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Abstract— The problem of tracking the position and ori-
entation of a moving object using a stereo camera system
is considered in this paper. A robust algorithm based on
the extended Kalman filter is adopted, combined with an
efficient selection technique of the object image features,
based on Binary Space Partitioning tree geometric models.
An experimental study is carried out using a vision system
of two fixed cameras.

I. INTRODUCTION

A common problem in machine vision is that of tracking
the 3D-pose (position and orientation) of moving objects
in a wide workspace. Visual tracking applications require
the adoption of motion estimation algorithms ensuring
robustness in the presence of noise and stable tracking also
in unstructured environments. Moreover, the information
extracted from visual measurements must be available in
real time.

A widely adopted approach to robust motion estima-
tion from visual measurements is based on the extended
Kalman filter, which represents a good trade-off between
computational load and estimation accuracy [1], [2], [3].
When the object is moving in unstructured environments,
good performance can be ensured using a multi-camera
system, which guarantees information redundancy.

In this paper the extended Kalman filter is used to
set up a visual tracking algorithm for a stereo camera
system. The filter equations are derived according to the
systematic procedure presented in [4], for the case of
n video cameras fixed in the workspace. The algorithm
requires the recognition of the object corners (feature
points) from which the object pose can be computed using
a simple point CAD model.

The estimation process is improved by adopting an
efficient selection method of the feature points based on
Binary Space Partitioning (BSP) trees [5]. The selection
algorithm allows managing in real time a large amount of
information provided by the stereo cameras system. Thus
the information redundancy can be effectively exploited
to improve accuracy and robustness of the visual tracking
task.

Experimental tests are presented to show the compu-
tational feasibility and the effectiveness of the proposed
approach.

II. EXTENDED KALMAN FILTER

Consider a system ofn video cameras fixed in the
workspace and a moving object. The geometry of the
system is described in Fig. 1.
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Fig. 1. Reference frames for thei-th camera and the object using the
pinhole model.

A frame Oci–xciycizci attached to thei-th camera
(camera frame), with thezci-axis aligned to the optical
axis and the origin in the optical center, is considered for
each camera. The sensor plane is parallel to thexciyci-
plane at a distance−f ci

e along thezci-axis, wheref ci
e is

the effective focal length of the camera lens. The image
plane is parallel to thexciyci-plane at a distancef ci

e along
the zci-axis. The intersection of the optical axis with the
image plane defines the principal optic pointO′ci, which
is the origin of the image frameO′ci–ucivci whose axes
uci and vci are taken parallel to the axesxci and yci

respectively.
The position of the origin and the rotation matrix of

the i-th camera frame with respect to the base frame are
denoted byoci andRci respectively. These quantities are
constant because the cameras are assumed to be fixed to
the workspace, and can be computed through a suitable
calibration procedure [6].

The position and orientation of the object with respect
to the base frame can be specified by defining a frame
Oo–xoyozo attached to the object and considering the



coordinate vector of the originoo = [ xo yo zo ]T and
the rotation matrixRo(ϕo), whereϕo = [ φo αo ψo ]T

is the vector of the Roll, Pitch and Yaw angles. The
components of the vectorsoo andϕo are the six quantities
to be estimated.

Considerm feature pointson the object. It can be shown
(see [4]) that the position of thej-th feature point in the
i-th camera frame can be computed as

pci
j = RT

ci(oo − oci + Ro(ϕo)p
o
j), (1)

wherepo
j is the position vector of thej-th feature point

with respect to the object frame. This vector is constant
and is assumed to be known form the object CAD model.

By folding the m equations (1) into the perspective
transformation of then cameras, a system of2mn non-
linear equations is achieved. These equations depend on
the measurements of them feature points in the image
planes of then cameras, while the six components of the
vectorsoo andφo are the unknown variables.

To solve these equation in real-time, the extended
Kalman filter is adopted, which provides a recursive
solution.

In order to write the Kalman filter equations, a discrete-
time dynamic model of the object motion has to be
considered. Assuming that the object velocity is constant
over one sample periodT , the model can be written in
the form

wk = Awk−1 + γk (2)

wherew = [ xo ẋo yo ẏo zo żo φo φ̇o αo α̇o ψo ψ̇o ]T is
the state vector,γ is the dynamic modeling error, andA
is a (12× 12) block diagonal matrix of the form

A = diag
{[

1 T
0 1

]
, · · · ,

[
1 T
0 1

]}
.

The output equation of Kalman filter is chosen as

ζk = g(wk) + νk (3)
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where the coordinates of the feature pointspci
j are com-

puted from the state vectorwk via (1). In the above
equation,νk is the measurement noise and theζk is the
vector of thenormalized coordinates of them feature
points in the image plane of then cameras.

Since the output model is nonlinear in the system state,
it is required to linearize the output equations about the
current state estimate at each sample time, considering
the so-called extended Kalman filter. The recursive form
of the extended Kalman filter equations is reported in [4].

III. PRE-SELECTION ALGORITHM

The accuracy of the estimate provided by the Kalman
filter depends on the number of the available feature
points. Inclusion of extra points will improve the estima-
tion accuracy but will increase the computational cost. It
has been shown that a number of five or six feature points,
if properly chosen, may represent a good trade-off [2].
Automatic selection algorithms have been developed to
find the optimal feature points [7]. In order to increase
the efficiency of the selection algorithms, it is advisable
to perform a pre-selection of the points that are visible
to the camera at a given sample time. The pre-selection
technique proposed in this paper is based on Binary Space
Partitioning (BSP) trees.

A BSP tree is a data structure representing a recursive
and hierarchical partition of an-dimensional space into
convex subspaces. It can be effectively adopted to repre-
sent the 3D CAD geometry of an object [8].

In order to build the tree, each object has to be modelled
as a set of planarpolygons; this means that the curved
surfaces have to be approximated. Each polygon is char-
acterized by a set offeature points(the vertices of the
polygon) and by the vector normal to the plane leaving
from the object. For each node of the tree, apartition
plane, characterized by its normal vector and by a point,
is chosen according to a specific criterion; the node is
defined as the set containing the partition plane and all
the polygons lying on it.

Each node is the root of two subtrees: thefront subtree
corresponding to the subset of all the polygons lying
entirely on the front side of the partition plane (i.e., the
side corresponding to the half-space containing the normal
vector), and theback subtree corresponding to the subset
of all the polygons lying entirely on the back side of the
partition plane.

The construction procedure can be applied recursively
to the two subsets by choosing, for each node, a new
partition plane among those corresponding to the polygons
contained in that subtree. The construction ends when all
the polygons are placed in a node of the tree.

Further details on BSP trees and an example of con-
struction can be found in [9].

Once a BSP tree representation of an object is available,
it is possible to select the feature points of the object
visible from a given camera position and orientation, by
implementing a suitable visit algorithm of the tree. The
algorithm can be applied recursively to all the nodes of
the tree, starting from the root node as showed in Fig. 2.

When the algorithm processes a node, the current set
of projections of the visible feature points on the image
plane is updated by adding all the projections of the feature
points of the polygons of the current node and eliminating
all the projections of the feature points that are hidden by
the projections of the polygons of the current node.
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Fig. 2. Recursive visit algorithm of the BSP tree for the selection of
visible feature points.

If a polygon is hidden from the camera (i.e., the angle
between the normal vector to the polygon and the camera
z-axis is not in the interval]−π/2, π/2[ or the polygon is
behind the camera), the corresponding feature points are
not added to the set.

At the end of the visit, the current set will contain
all the projections of the feature points visible from
the camera, while all the hidden feature points will be
discarded. Notice that the visit algorithm updates the set
by ordering the polygons with respect to the camera from
the background to the foreground.

IV. SELECTION ALGORITHM

The pre-selection technique recognizes all the feature
points that are visible from a camera view point. However,
this does not ensure that all the visible points are “well”
localizable, i.e., their positions can be effectively measured
with a given accuracy. Moreover, the number of the
well localizable feature points may be larger than the
optimalnumber of points ensuring the best pose estimation
accuracy.

A windowing test is adopted to select the projections of
the feature points that can be well localized. In particular,
only the points that can be centered into suitable rectan-
gular windows of the image plane are considered for the
next step of selection, while the points that are out of the
field of view of the camera, and the points that are too
close each other or to the boundaries of the image plane,
are discarded.

The number of remaining feature points after pre-
selection and windowing test is typically too high with
respect to the minimum number sufficient to achieve the
best Kalman filter precision. It has been demonstrated that
an optimal set of five or six feature points guarantees about
the same precision as that of the case when an higher
number of feature points is considered [2], [3].

The optimality of a given set of feature points is
valued through the composition of suitably selected qual-
ity indexes into an optimal cost function. The quality
indexes must be able to provide accuracy, robustness
and to minimize the oscillations in the pose estimation
variables. To achieve this goal it is necessary to ensure
an optimal spatial distribution of the projections of the
feature points on the image plan and to avoid chattering
events between different optimal subsets of feature points
chosen during the object motion. Moreover, in order to
exploit the potentialities of a multi-camera system, it is
important to achieve an optimal distribution of the feature
points among the different cameras.

Without loss of generality, the case of two identical
cameras is considered.

A first quality index is the measure of spatial distribu-
tion of the predicted projections on the image planes of a
subset ofqi selected points for thei-th camera,i = 1, 2:

Qsi =
1
qi

qi∑

k=1

min
j ∈ {1, . . . , qi}

j 6= k

∥∥pj − pk

∥∥ .

Notice thatq = q1 + q2 is chosen between6 and 8 to
prevent fault cases.

A second quality index is the measure of angular
distribution of the predicted projections on the image
planes of a subset ofqi selected points for thei-th camera,
i = 1, 2:

Qai = 1−
qi∑

k=1

∣∣∣∣
αk

2π
− 1

qi

∣∣∣∣

whereαk is the angle between the vectorpk+1−pCi and
the vectorpk − pCi, beingpCi the central gravity point
of the whole subset of feature points, and theqi points of
the subset are considered in a counter-clockwise ordered
sequence with respect topCi, with pqi+1 = p1.

In order to avoid chattering phenomena, the following
quality index, which introduces hysteresis effects on the
change of the optimal combination of points, is considered



for the i-th camera,i = 1, 2:

Qhi =
{

1 + ε if actual combination = previous one
1 otherwise

whereε is a positive constant.
In order to distribute the points among the two cameras,

the following indexes are considered:

Qe = 1 +
2
q

(
2
q
− 1

) ∣∣∣q1 − q

2

∣∣∣

Qd =
q1/d1 + q2/d2

q/ min{d1, d2}
where qi is the number of points assigned to thei-th
camera, anddi is the distance of thei-th camera form
the object,i = 1, 2. The first index ensures an equal
distribution of points among the cameras, while the second
index takes into account the distance of the cameras from
the object.

The proposed quality indexes represent only some of the
possible choices, but guarantee satisfactory performance
when used with the pre-selection method and the win-
dowing test presented above, for the case of two fixed
cameras. Other examples of quality indexes are presented,
e.g., in [7], and some of them can be added to the indexes
adopted in this paper.

The cost function is chosen as

Q =
QeQd

q

(
q1Qs1Qa1Qh1 + q2Qs2Qa2Qh2

)

and must be evaluated for all the possible combinations
of the visible points onq positions. In order to determine
the optimal set at each sample time, the initial optimal
combination of points is first evaluated off-line. Then,
only the combinations that modify at most one point for
camera with respect to the current optimal combination
are tested on-line, thus achieving a considerable reduction
of processing time.

V. ESTIMATION PROCEDURE

A functional chart of the estimation procedure is re-
ported in Fig. 3. It is assumed that a BSP tree representa-
tion of the object is built off-line from the CAD model. A
Kalman filter is used to estimate the corresponding pose
with respect to the base frame at the next sample time. The
feature points selection and windows placing operation
can be detailed as follows. For each camera:

• Step 1:The visit algorithm described in the previous
section is applied to the BSP tree of the object to find
the set of all the feature points that are visible from
the camera.

• Step 2: The resulting set of visible points is input to
the algorithm for the selection of the optimal feature
points.

CAD models

BSP tree build
(off line)

Pre-selection
Windowing

Optimal selection

Features
extraction

Vision and
camera system

Kalman filter Object Pose

Fig. 3. Functional chart of the estimation procedure.

• Step 3: The location of the optimal feature points in
the image plane at the next sample time is computed
on the basis of the object pose estimation provided
by the Kalman filter.

• Step 4:A dynamic windowing algorithm is executed
to select the parts of the image plane to be input to
the feature extraction algorithm.

At this point, all the image windows of the optimal
selected points are elaborated using a feature extraction
algorithm. The computed coordinates of the points in the
image plane are input to the Kalman filter which provides
the estimate of the actual object pose and the predicted
pose at the next sample time used by the pre-selection
algorithm.

Notice that the procedure described above can be ex-
tended to the case of multiple objects moving among
obstacles of known geometry [9]; if the obstacles are
moving with respect to the base frame, the corresponding
motion variables can be estimated using Kalman filters.

VI. EXPERIMENTS

The experimental set-up is composed by a PC with Pen-
tium IV 1.7GHz processor equipped with two MATROX
Genesis boards, two SONY 8500CE B/W cameras, and a
COMAU Smart3-S robot. The MATROX boards are used
as frame grabbers and for a partial image processing (e.g.,
windows extraction from the image). The PC host is also
used to realize the whole BSP structures management, the
pre-selection algorithm, windows processing, the selection
algorithm and the Kalman filtering. Some steps of image



Fig. 4. COMAU Smart3-S robot and SONY 8500CE cameras.

processing have been parallelized on the MATROX boards
and on the PC, so as to reduce computational time. The
robot is used to move an object in the visual space of
the cameras; thus the object position and orientation with
respect to the base frame of the robot can be computed
from joint position measurements via the direct kinematic
equation. In order to test the accuracy of the estimation
provided by the Kalman filter, the cameras were calibrated
with respect to the base frame of the robot using the
calibration procedure presented in [6], where the robot is
exploited to place a calibration pattern in some known
pose of the visible space of the camera. The cameras
resolution is576×763 pixels and the nominal focal length
of the lenses is16 mm. The two cameras are disposed at a
distance of about150 cm from the object with an angle of
aboutπ/2 between thezc axes. The sampling time used
for estimation is limited by the camera frame rate, which
is about26 fps. No particular illumination equipment has
been used, in order to test the robustness of the setup in
the case of noisy visual measurements.

All the algorithms for BSP structure management, im-
age processing and pose estimation have been imple-
mented in ANSI C. The image features are the corners of
the object, which can be extracted with high robustness in
various environmental conditions. The feature extraction
algorithm is based on Canny’s method for edge detection
and on a simple custom implementation of a corner de-
tector [10]. In particular, to locate the position of a corner
in a small window, all the straight segments are searched
first, using an LSQ interpolator algorithm; then all the
intersection points of these segments into the window
are evaluated. The intersection points closer than a given
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Fig. 5. Object trajectory. Left: Position trajectory. Right: Orientation
trajectory
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Fig. 6. Time history of the estimation errors. Top: Position errors.
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threshold are considered as a unique average corner, due
to the image noise. All the corners that are at a distance
from the center of the window (which corresponds to the
position of the corner so as predicted by the Kalman filter)
greater than a maximum distance, are considered as fault
measurements and are discarded. The maximum distance
corresponds to the variance of the distance between the
measured corner positions and those predicted by the
Kalman filter.

The object used in the experiment has40 vertices, which
are all used as feature points. Fig. 4 shows the stereo vision
system and the robot carrying the object.

The time history of the trajectory used for the ex-
periment is represented in Fig. 5. The maximum linear
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Fig. 7. Visible and selected points for camera 1 (top) and camera 2
(bottom). For each point: the bottom line indicates when it is visible;
the top line indicates when it is selected for feature extraction.

velocity and angular velocity are about3 cm/s and3 deg/s
respectively. The time history of the estimation errors is
shown in Fig. 6. Noticeably, the accuracy of the system
reaches the limit allowed by cameras calibration, for all
the components of the motion. As it was expected, the
errors for the motion components are of the same order
of magnitude, thanks to the use of a stereo camera system.

In Fig. 7 the output of the whole selection algorithm,
for the two cameras, is reported. For each of the40
feature points, two horizontal lines are considered: a point
of the bottom line indicates that the feature point was
classified as visible by the pre-selection algorithm at a
particular sample time; a point of the top line indicates
that the visible feature point was chosen by the selection
algorithm. Notice that8 feature points are selected at
each sample time in order to guarantee at least five or
six measurements in the case of fault of the extraction
algorithm for some of the points. Remarkably,4 feature
points for camera are chosen at each sampling time,

coherently with the symmetric disposition of the cameras
with respect to the object.

VII. CONCLUSION

The problem of estimating the pose (position and orien-
tation) of a moving object from visual measurements has
been considered in this paper. The extended Kalman filter
has been used to recursively compute an estimate of the
motion variables from the measurements of the position of
suitable feature points of the object. The efficiency of the
algorithm has been improved by adopting a technique of
selection of the visible feature points at each sample time
based on a Binary Space Partition tree representation of
the object geometry. The experiments on a stereo camera
system have shown the effectiveness of the algorithm and
have confirmed its practical feasibility.
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