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Abstract. During a rehabilitation session, patient activity should be
continuously monitored in order to correct wrong movements and to fol-
low patient improvements. Therefore, the application of human motion
tracking techniques to rehabilitation is finding more and more consensus.
The aim of this paper is to propose a novel, low-cost method for hand
pose estimation by using a monocular motion sensing device and a robust
marker-based pose estimation approach based on the Unscented Kalman
Filter. The hand kinematics is used to enclose geometrical constraints in
the estimation process. The approach is applied for evaluating some sig-
nificant kinematic parameters necessary for understanding human hand
motor improvements during rehabilitation. In particular, the parameters
evaluated for the hand fingers are joint positions, angles, Range Of Mo-
tion and trajectory. Moreover, the position, orientation and velocity of
the wrist are estimated.

Keywords: hand pose estimation, rehabilitation, Unscented Kalman
Filter.

1 Introduction

Cerebrovascular diseases, such as stroke, are the third leading cause of death
in industrialized countries and the leading cause of permanent disability [I].
This leads to a remarkable demand of healthcare services with consequently
increasing public expenses. The aim of neurorehabilitation is to help patient re-
learn sensori-motor capabilities by exploiting the plasticity of the neuromuscular
system: motor patterns are relearned through repeated execution of predefined
movements [2]. Patient monitoring is needed to evaluate the quality of the per-
formed movements, modify the therapy if needed, apply corrective actions and
assess patient performance. Systems for human movement tracking applied to
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rehabilitation [3] are usually divided into two categories: non-visual tracking
systems and visual tracking systems. In this paper the attention is focused on
systems belonging to the latter class, which are in turn classified as marker-
based and marker-less systems. Marker-based motion analysis systems use op-
toelectronic cameras and reflective markers: although these systems provide an
accurate estimation of joints [4], they are expensive and cumbersome. Further,
they require a completely structured environment to perform calibration and
acquisition. Marker-less systems rely on Computer Vision algorithms that are
sensitive to environmental conditions, but usually use one or two cameras making
the system cheap and space-saving.

Vision-based techniques for estimating the hand pose are usually grouped
into two categories [5]: Model-based and single frame pose estimation. Model-
based visual pose estimation consists of finding the best matching between a
group of features characterizing the input image and a group of model features.
In order to reduce the computational cost of searching, a prediction step is
considered. Multiple hypothesis around the prediction are considered to avoid
local minima and discontinuities [6] in the matching. In particular, Bayesian
filtering techniques using Monte Carlo methods, such as particle filters [7], [§], [9]
are applied. Single frame pose estimation does not make assumptions on time
coherence, making the problem very hard to solve. Global search over a database
of templates [10] and motion constraints [I1], [I2] are viable solution.

The hand pose estimation approach presented in this paper tries to merge
computer-vision and marker-based techniques proposing a cheap system (that
facilitates a fundamental step for hand pose estimation: the triangulation process
of the visual features) using a monocular camera, with reduced computational
cost, easy to implement and robust. It performs the visual analysis of human
hand motion and records hand joint kinematics during movements in a robust
and repeatable way making the system adapt for home based rehabilitation.

The paper is structured as follows: in Section 2l the hand kinematic model is
introduced; in Section Blthe hand pose estimation algorithm is explained; results
about the hand pose estimation are presented in Section @l Finally, conclusions
and future work are proposed in Section [5l

1.1 Notation

The exposition relies on a notation very common in the Computer Vision and
Robotics community: the generic pose (rotation R;; and translation T;;) of the
frame Z with respect to the frame J is denoted with the group transformation
gij = {Ri;, Tij} € SE(3), which maps a vector expressed in the frame Z, into
a vector expressed in the frame J. SFE (3) is the special Euclidean group for
the rigid transformations. The notation is simplified for the pose of the wrist
frame with respect to a proper fixed reference frame (e.g. the camera frame,
Jwe = {Ruwe, Twe}), for which the subscripts are dropped, for cleaner notation,
and it is denoted simply as ¢ = {R, T'}. The inverse transformation is indicated
with the notation g;jl = {RijT, fRZ-jTTZ-j} € SE (3). The action of the group
transformation g1 on g;;, usually denoted with the symbol o, to indicate function
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composition, is indicated with a simple product, i.e. g;x = g¢;xg:;, being by
definition: g;; £ {RjrkRij, Rj1Ti; + Tjr}. The same notation is used for the
action of the transformation g;;, € SE (3) on a vector P; € R3, which is indicated
as P, = g1 P;, that is: Py & R P + Ty

2 Hand Kinematic Model

Long fingers are considered as kinematic chains composed of 3 links with 4 De-
grees of Freedom (DoF's): 2 DoF's for the MetaCarpo-Phalangeal (MCP) joint and
1 DoF each for the Proximal Inter-Phalangeal (PIP) and Distal Inter-Phalangeal
(DIP) joints respectively. It has been assumed a coupling between PIP and DIP
joints (Oprp = gep[p) [13]. The thumb is modeled as proposed in [14] with
5 DOFs. The fingers are considered as 5 kinematic chains having the origin in
common (i.e. the wrist). Fig. [l shows the joint reference frames (left) and the
Denavit-Hartenberg parameters for the index finger and for the thumb (right).
The remaining long-fingers (middle, ring and little) are assumed kinematically
equivalent to the index.
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3 Lz]’(/}dez Oo 0 GPIPQ
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Fig. 1. (left) Protocol used for marker positioning and joint reference frames in the
hand starting position. The system reference frame, positioned (in red) on the hand
wrist, has the X-axis along the line connecting the marker W RIST with the marker
MCP3, the Z-axis perpendicular to the palm plane and the Y-axis defined with the
right hand rule. (right) DH parameters of the index finger (top) and of the thumb
(bottom).

The wrist is modeled as a system with 6 DoFs, consisting of 3 components of
translation and 3 angles of rotation (Adduction/Abduction, Flexion/Extension,
Pronation/Supination). It is easy to show that these angles correspond to the Eu-
ler angles in configuration ZY X . Finally, the palm is assumed to be composed
of rigid segments linked to the wrist and its anatomy is assumed known. For the
purposes of this work, the arm is supposed not to change its orientation during



4 F. Cordella et al.

motion, thus it can be assumed that changes in hand orientation are due to actu-
ation of the wrist joints only. The DH parameters are evaluated in such a way as to
obtain a generic algorithm valid for different hand sizes. Therefore, the algorithm
envisages an initial calibration phase, where marker centers are detected manu-
ally in the first image acquired by the camera and the link lengths are measured,
by means of the depth information provided by the vision system. It is assumed
that the camera focal axis is perpendicular to the plane where the hand lies.

3 Hand Pose Estimation

3.1 Detection and Tracking

In order to estimate the hand pose, 21 markers, made of blue paper, are placed
on the subject hand, as shown in Fig. [I] and a fast detector based on color his-
togram and a connected component labeling algorithm has been implemented.
The Asus Xtion Prolive motion sensing device working at 30 fps and consisting
of an InfraRed (IR) laser emitter, an IR camera for measuring depth informa-
tion and a RGB camera, with a resolution of 640 x 480, has been used. The
same marker detection algorithm has already been adopted by the authors in a
previous work, hence a more detailed explanation can be found in [15]. In the
same work, the authors claimed that using simple detection algorithms like the
one used may render the task of associating visual measurements to physical
markers or deciding whether a given measurement is an outlier or a valid marker
projection difficult. For this reason, since a model of the hand is available, the
marker tracking problem has been reformulated into a stochastic optimization
problem. This renders the proposed algorithm robust with respect to outliers
and markers entering and exiting from the field of view.

3.2 Filtering Motion and Pose

The pose parameters — position, T (t) and orientation, R (t) — of the wrist with
respect to its initial pose (corresponding to the first image), together with the
kinematics of the 17 finger joints can be modeled according to the following
discrete-time kinematic model:

T(t4+1)=T(t)+v(t)dt
R(t+1) = R(t)e?®Mdt)
0; (t+1)=06;(t) +ne, ()dt, i=1,...,17

where £2(t) = n, (t) A, being A the skew-symmetric operator, 1, (t), . (t) and
ng, (t) are zero-mean white noises with constant variance, modeling the hand
motions as random walks, and dt is the base sample time, chosen coincident
with the sampling rate of the camera. The rotation matrix R (t) is parametrized
via Euler angles and encodes the current value of wrist joint angles. The output
model is represented by the projection of the visible markers on the image space

Yi (1) = 7 (guwoeg (t) Ty (O)) + 145 (), 1€ V(1) C{1,2,...,21} (2)
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where 7 () : R3 — RP? denotes the projective operator, according to the pinhole
model, g (t) = {R(t),T (t)} € SE (3) and Ty, (O) is the 3D position of the i-th
marker with respect to the wrist reference frame. This position is a function of the
hand kinematic parameters O, i.e. the joint angles 6; and the DH parameters, and
can be obtained via direct kinematic. The group transformation g,,. € SE (3)
is the pose (translation and rotation) between the camera frame and the frame
W) corresponding to the wrist initial pose, which is assumed known, and v; (t)
is a zero-mean white noise with variance R;, assumed constant among features.
A possible algorithm for the iterative estimation of the relative transformation
Juwece can be found in [I6]. The set V (¢) denotes the group of visible markers at
the current time (omitting the clutters). It incorporates the time index since the
markers may move out of the field of view or be occluded.

According to the kinematic model () and the output model (@) a nonlin-
ear estimation scheme has been designed. The aim of the filter is to estimate
the state x (t) of the system, consisting of: i) the motion variables, T (), v (¢)
and the Euler angles parametrization of the rotation matrix R (¢), and ii) the
joint angles 6; (t) of the fingers. In this paper, given the non linearity of the
model with respect to the state and the orientation noise terms, the Augmented
Unscented Kalman Filter algorithm presented in [I7] has been used. The pe-
culiarity of the adopted estimation scheme, compared with the classical UKF
approach [I8], is the possibility to easily deal with non-affine noise terms in the
state/measurement model. For the remaining part, the technique is a classical
UKF as in [I§].

3.3 Robust Tracking and Estimation

The challenge in the proposed approach is twofold: above all, using simple de-
tection algorithms like the one described in Sect. Bl may render the task of
associating a-priori a projection to a physical marker difficult; moreover, the al-
gorithm is desired to be robust with respect to the presence of outliers, occlusions
and markers entering and exiting from the field of view.

In [I5], the tracking problem has been solved by using Sequential Monte Carlo
methods, via adaptation of existing techniques in the framework of multiple tar-
get tracking. In that case, the model of the hand has not been available and
the markers have been assumed to be independent targets moving on the image
plane. On the contrary, the present work takes advantage of the knowledge of the
hand model, which allows to constrain the motion of the markers onto the im-
age plane. Thus, the tracking problem is formulated as a stochastic optimization
problem embedded into the pose estimation algorithm. The general approach
has been presented in [16]. For this aim, the outputs given by the blob detection
algorithm, for the image at the time ¢, are considered a random sequence of M,
measurements y; = {y1 (t),y2 (t), ..., yn, (t)} of blob candidates. In general, the
condition M; # 21 holds, which means that the sequence y; does contain pro-
jections of visible markers and clutters. The association between measurements
and markers/clutters is considered unknown. It is assumed that the sequence
y¢ is conditionally independent from every other sequence in the past and that
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the association of each y; (t) € y: is conditionally independent from the past
history of associations. The filtering problem is thus solved by using a prob-
abilistic technique. To this end, consider a latent variable a; (t), modeling the
measurement-to-marker association:

_ [0, if y, () is a clutter
a; (1) = {j, if y; (¢) is the projection of marker j (3)

Introducing the latent variable is the same as considering the non linear model
@), in compact form y (¢) = h (z (¢)), as a conditional measurement model over
the variable a; (¢). In fact, it is possible to condition the output function over a
certain value of the latent variable: i.e. y; (t) = h (z (t) |ai (t) =j #0), with the
meaning of selecting the rows corresponding to the projection of the marker j
from the function h (z (t)). If a; (t) = 0, the output model reduces to y; = v,
Vo ~ N (Do, 2,). Tt is desired to find the most probable value of the variable a; (¢),
Vi =1,..., M, that is for every measurement collected at the current time step.
The association problem can be recast as maximizing the belief that the current
measurement y; (t) € y; is either the projection of a visible marker or a clutter.
Formalizing, the aim is to find the maximum of the posterior distribution:

p(ai () |y () yo0iu—1) o< p (yi (t) ai (t) , yoe—1) p (as (1)) (4)

given the current measurement y; (t) and the whole history of the measurements
up to the previous step. The previous equation has been obtained via applica-
tion of Bayes’ rule. The prior p (a; (t)) is determined by the a priori knowledge
of clutter and marker association event probabilities [I5J16], while the density
p (yi|ai, yO;t,l) is the likelihood that the current measurement is associated to
a given marker or to a clutter. This distribution can be obtained via marginal-
ization of a proper joint density:

p (yilai, yo—1) = /p(yz'

:/P(yz‘

where the last equality is obvious since the prediction of the motion parameters
of the wrist does not depend on the value of the association for the current
measurements set. Fixing a certain guess for the association, a; (t) = j, j # 0,
the density p (yi’ai, yO;t,l) is the Kalman Filter likelihood of the measurement
yi (1), given the prediction of the marker j, i.e. given the conditioning of the mea-
surement model over that value of the latent variable. Thus, given the predicted
state-related Sigma-Points [17], X3 ijt—1» m=1,..., L, computed by employing
the nonlinear state model, their transformation through the conditioned mea-
surement function can be obtained, as in the classical UKF":

Y{z,t/tfl =h (X’rml,t/tfllai = J) (7)

The superscript j on the transformed Sigma-Points of the output, indicates

that Yg’t/tfl refers to the predicted projection of the marker j, for which the

xva‘iaYt—l)p(x’aiaYt—l) dx (5)

%az‘aypl)p(iﬂ’}’tﬂ) dx (6)
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association is being tested. The mean and covariance of the measurement vector
are calculated as:

L
/y\J_ = ZW":YZL,t/t—l (8)
n=0
L ) . T
Py_y,j = Z ch (Yfm,t/tfl - @\J_) (Yi,t/tfl - ﬂj_) + R; (9)
n=0

where W2 and W

o are the weights associated to the Sigma-Points [17], 7 is

the predicted projection of the marker j and P, ; its covariance, while R; is the
covariance matrix of the measurements, assumed known. Thus, the probability

of the association a; = j (eq. (@) can be computed as:
p(ai = jlyi you—1) < N (yi =45, P, ;) p(ai = j) (10)

being A () the multivariate normal distribution of proper mean value and co-
variance. It is worth to mention that, when testing the association to a clutter,
a; = 0, Equation ({I0) is written as p (ai = 0|yi,y0:t_1) x (1/RES) p(a; = 0),
where RES is the image resolution, meaning that a clutter can happen every-
where in the image. The set of possible associations is discrete, thus the (discrete)
value of the association posterior distribution can be computed by inspecting all
the possible values of the associations [I6]. Selecting the maximum probability
among the ones in equation (I0) gives the most probable value of the variable
a; (t), corresponding to the measurement y; (). The association problem is solved
by repeating the above procedure for all the measurements in the set y;. De-
generate cases, like multiple associations of different measurements to the same
marker and so on, have been considered also, in this work, which solution is
detailed in [16]. After the association problem is solved, the correction step can
take place, employing the visible markers and the associated image projections,
as in the classical UKF.

4 Experimental Validation of Hand Pose Estimation
Algorithm

Monitoring human hand joint motion during a rehabilitation session allows ex-
tracting quantitative indicators about patient performance. In particular, mea-
sure of ROM, A/A and F/E angles of the fingers, wrist orientation and velocity,
finger trajectories provide an indication of the ability of a person to perform a
movement [19] [20]. The proposed algorithm has been experimentally tested for
tracking the whole hand and extracting the above mentioned kinematic param-
eters during F/E and A/A movements of the fingers and of the wrist and during
reach and grasp action. These are standard movements used for understanding
the behaviour of each hand joint during a common rehabilitation session. The
paper wants to provide a proof-of-concept of the pose estimation approach for
evaluating those parameters; hence, the study is still preliminary and is based on
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Fig. 2. Pose estimation result (top-right) corresponding to the grasping action of the
observed hand (top-left). Position and velocity over time of the wrist during the reach-
ing and grasping phases (bottom). Note that the detector failed with the markers on
the thumb due to partial occlusion and shadows, however the pose estimation is still
coherent.

the experimental tests on one subject. The participant (a healthy woman of 34
years old) was seated in front of a table with the right hand placed on it. In the
starting configuration of the hand, the four fingers are fully extended, the thumb
is adducted and the wrist is in a neutral position. The subject was asked to per-
form reach and grasp actions and finger movements for evaluating joint RoMs
paying special attention not to rotate the arm. Fig. @] shows the final instant
of the grasping experiment and the related pose estimation of the hand. More-
over, the acquired data have also been used for analyzing the wrist behaviour
in the reaching phase. In particular, Fig. Bl bottom, shows the wrist trajectory
and velocity during the reach and grasp action. Fig. B shows finger A/A angles
and wrist joint angles behaviour. The plotted results are reasonable, in fact it is
possible to note that the measured A/A RoMs respect the values of published
data on human beings [21I]. The previously listed indicators are also extracted
but are not reported for the sake of brevity. In conclusion, the approach could be
easily used for patient performance evaluation during a rehabilitation session.
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Fig. 3. Fingers A/A motion and wrist angle components during the range of motion
experiment

5 Conclusion

In this paper, a novel and low-cost method for hand pose estimation has been
proposed. The hand tracking problem has been formulated as a non-linear es-
timation problem solved by using UKF and considering the interdependence of
the markers by introducing the hand kinematic model. Information about the
joint orientation, position, trajectory and velocity have been extracted in order
to demonstrate that the proposed pose estimation algorithm can be adopted for
finding kinematics parameters about the whole hand. The approach can have
useful applications in rehabilitation providing quantitative information about
the performed task, such as the measurement of joint motion. Further improve-
ments will be devoted to verify the accuracy of the approach by means of a
comparison with a ground truth obtained with an optoelectronic system and to
test the approach on real patients.
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