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Abstract— In this paper a PD control with on-line gravity
compensation is proposed for robot manipulators with elastic
joints. The work extends the existing PD control with constant
gravity compensation, where only the gravity torque needed at
the desired configuration is used throughout motion. The control
law requires measuring only position and velocity on the motor
side of the elastic joints, and the on-line compensation scheme
estimates the actual gravity torque using a biased measure of the
motor position. It is proved via a Lyapunov argument that the
control law globally stabilizes the desired robot configuration.

Experimental results on an 8-d.o.f. robot manipulator with
elastic joints show that this control scheme improves the transient
behavior with respect to a PD controller with constant gravity
compensation. In addition, it can be usefully applied in combi-
nation with a point-to-point interpolating trajectory leading to a
reduction of final steady-state errors due to static friction and/or
uncertainty in the gravity compensation.

I. INTRODUCTION

Control algorithms conceived for completely rigid robots
may guarantee a stable behavior even if a certain degree of
elasticity in the actuation system or in the link structure is
present [1], [2]. The price to pay, however, is a typical degra-
dation of robot performance. In fact, elasticity of mechanical
transmissions may generate lightly damped vibrational modes,
which reduce robot accuracy in tracking tasks [1]. Yet, it may
become a source of instability in case of interaction between
the robot and the environment [3].

When negative effects of mechanical elasticity are non-
negligible, the control design has to be revisited in order to
account for the elastic phenomena. In this paper, the case
of elasticity at the joints is taken into account. This means
that flexibility is assumed to be concentrated at the � robot
joints and the number of Lagrangian configuration variables in
the robot dynamics is doubled with respect to the rigid case,
leading to a set of � motor and � link second-order nonlinear
equations.

For robot manipulators with elastic joints, different control
solutions are available for trajectory tracking as well as for
regulation tasks [4]. For trajectory tracking tasks, one can
resort to high-performing but complex control strategies, such
as the linearizing and decoupling nonlinear feedback [5], [6] or
an integral manifold approach based on a singular perturbation
model of the robot dynamics [7], [8]. For regulation tasks,

instead, it has been proved in [9] that a simple PD controller
suffices to globally stabilize a robot with elastic joints about
any desired configuration. The control law includes a constant
gravity compensation term, which is evaluated at the desired
reference position, and needs to feed back only position and
velocity of the motors.

In the case of rigid robots, it is well known that global
regulation to a desired configuration ��� can be achieved by a
PD control law, either with a constant gravity compensation
term ��������	 (and sufficiently large positional gains) [10] or
with a nonlinear gravity compensation term �����
	 evaluated at
the current configuration (or, on-line) [11]. In the presence of
joint elasticity, putting to work an on-line gravity compensa-
tion is more complex than in the rigid case. On one hand, the
gravity torque depends on the robot link positions whereas
quite often only the motor positions are measurable. On the
other hand, a PD control with on-line gravity compensation
based on the motor positions � (i.e., with �����	 ) does not
lead to the desired final equilibrium configuration. In addition,
the stability analysis is complicated by the non-collocation
between the available control torque (on the motor side) and
the gravity torque to be compensated (acting on the link side
of joint elasticity).

The contribution of this paper is a PD control law with
on-line gravity compensation for robot manipulators with
elastic joints, which requires only motor measurements and
has guaranteed global stabilization properties. The main idea is
to use a new variable, named ’gravity-biased’ motor position,
for evaluating (an estimate of) the gravity torque at each
configuration. The typical feature of this controller is to
improve the transient behavior of the original control law
in [9]. In addition, using lower positional gains, and applying
the scheme in combination with a point-to-point interpolating
trajectory allows preventing motor saturation (typically occur-
ring during the first instants of motion) and reduces the steady-
state error due to unmodeled static friction and/or uncertainty
in the gravity compensation term.

After recalling the dynamic modelling of robot manipulators
with elastic joints in Section II, the PD control law with on-line
gravity compensation is introduced in Section III. The analysis
of the closed-loop equilibria and the proof of asymptotic



stability via a Lyapunov argument are presented in Section IV
and Section V, respectively. Finally, some experimental results
obtained on the Dexter robot, an 8-dof cable-driven articulated
arm, are reported in the Section V, where a comparison with
the approach in [9] is carried out.

II. DYNAMIC MODEL OF ROBOTS WITH ELASTIC JOINTS

The following two assumptions are made in describing the
dynamics of robots with elastic joints:

A1. The robot manipulator is an open kinematic chain of
rigid bodies, driven by electrical actuators through
elastic joints.

A2. Rotors of motors are uniform bodies balanced around
their rotation axes.

The robot dynamic model can be written as follows [9]:� ���
	��������� �����
	����� 	�������� ���
	������ ������� (1)

where ������� ��� ���� � is the ��� ���� 	 vector of configuration
variables, being � and � the � �!�" 	 vectors of link positions
and motor positions (reflected through the gears), respectively.
In view of Assumptions A1 and A2, the ��� �#� � � 	 robot inertia
matrix

� ���
	 and the ��� �$�% 	 gravitational torque vector � ���
	
are independent of � . Moreover,

� �����
	&���� 	'������ �� ���
	����)(  �
*,++ ��� �-�� �� � ���
	���� 	/. �

is the ��� �0�0 	 vector of centrifugal and Coriolis torques, �$� ���
represents the ��� ���1 	 vector of elastic torques and, on the
right-hand side of (1), � is the ��� ���2 	 vector of external
torques producing work on �3� .

Equation (1) can be rearranged into two equations, one for
the link side and the other for the motor side, if the contribu-
tions to the robot dynamics are decomposed as follows. The
��� �4� � � 	 robot inertia matrix

� ���
	 can be partitioned in four
� �!� � 	 block matrices� ���
	)�65 �07 ���
	 �#8 ���
	� �8 ���
	 �#9;: (2)

of which
�07

takes into account the inertial properties of
rigid links,

�#8
considers the coupling between each spinning

actuator and the previous links, and
�09

is a constant diagonal
matrix including the motor inertia (scaled through the squared
gear ratios).

The ��� �<� � � 	 matrix � �����
	&���� 	 , by resorting to the so-called
decomposition in Christoffel symbols, can be expressed as

� �����
	&���� 	)�=��> ���?	 �� 	&�2��@ ���?	���
	 (3)

where ��> ���?	 ��	A�B5 ��> 7 ���?	 �� 	DCC C :
��@ ���?	���
	A�B5 ��@ 7 ���?	��� 	E��@ 8 ���?	&��
	��@ 9 ���?	��� 	 C :

being ��> 7 , ��@ 7 , ��@ 8 , ��@ 9 suitable ( �"� � ) matrices.
The gravitational torque takes on the form

� ���
	)�65 �����
	C :
where �����
	F�HG'I�J?K
LNMPOI3MRQ � , being S�T ���
	 the potential energy
due to gravity.

The ��� �0� � � 	 matrix ��� in the elastic torque can be written
in terms of the � �1� � 	 diagonal and positive definite matrix� of joint stiffness coefficients as follows:

���U�B5 � (V�(V� � :
and, finally, the vector of generalized forces acting on ��� can
be expressed as ���65 CW :
where W is the torque vector produced by the � motors.

Note finally that, under the assumptions in [5], the dynamic
model in (1) simplifies to:�07 ���
	���V����@ 7 ���?	���
	��V� �����
	���� ���X( �	Y�ZC�#9 ��#��� ���<( �
	Y� W 	 (4)

that is the so-called reduced dynamic model for robots with
elastic joints.

It can be seen that, for the model (1), the following four
properties hold [4]:

P1. The inertia matrix
� ���
	 is symmetric and positive

definite for all ��� .
P2. The matrix

�<8 ���
	 is strictly upper triangular.
P3. If a representation in Christoffel symbols is chosen

for the elements of � ���3�
	[���� 	 , the matrix �� (���� is
skew-symmetric.

P4. A positive constant \ exists such that]]]] + �����
	+ �
]]]] � ]]]] +

8 S�T ���
	+ � 8
]]]]<^ \ (5)

where the matrix norm of a symmetric matrix _ ���
	
is given by `badcfe �g_ ���
	 	 , i.e., its largest (real) eigen-
value at � .1 Inequality (5) holds for all � and impliesh ����� 7 	�( ����� 8 	 h ^ \ h � 7 ( � 8 h 	 (6)

for any � 7 	 � 8 . It should be explicitly remarked that
this inequality holds whatever argument is used for
evaluating the gravity vector.

These properties obviously hold also for the reduced dynamic
model.

It should also be noted that, with the chosen generalized
coordinates, the direct kinematics of the robot, i.e. the relation
between the robot configuration variables and the Cartesian
end-effector pose, depends only on the link position vari-
ables � .

1This is the matrix norm naturally induced by the Euclidean norm on
vectors, e.g., iPj�i�k1l monp q'r?jtsp .



III. PD CONTROL WITH ON-LINE GRAVITY COMPENSATION

In this section, a control law is proposed which is aimed
at regulating the robot link positions to a desired constant
configuration ��� . It is a proportional-derivative action in the
space of motor variables, as in [9]. The assumption is made
that only the motor variables � and �� are measurable or, at
least, � is measurable and �� is obtained by accurate numerical
differentiation. An on-line gravity compensation in lieu of a
constant gravity compensation is proposed as an improvement
of the control law in [9].

The PD control with constant gravity compensation in [9]
is expressed as:W �o��� ���
�[( �	�(!��� ��#� ��������	t	 (7)

with �����2C , ������C (both symmetric), and

�
�#� ��������� 7 ��������		� (8)

Via Lyapunov argument and La Salle’s theorem, global asymp-
totic stability of the (unique) closed-loop equilibrium state
���?	 �b	���?	 �� 	0� ������	 �
��	 Cb	 C	 was proved, under the assumption
that the stiffness matrix � and the proportional gain matrix��� comply with the following condition:

`ba�
 � ������� � `ba�
 � * 5 � (V�(V� � ����� : .���\�� (9)

The PD control law with on-line gravity compensation is
addressed to improve transient behavior by performing some
kind of gravity compensation at any configuration during
motion. A gravity estimate based on the link variables cannot
be considered, since the link variables � are assumed not to be
measurable. In addition, it is easy to show that using �����	 , with
the measured motor positions in place of the link positions,
leads to an incorrect closed-loop equilibrium.

Thus, a new variable �� is introduced, i.e.

�� � �0(!��� 7 ��������	t	 (10)

that is a gravity-biased modification of the measured motor
position � . The PD control with on-line gravity compensation
is subsequently defined asW � ��� ���
�[( �	�(!��� ��X� ������	t	 (11)

where ������C and �����2C are both symmetric (and typically
diagonal) matrices. The variable �� shall provide the correct
gravity compensation at steady state, even without a direct
measure of � . As a matter of fact, the control law (11) can be
implemented using only motor variables.

IV. CLOSED-LOOP EQUILIBRIA

The equilibrium configurations of the closed-loop system
(1), (11) are computed by setting �� � ��4� C and ��F� ��4� C .
This yields

�����
	&��� ���#( �	 � C (12)� ���0( �
	 � ��� ���
�[( �	�� ������		� (13)

From (12) it follows that, at any equilibrium, � � � �<� � 7 �����
	 .
Taking this into account and adding (12) to (13) leads to��� ���
�[( �	�� ������	�( �����
	)� C��
Indeed ���?	 �	A� ������	 �
��	 is a closed-loop equilibrium configu-
ration, since ��
��� � �
��(�� � 7 ��������	A� ��� from (8) and (10) so
that ������
��	)� ��������	 .

The uniqueness of such an equilibrium has to be demon-
strated. Thus, adding � ��� �&( ����	-( ��������	)� C to both (12) and
(13) yields � ���X( ����	�(!� ���<( �
��	 � ��������	 ( �����
	(V� ���X( ����	�� �g� ����� 	 ���0( �
��	 � ������	�( ��������	t	
or ��R5 �#( ���

�<( �
� : �B5 ��������	 ( �����
	
������ 	 ( ��������	 : (14)

if the matrix
�� defined in (9) is used.

Assuming that condition (9) holds true implies]]]] ��R5 �X( ���
�0( �
� : ]]]]

8�� ` 8a�
 �  �� � ]]]] 5 �X( ���
�0( �
� : ]]]]

8
� ` 8a�
 �  �� �  h �X( ��� h 8 � h �<( �
� h 8 � 	 (15)

while, using inequality (6) and the identity �� ( ��� � �F( �
�
yields]]]] ��������	 ( �����
	

������ 	 ( ��������	
]]]]
8 � h ��������	�( �����
	 h 8 � h ������	�( ��������	 h 8

^ \ 8  h �X( ��� h 8 � h �<( �
� h 8 � � (16)

By comparing (15) with (16) it follows that, when ` a�
 � � �� 	��\ , the equality (14) holds only for ���?	 �	A� ������	 �
��	 , which is
thus the unique equilibrium configuration of the closed-loop
system (1), (11).

V. PROOF OF ASYMPTOTIC STABILITY

To demonstrate asymptotic stability of the closed-loop sys-
tem, a candidate Lyapunov function is defined in terms of
an auxiliary configuration-dependent function � ���?	 �	 . This is
expressed as:

� ���?	 �	 �  � ���#( �	 � � ���#( �	��  � ���
�[( �	 � ��� ���
�[( �	� S�T ���
	�(�S�T ���� 		� (17)

Under the assumption (9), this function has a unique minimum
in ������	 �
��	 . In fact, the necessary condition for a minimum of� ���?	 �	 is

� � ���?	 �	Y� 5 � M �� � � : �B5 � (V�(V� � : 5 �
� :

� 5 �����
	��� ���0( �
��	�( ������	 : � C�� (18)

Equation (18) is exactly in the form (12), (13), which in turn
is equivalent to (14). As in Section IV, it can be demonstrated



that
� � ���?	 �	F� C only at ������	 �
��	 . Moreover, the sufficient

condition for a minimum� 8 � ������	 �
��	�� 5 � (V�(V� � ����� : �
� I T LNMPOI3M CC ( I T L��� OI ��������� M���M	��
 � � � ���C

is satisfied, using again assumption (9).
By setting � � � � � ����� 	 �
��	�� �-� ������	P� � 7 ��������	 , the

candidate Lyapunov function can be written as� ���?	 �b	���?	 �� 	)�  � �� �� � ���
	������ � ���?	 �	�(�� � � C�� (19)

Indeed,
�

is zero only at the desired equilibrium state �0� � � ,
� � �
� , �� � ��F�oC .

Along the trajectories of the closed-loop system (1), (11),
the time derivative of

�
becomes�� � ����� � ���
	������� 78 ����� �� ���
	������ G)��#( �� Q � � � �X( �	

( �������� ���
�[( �	�� ����"G'I�J?K
LNMPOI3M Q � ( ����"G'I�J?K
L �� OI � Q �� ����� G�(X� �����
	&���� 	'����d(!� ���
	�(!��� ��� �1� � 78 �� ���
	���� Q������ �g� ���X( �	�� �����
	 	�( ���� � ���X( �	( ����"G
��� ���
�V( �	�� ������	 Q� ���� �P(V� ���X( �	�( �����
	���� ���X( �	�� �����
	 	� ���� �g� ���X( �	�(!� ���#( �	������ ���
�[( �	 	� ����"G (V��� ��X� ������ 	 (!��� ���
�[( �	�( ������	 Q� ( �������� �� ^ Cb	
(20)

where the identity ���!� �� and the skew-symmetry of matrix�� (1��� have been used.
Since �� � C if and only if ��"� C , substituting �� �� 	�� C

into the closed-loop equations yields�07 ���
	���V����@ 7 ���?	��� 	'��[� �����
	���� �0�o� � � const (21)� �8 ���
	���V����@ 9 ���?	��� 	'��#(!� �� (V� �X����� ���
�[( �	�� ������	)� const � (22)

By virtue of Property P2 and the expression of �[@ 9 ���?	&��
	 ,
from (22) it follows that �� �� 	�� C . This in turn simplifies (21)
to

�����
	���� ���X( �	A�oC�� (23)

It has already been shown that the system (22), (23) has the
unique solution ���?	 �	X� ������	 �
��	 , provided that condition (9)
holds true. Therefore, �2� ��� , � � �
� , ���� �� �BC is the
largest invariant subset contained in the set of states such that�� � C . By La Salle’s Theorem, global asymptotic stability of
the desired set point can be concluded.

The PD control law with on-line gravity compensation can
be applied also to the reduced dynamic model (4). In the
demonstration of global asymptotic stability in correspondence
of the unique equilibrium point ���?	 �b	���?	 ��	A� ������	 �
��	 Cb	 C	 , the
sole difference with respect to the case of dynamic model (1)
is that the analysis through La Salle’s Theorem is simplified.
Invoking Property P2 is not required.

Fig. 1. The Dexter arm

Fig. 2. A cable-driven joint/link pair

VI. EXPERIMENTAL RESULTS

As a first attempt to verify global asymptotic stability of
the PD control with on-line gravity compensation, the same
simulation tests reported in [9] were repeated, in order to
make a comparison with the PD control with constant gravity
compensation. The results have shown that the PD gains
used in [9] wipe out the differences between the two control
schemes by overcoming the action of gravity estimate. In
addition, the torque values generated at the motion starting
point are so high (due to the initial error) that they could be
one cause of motor saturation. Indeed, the stability analysis
does not take into account this situation.

Thus, both control laws have been implemented on a robot
manipulator with elastic joints and the experimental results
have been compared.

The robot used for the experiments is an 8-d.o.f. cable-
driven robot manipulator, named Dexter (Fig. 1). It has a
mechanical transmission system realized by pulleys and steel
cables. As an example, Fig. 2 shows one of the Dexter joints.

The cable actuation permits a decreasing distribution of
the link masses from the robot base up to the end effector,
by lightening the robot mechanical structure. The values of
the Dexter link masses and centers of gravity are reported in
Table I. ���

[mm]

���
[mm]

���
[mm] m [Kg]

Link 0 � ��� ��� ��� � ��� ��� !�"
Link 1 #%$&"���� "�' $���!(� !�� !���� ��) $�� � ��'
Link 2 � #���� $�$ "�!(� '�� $�� ��"
Link 3 ����� ��� $&"�"�� ��� #���� ��! � � !��
Link 4 ��� ��$ #�"�� ��� ����� "�� ��� )��
Link 5 #*��!(� ��$ $+!($�� ��' ��� $�$ ��� '�!
Link 6 #���� ��' � � "�� ��� ��) ��� ���
Link 7 ����� "�' $�� )�$ "�"�� ��� ��� ���

TABLE I

COORDINATES OF THE LINK CENTERS OF GRAVITY IN THE COORDINATE

SYSTEM FIXED ON EACH LINK AND VALUES OF THE MASSES (COURTESY

OF SCIENZIA MACHINALE S.R.L.)



The robot dynamics model is expressed in terms of 16
position variables, of which eight variables define the motor
positions, and the remaining ones define the link positions.
Eight incremental encoders allow measuring motor positions
during motion.

The cable stiffness coefficients for the Dexter arm are
reported in Tables II and III. As one can observe, joints 1
and 2 have higher stiffness values with respect to the other
joints. This indicates that joints 1 and 2 have a low level of
elasticity which can be neglected, in general.

The effect of the elasticity is not negligible in joints 3–8.

Joint 1 Joint 2 Joint 3 Joint 4
Stiffness

coefficient $&��� $&��� ��� "�!���$&� � "�� ������$&� �
TABLE II

STIFFNESS COEFFICIENTS FOR THE JOINTS 1–4 OF THE DEXTER ARM,

EXPRESSED IN Nm/rad

Joint 5 Joint 6 Joint 7 Joint 8
Stiffness

coefficient � � ������$&� � $�� ������$&� � $�� ��"���$&� s � � ������$&� s
TABLE III

STIFFNESS COEFFICIENTS FOR JOINTS 5–8 OF THE DEXTER ARM,

EXPRESSED IN Nm/rad

The PD control law is written in C
���

programming lan-
guage and runs on a PC Pentium II under DOS Operating
System. The motor commands are sent to the actuation system
each 10 ms, by means of two MEI 104/DSP-400 board
controllers.

The issue of motor saturation becomes evident in the
experiments on the Dexter arm. The regulation tasks to a
constant desired configuration cannot be accomplished if a
constant gravity compensation is used. The initial error is so
high that the motor actuators saturate.

In the case of on-line gravity compensation the task can
be performed, but only for short distances (nearby 3-4 cm in
the Cartesian space) between the initial configuration and the
constant desired configuration.

Thus, in order to overcome the critical point of motor
saturation, a point-to-point quintic polynomial trajectory (with
zero velocity and acceleration boundary conditions) has been
planned that guides the robot manipulator from an initial joint
configuration �	� to the desired reference configuration � � in a
given time interval.

Now, both controllers can perform the motion and ensure
asymptotic stability of the closed-loop system.

The proportional gains are different for the two
cases: in the case of PD control with constant gravity
compensation � � � diag


�� Cb	 � Cb	��Cb	 � Cb	  	� 	 � 	 �?	 ��� , while��� � diag

  � Cb	  � Cb	�� Cb	���-	 � � 	  �?	�� 	���� in the PD control

with on-line gravity compensation. The rationale for the
different values of proportional gains is that, if the same��� matrix is used for the two controllers, the initial error
produced by the constant gravity estimate at � � results in a

0 5 10
0

0.01

0.02

0.03

[s]

[r
ad

]

MOTOR POSITION ERROR

Fig. 3. Motor error norms with on-line gravity compensation (desired time-
varying joint trajectory)

Fig. 4. Motor error norms with constant gravity compensation (desired time-
varying joint trajectory)

higher torque value with respect to the case of on-line gravity
estimate. Thus, for the saturation issue, a reduction of � � is
needed.

The derivative gains are equal and set to � � �
diag


  Cb	  Cb	�b	�b	 � � �-	 �-	 C��  	 C��  � .
Figures 3 and 4 report the norm of the motor

position error for both controllers. They are relative to
a point-to-point motion from the initial configuration
��� � �  � ���FC�� C�C  C�� �  � � � � (���� ��C4� � ��� � � � C4� � � ��� �
rad to the desired reference configuration � � �
�  � ��� C�� ��C  � � � � � (���� ��� � � C���� �?� ��� ���!� � rad (that is
not an equilibrium configuration) in a time interval of 10 s
plus 2 s for the adjustment.

Figures 5 and 6 show motor positions over time, as
recorded by the encoders on the motor shaft during motion.
Only motor variables 6, 7, 8 are shown because they are more
involved than the others in the motion performed and, thus,
they are meaningful in delineating the differences between
the two controllers.

Three main elements emerge from the experimental trials
as basic differences between the two control schemes.

The first one is the difference in the time course of the
error as well as the motor variables, that is smoother in the
PD control with on-line gravity compensation with respect to
the PD control with constant gravity compensation.

The second element is the error magnitude during transients:
the error in the constant gravity case turns out to be larger than
in the on-line case.



Fig. 5. Motor positions for PD control with on-line gravity compensation
(desired time-varying joint trajectory)

Fig. 6. Motor positions for PD control with constant gravity compensation
(desired time-varying joint trajectory)

Finally, the third element is the error magnitude at the steady
state. Operating with a real system, like a robot manipulator,
includes the possibility that real effects, such as static friction
or else inaccurate estimate of gravity torque, can affect robot
performance in regulation tasks, and determine a steady-state
error that is different from zero. In particular, in the Dexter arm
it has been observed that when the gravity is compensated only
at the desired final configuration ��� , the error maintains greater
also at the steady state with respect to the case of on-line
gravity compensation. An increase of the � � matrix aimed
at reducing the error at the steady state cannot be performed,
in view of the closeness to the motor saturation, as explained
above.

VII. CONCLUSION

In this paper elasticity at the robot joints in regulation tasks
has been taken into account, and a proportional-derivative
control action is proposed to compensate it. The work has
resumed the PD control on motor variables with constant
gravity compensation in [9] and has extended it to an on-line
gravity compensation. The main purpose is to improve the
transient behavior thanks to the adoption of a gravity-biased
motor position variable in the estimate of gravity torque.

As in [9], the control law requires using only the position
sensors on the motor shafts.

The control law has been demonstrated to stabilize robot

manipulators with elastic joints. In particular, asymptotic sta-
bility has been proved through the direct Lyapunov method
and La Salle’s Theorem, and the control performance has
been evaluated by means of experiments on an 8-d.o.f. robot
manipulator with elastic joints.

The results have shown that the PD control in [9] can cause
motor saturation in view of the large error generated by a
constant gravity compensation. The use of an interpolating
trajectory guiding the robot to the desired final position has
been proposed, in order to reduce the maximum torque values
at the motors.

A comparison has been carried out between the control
law in [9] and the proposed PD control with on-line gravity
compensation. The experimental results have shown a better
transient behavior and also a reduction of the position error at
steady state, caused by static friction and/or inaccurate esti-
mate of gravity torque, when the on-line gravity compensation
is used.

Finally, it is worth mentioning that the PD control law
with on-line gravity compensation has been extended to the
Cartesian space, in order to regulate robot compliance at the
end effector [12].
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