws. The
feedback gains y have always been set up at the inverse of the sample period,
that is 500. Fig. 7 shows tracking position errors for the two trajectories, respec
tively for the two arms, while in Fig. 8 reported are_}her maximum‘tlra,f;king orientg_
tion errors, e (or e ), which are evaluated as cos a a (or cos 3§)' Since the
same initial conditions occur (g(0) = §(0)), tracking errors maintain in any case
very small along the whole trajectory, whereas at steady-state they wvanish in
virtue of the closed loop structure of the developed conversion algorithms.

i e I
- d ' '
-t -
y (a) 3 (b)
»t L 13 .
\
L] 2 ] ] I 1 tiy L] 2 A ] EJ 1 Lty

Fig. 7. Tracking position errors: a) PUMA 560, b) arm |[2| (f=fast. s=slow).
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Fig. 8. Tracking orientation errors: a) PUMA 560, b) arm |2| (f=fast, s=slow).

CONCLUSIONS

This paper has presented a general solution algorithm for the inverse kinematic pro
blem. Three basic mechanical structures have been considered differing from one
another as regards the end effector axes configuration. Going back from the end ef
fector terminal point through the structure, the algorithm hLas been partitioned at
an opportune point whose position, dependent on a reduced number of joint varia
bles, can be expressed in terms of the Cartesian coordinates of the given task. In
this way two-stage algorithms have been obtained. As the numerical algorithms im
plemented always provide, at each step, solutions adjacent to the preceding ones,
uniqueness of solutions is assured. Finally, since the computational burden is con
tained, solution sample rates equal to those of joint servos are allowed, thus avoi
ding further interpolations. Future developments are devoted to extend such algo
rithms to kinematically redundant arms with potential benefits over current designs.
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