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ABSTRACT

Kinematically redundant manipulators are characterized by an increased degree of motion
flexibility over conventional nonredundant structures. An index of this ability is given
by the manipulability (or dexterity) measure, and the most dexterous configuration of
the manipulator joints can be sought. Manipulability can be also characterized by the
compatibility to the task the manipulator is required to execute. In this paper a solu-
tion algorithm to the inverse kinematic problem for dexterous redundant manipulators is
proposed. The proper augmentation of the direct kinematics of the manipulator %o include
the constraints provided by the manipulability measures allows the derivation of the
solution algorithm in the same formal way as for the unconstrained manipulator. A simple
case study with a planar three-bar mechanism is finally discussed, and three different
manipulability measures are respectively considered as the additional constraint to the
problem.

This material is based on research supported by MPI.

Throughout the text underlined letters denote vectors, capital letters denote matrices.
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INTRODUCTION

A kinematically redundant manipulator can be defined as a manipulator that contains more
than the minimum number of degrees of freedom (DOF's) needed to execute a certain task.
Since the usual task of arbitrarily positioning and orienting the end effector in space
requires six DOF's, a manipulator with seven or more DOF's will be termed kinematically
redundant. The extra (redundant) DOF's result in greater flexibility and dexterity in
the manipulator motion. In this case these redundant DOF's can be conveniently exploited
to meet additional constraints on the manipulator motion [1].

A natural constraint is to require that the manipulator assumes configurations which are
as "dexterous" as possible. To this purpose the human arm provides an excellent model of
this ability; it has evenly distributed joint angles and a "natural" appearance. The
manipulability measure has been proposed by Yoshikawa [2] as one quantitative measure of
the easiness (dexterity) of arbitrarily changing the position and orientation of the end
effector of the manipulator. The condition number of the Jacobian matrix has also been

recommended as a dexterity measure for selecting the best working point for the manipu-
lator [3].

Another attracting use of redundancy is to make the motion and strength characteristic
of the manipulator compatible to the task requirements. An index for measuring the com-

patibility of the arm confiquration with respect to manipulation tasks has been recently
proposed by Chiu [4].

In this paper, the concept of the above manipulability measures is used to derive a so-
lution algorithm to the inverse kinematic problem for constrained redundant manipula-
tors. The algorithm is an extension of a general solution algorithm [5,6] which is based
only on the computation of the direct kinematics of the manipulator. It is shown how the
constraints given by the manipulability measures can be systematically incorporated into
the solution, on the condition that a properly augmented direct kinematics is defined.
The same approach has already been pursued to meet other constraints such as obstacle
avoidance and limited joint range [7]. Finally, a simple planar three-bar mechanism is
chosen to work out a case study, where the three different manipulability measures are
respectively selected as providing the constraint to the inverse kinematic problem.

MANTIPULABILITY MEASURES AND AUGMENTED KINEMATICS

L ol

Consider an n-DOF manipulator and assume that the position and orientation of its end
effector is described by a set of m variables. Its direct kinematic equation can be es-
tablished in a unique straightforward manner [8] as the relationship between the (n x 1)
joint vector g and the (m x 1) task vector X,

x = £(g) (1)
where f is a continuous nonlinear function, whose structure and parameters are known.
The kinematic equation (1) can be differentiated with respect to time, yielding the re-

lationship between the joint velocity vector g and the task velocity vector X, through
the (m x n) Jacobian matrix J(g) = 85/33,

x = J(g)g. ' (2)

For a kinematically redundant manipulator it is m < n. It can be assumed that the fol-
lowing condition holds

max rank J(g) = m ' (3)
4q

.and (n - m) redundant DOF's will be available. If for some g,

rank J(g) < m (4)




the manipulator is said to be at a singular configuration. In this state the manipulator
loses its ability to move along or rotate about some direction of the space, meaning
that its manipulability is reduced.

Following Chiu's effective formulation [4] which views the manipulator as a mechanical
transformer with joint velocity and force as input and Cartesian velocity and force as
output, the velocity and force transmission characteristics of a manipulator at a given
configuration can be geometrically represented as ellipsoids. From (1), it can be seen
that the unit sphere in R" defined by

8 (5)
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is mapped into the so-called velocity ellipsoid in R" defined by

x @)% < 1. (6)

Analogous to the velocity ellipsoid, an ellipsoid for describing the force transmission
characteristics of a manipulator at a given configuration can be defined. Forces in
joint space and task space are mapped via the same Jacobian defined in (2) through the
relation

T =3 (gf _ )

where f is the fgrce vector in the task space and T is the joint torque vector. Thus the
unit sphere in R

Il (8)

£(DE < 1. (9)

It can be shown that the principal axes (eigenvectors) of the velocity and force
ellipsoids coincide, whereas the lengths of the axes (eigenvalues) are in inverse
proportions [4].

The volume of the velocity ellipsoid (6) has been used as an effective means for singu-
larity avoidance, see eg. (4). Yoshikawa [2] first introduced the cpncept of
manipulability measure at configuration g as the scalar quantity

wig = [aet 3931 (10)

which is proportional to the volume of the ellipsoid defined by (6). If m = n, that is
the manipulator is nonredundant, the measure w reduces to

w(g) = |det J(g)| (11)

which is the kind of measure used in [9] for analysis of robot wrists. At a singular
configuration g it is obviously

w(g) = 0. (12)

The force ellipsoid is at the basis of the condition number reportéd by Klein [1]

ALI (@) 3T (g)]
k(g) = = (13)
Alo(@)3”(g)]

whsre A and A respectively denote the largest and the smallest eigenvalues of the matrix
JJ°. while a determinant going to zero marks the presence of a singularity as in (12),
the actual value of the determinant is not a practical measure of the degree of
ill-conditioning. Instead the condition number gives a measure of closeness of the force
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ellipscid to a sphere. If m = n, the condition number k reduces to

A[I(g)]
k(g) = —— (14)

Al3(g)]

which is the kind of measure adopted by Salisbury and Craig [3] to select the best work-
ing point for a nonredundant manipulator. At a configuration § where

(@ =1 (15

the manipulator will exert task space forces of equal magnitude in all direction:s
(isotropic configuration). Nevertheless, on the basis of the above duality between the
force and the velocity ellipsoids, an isotropic configuration will also present task
space velocities of equal magnitude in all directions.

The previous two measures serve as gquantitative tools to characterize quite the “natu-
ral® (dexterous) configuration of a manipulator independently of the specific task it is
required to perform in terms of motion and force. Rather different indices have beer
only recently proposed by Chiu [4], which measure the compatibility of a manipulato
configuration with respect to "fine" manipulation tasks, where accurate control of smal.
velocity and force is required, and "coarse" manipulation tasks, where exertion of large¢
velocity and force is required [10].

Based upon the velocity and force ellipsoids respectively defined by eqgs. (6) and (9).
the force (velocity) transmission ratio along a particular direction can be defined as
the distance from the center to the surface of the force (velocity) ellipsoid along the
directional vector. Jet u (v) denote the unit vector in the direction of interest, anc
let @ (B) be the distance along the vector u (v) from the origin to the surface of the
force (velocity) ellipsoid. The scalar a (B) is the force (velocity) transmission ratic
in the direction of u (v). Hence, it is

al@) = [uT(3(g)aT(g)ul"? (165
and

Blg) = [xT(J(g) JT(_q) ')‘lg]‘é. (17)

In the light of the duality discussed above, it can be stated that the best directior
for effecting velocity (maximum B) is also the best direction for controlling force
(minimum ). Similarly, the best direction for effecting force (maximum a) is also the
best direction for controlling velocity (minimum B). Chiu {4] suggested to combine the
ratios defined in (16) and (17) into one compatibility index ¢ = (1/aBf) as a quantita-
tive measure of good control (exertion) compatibility in the respective directions. This
places equal importance on all task directions, whereas the requirement may be more de-
manding in one direction than in another.

On the basis of the definition of the manipulability measures given in (10), (13), (16)

and (17), it is possible to define an augmented direct kinematics for a redundant manip-
ulator as

x(gq) .
y(g) = (18)
z(g)
where y(q) is the augmented ((m+r) x 1) task space vector, formed by x as given in (1)
and by an (r x 1) vector z whose components are any of the scalar manlpulablllty mea-
sures introduced above. Obviously the problem is well posed if
r<n-m - (19)
s0 as to cover at most all the redundant DOF's. Correspondingly, the relation (2) allows
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the definition of an augmented Jacobian matrix as

J(q)
J (g) = (20)
y J,(Q)

where Jz(g} is the (v x n) matrix obtained as 32/83 It is worth reporting here that a
similar “approach based on kinematics augmentation has also been followed in [11,12].

THE INVERSE KINEMATIC SOLUTION ALGORITHM

The crucial point for robot manipulator analysis and control is the capability of map- ‘
ping the task space vector x into the joint space vector g, that is solving the
kinematic equation (1). In case of redundant manipulators, the redundant DOF's can be
adequately used to meet additional constraints on the manipulator motion, such as obsta-
cle avoidance, limited joint range and dexterity.

The most common approach followed in the literature is based on the use of the
pseudoinverse of the Jacobian, in connection with the mapping (2). It can be shown that
the general solution to (2) is given by

g=d%+ (1 -3%n (21)
where J+ is the (n x m) Moore-Penrose pseudoinverse matrix defined as at =2 (JJT) 1, I
is the (n x n) identity matrix and h is an (n x 1) arbitrary vector. It can be noted
that the solution (2F) composes of the least-square solution term of minimum norm [13]
plus a homogeneous solution term created by the projection operator (I - J*J) which se-
lects the components of h in the null space of the mapping J. Therefore the vector h can
be used to optimize some additional criterion, such as limited joint range [14], obsta-
cle avoidance [15,16,17] to reference only a few. An interesting solution with singular-
ity robustness has been more recently proposed in [18].

A rather different approach to the inverse kinematic problem is based on a recently pro-
posed solution algorithm which only requires the computation of direct kinematic func-
tions [5,6]. The technique is briefly summarized in the following. .-

Let ﬁ be a solution to (1) relative to a given end effector location i specified in the
task space. A task space error vector e can be defined between the reference task vector
x and the actual task vector x obtained from the current joint vector g,

1%y

e=x - x. ' (22) |
Differentiating with respect to time yields

- 3(g)q. (23)

B30

é =
It can be proved [19] that the choice
g =xe : (24)

assures that the tracking error e is bounded if x ¥ 0 and is zero if x = 0, by means of
a proper selection of the pos;tlve definite feedback gain matrix K. The result;ng closed
loop dynamic scheme is illustrated in Fig. 1. As anticipated above, the key feature of
this technique is the sole computation of direct kinematic functions (f and J). It can
be remarked also that the joint velocity vector é is inherently generated by the solu-
tion algorithm; this may turn advantageous for control purposes. A more detailed discus-
sion on the characteristics of the. solution algorithm of Fig. 1 and several application
examples are referred to [7,19,20].

The solution (24) apparently serves as inverse kinematic solution for a general "uncon-
strained” redundant manipulator. The versatility that is inherent in a redundant
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manipulator can be naturally exploited by imposing any of the manipulability measures
proposed in the previous section as constraint(s) to the solution. Based upon the direct
kinemat%ps augmentation introduced above, it is reasonable indeed to define a reference
vector z for the extra task space variables introduced in (18) . Correspondingly, the
error vector in the task space is defined by

e =y - (25)
&, =¥I-y
and the inverse kinematic solution for the "constrained” redundant manipulator is given
by
. T ' :
=K Je (26)
47 %y

which, besides assuring a bounded end effector tracking error, keeps the manipulator in
a dexterous configuration, whose manipulability indices are set up by the components of
the reference vector Z. : ’

A CASE STUDY

The planar three-bar mechanism of Fig. 2 is analyzed in the following to develop a case
study. The direct kinematics (1) is given by

P l.s.+1_5__+1_.s
p= b 4 - 171 "2712 737123 (27)
Py 11611501 5+13¢) 53
where si. = sin(9i+9.+..) and € 5 = cos[Bi+6.+..]. The Jacobian matrix J in (2) is
givan-byj" . J Jee J
P l.c, . +l_c l.c
J = y 2712 37123 37123 (28)

TPy 138127138123 “138; 53 _
The matrix JJT which constitutes the key for any manipulability measure is symbolically
given by

b b -
T =po |11 P12 (29)
P12 Py

where the expressions of its elements have been omitted for brevity.

It can be found that the manipulability measure w in (10) is given by

= 12 _ 2.2 2,..2.2 2.4
w=[11(1,8,+1;s,,) +13(1)s,45+1,5,) “+1513s7]°.
Then it follows that singularities occur when the three links are aligned, 82 = 0, 180

and 93 = 0, 180 (four distinct configurations at which w = 0).

(30)

As far as the condition number « in (13), it can be observed that a measure of the dif-
ference between the two eigenvalues of the matrix B in (29) is directly given by the
discriminant of the associated characteristic equation, i.e. '

2

- - 2 44
A [(h11 b..)° + 4b12] . (31)

22
Lastly, the task compatibility indices in (16) and (17) depend upon the directions u and
v of the manipulation task.

In the following, it is assumed that the arm is in a given configuration and a desired
value is assigned to each manipulability measure. Each task consists in maintaining the
given end point position while forcing the manipulability measure to the desired value.
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The link lengths have been chosen as 11 =1.0, 1

2 = 1.0, 13 = 0.5.

For the first measure in (30) the arm is purposely placed in a singular configuration gT
= (45 0 180), at which it is obviously w = 0. It is required that w = 1.0. The final
configuration of the arm is shown in Fig. 3, along with the manipulability measure as a
function of time. The final configuration is more dexterous from the point of view of
singularity avoidance, since it corresponds to having a larger volume of the force
ellipsoid defined in (9).

The arm is then placed in the configuration g? = (160 90 -90), at which the discriminant
in (31) results A = 3.324. It is required that A = 3.0. The final configuration of the
arm and the discriminant as a function of time are shown in Fig. 4. The final configura-
tion is characterized by having an associated force ellipsoid which is closer to a
sphere than it was the ellipsoid associated with the initial configuration.

Finally, it is assumed that a vertical force (E? = (0 1)) and a horizontal velocity (3?
= (1 0)) are wished to control. Th}; implies that the transmission ratios defined in
(16) and (17) are respectively a = b22 and B = b_‘w, where b 2 and w are the same as in
(29) and (30). The task compatibility“ index has #hen been chdden as c = 1/af = b,__/w
[4]. The initial configuration of the arm is the same as in the previous examplé, where
it results ¢ = 2.754. It is required that ¢ = 3.0. The final configuration and the com-
patibility index are shown in Fig. 5. It can be recognized that the arm posture for fine
control of vertical force and horizontal velocity resembles that of the human arm during
writing. It is interesting also to notice that the final configuration in this case is
less "articulated” than the final configuration in the previous example. Requiring fine
control in the assigned directions, in fact, corresponds to having unbalanced lengths of
the principal axes of the ellipsoids (large condition number), whereas in the previous
case the goal is to obtain closer eigenvalues (balanced lengths of the principal axes)
and then a best working point for exerting forces of proximal magnitude in all direc-
tions, independently, however, of the particular task it is required to perform.

CONCLUDING REMARKS

This paper has presented a solution algorithm to the inverse kinematic problem for re-
dundant manipulators under the constraint that the arm assumes a configuration that is
as dexterous as possible. Three different manipulability measures have been considered
as quantitative indices of the inherent dexterity associated with a redundamt manipula-
tor. The first two of them characterize the "natural" appearance of the arm, whereas the
third one is purposely thought of as matching the motion and force task direction re-
quirements. The algorithm has been then derived by properly augmenting the direct
kinematics of the manipulator and adopting a recently derived technique which is based
on the sole computation of the direct kinematics. A case study for a planar three-bar
mechanism has been finally developed.

Here it is important to conclude with emphasizing that the augmented kinematics approach
has been applied with the intent to satisfy some desired values of the manipulability
measures proposed. It is not fully understood, however, how to select those values. Oth-
er simulation results not reported here, in fact, have shown that the solution algorithm
in the present form does not always guarantee that the manipulability measure of inter-
est is taken to its extremum (i.e. maximum volume, smallest condition number, etc.).
This is primarily due to the fact that the augmented Jacobian J_ in (20) will present
not only the same singularities as those of the end effector Jacdbian J, but also other
singularities, due to the addition of the r rows. This issue has been raised also by
Baillieul in [11]. In other words, if the augmented error e happens to span the null
space of J , the solution get stuck and no further improvEXent of the manipulability
measure is %ossible, along with the fact that a position error may occur. This certainly
represents a challenging point for future research.
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Figure 1. The inverse kinematic solution algorithm.
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Figure 2. The planar three bar mechanism.
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Figure 3. Arm configurations and manipulability measure Ww.
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Figure 4. Arm configurations and discriminant A.
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Figure 5. Arm configurations and compatibility index c.
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