
A Systematic Approach to 3D Pose Estimation for
Robotic Applications Based on a Multi-Camera

Hybrid Visual System

Abstract— An algorithm for the estimation of the position and
orientation of a moving object using an hybrid eye-in-hand/eye-
to-hand multi-camera system is presented in this paper. Based
on the extended Kalman filter, this approach exploits the data
provided by all the cameras without “a priori” discrimination,
allowing real-time object pose estimation. The proposed formula-
tion can be used with different kinds of image features. Moreover,
different kinds of representation of the object orientation can be
adopted. A simulation case study is reported to test the feasibility
and the effectiveness of the proposed technique.

I. I NTRODUCTION

The interest on visual servoing, both in industrial and
in service robotics, is growing in the last years. The two
most adopted camera configurations for robotics applications
are known as eye-in-hand configuration, where one or more
cameras are rigidly attached to the robot end effector, and
eye-to-hand configuration, where the cameras are fixed in the
workspace [1]. The first one guarantees good accuracy and the
ability to explore the workspace although with a limited sight;
the second one ensures a panoramic sight of the workspace,
but a lower accuracy. Hence, the use of both configurations at
the same time makes the execution of complex tasks easier and
offers higher flexibility in the presence of a dynamic scenario.

Recently, some effort has been made to design visual servo-
ing systems based on hybrid eye-in-hand/eye-to-hand camera
configurations. In [2] an eye-to-hand camera is in charge of the
robot tool positioning while an eye-in-hand camera is in charge
of the robot tool orientation. A similar approach is used in [3],
where an eye-to-hand camera is employed to estimate the robot
tool pose with respect to the workspace and an eye-in-hand
camera is employed as data source for object pose estimation.
Further, in [4], a camera mounted on the end effector of a
robot has been adopted as an eye-to-hand camera for another
robot to benefit of the advantages of a mobile camera.

All the above approaches do not fully exploit the potential-
ities of hybrid camera configurations. In fact, the information
provided by different types of cameras (fixed or mobile) is
employed for different goals. Hence, a complete integration
is not really achieved. Moreover, the possibility to adopt a
multi-camera visual system for both camera configurations is
not considered.

Recently, a new approach based on the Extended Kalman
Filter (EKF) has been proposed to achieve a complete data
fusion in a multi-camera eye-in-hand/eye-to-hand visual sys-
tem [5]. This approach allows the data provided by all the

cameras to be used at the same time, without any kind of
“a priori” discrimination. Moreover, a suitable image-feature
selection algorithm is adopted for the dynamic selection of the
data required for the execution of a specific task depending
on the current configuration of the workspace. Only the
selected features are grabbed and elaborated to achieve the
measurements, and thus the computational time spent for
image processing is independent of the number of cameras.

The above approach is based on image features represented
by points, i.e., the projections on the image plane of the corners
of objects of polyhedral shape. This paper is aimed at gener-
alizing the above formulation to the case of different kinds of
features (edges, areas, etc.) usually adopted in visual servoing
applications [6]. To this purpose, a systematic formulation of
the extended Kalman filter for a multi-camera hybrid system
is presented. One interesting feature of the proposed algorithm
is that it allows to use any kind of image feature, as well as
different kinds of features for different cameras, with a simple
modification of the linearized output equation of the Kalman
filter based on the computation of suitable image Jacobian
matrices. The equations relating these image Jacobians to
those used in image-based visual servoing (see, e.g., [6], [1])
are evidenced. Moreover, with the presented formulation, any
parametrization of the object orientation, including the unit
quaternion, can be adopted.

Simulation results are presented to test the effectively of
the pose estimation algorithm for the simple case of a mono-
camera system. Experimental tests are under development to
fully exploit the capability of the proposed approach using an
hybrid eye-in-hand/eye-to-hand camera configuration.

II. M ODELING

Consider a system ofnf video cameras fixed in the
workspace (eye-to-hand cameras) andnm video cameras
mounted on the end effector of one or more robots (eye-in-
hand cameras), withn = nf +nm. In the following, the index
c will be used to denote the quantities referred to a frame
Oc–xcyczc attached to the camerac (eye-to-hand or eye-in-
hand), with c ∈ {1, · · · , n}. The camera framec is chosen
with the zc-axis aligned to the optical axis and the origin in
the optical center of the lens. The sensor plane is parallel to
the xcyc-plane at a distance−λc along thezc-axis, where
λc is the effective focal length of the lens. The image plane
is parallel to thexcyc-plane at a distanceλc along thezc-
axis. The intersection of the optical axis with the image plane
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Fig. 1. Eye-in-hand/eye-to-hand cameras.

defines the principal optical pointO′c, which is the origin of
the image frameO′c–XcXc whose axesXc andYc are taken
parallel to the axesxc andyc respectively.

Assuming that the projective geometry of the camera is
modeled by perspective projection, a pointP of the object
with coordinatescp =

[
x y z

]T
with respect to the camera

frame is projected onto the point of the image plane with
coordinates [

X
Y

]
=

λc

z

[
x
y

]
. (1)

Without loss of generality, the case of a single moving
object is considered. The position and orientation of a frame
attached to the objectOo–xoyozo with respect to a base
coordinate frameO–xyz can be expressed in terms of the
coordinate vector of the originoo =

[
xo yo zo

]T
and of

the rotation matrixRo(ϕo), where ϕo is a (p × 1) vector
corresponding to a suitable parametrization of the orientation.
In the case that a minimal representation of the orientation is
adopted, e.g., Euler angles, it isp = 3, while it is p = 4 if
unit quaternions are used. Hence, the (m × 1) vector xo =[
oT

o ϕT
o

]T
defines a representation of the object pose with

respect to the base frame in terms ofm = 3 + p parameters.
The homogeneous coordinate vectorp̃ =

[
pT 1

]T
of the

point P with respect to the base frame can be computed as

p̃ = Ho(xo)op̃,

where op̃ is the homogeneous coordinate vector ofP with
respect to the object frame andHo is the homogeneous
transformation matrix representing the pose of the object frame
referred to the base frame:

Ho(xo) =
[
Ro(ϕo) oo

0T
3 1

]
,

where03 is the (3× 1) null vector. Notice that, if the object
is rigid, the vectorop̃ is constant and can be computed from
a CAD model of the object.

Let Hc denote the homogeneous transformation matrix
representing the pose of the camera framec referred to the
base frame. For the eye-to-hand cameras, the matrixHc is
constant, and can be computed through a suitable calibration
procedure [7], while for the eye-in-hand cameras (see Fig. 1)
this matrix depends on the camera current posexc, i.e.,
Hc = Hc(xc), and can be computed as:

Hc(xc) = Hr
rHe(rxe)eHc

whereHr is the homogeneous transformation matrix of the
base frame of the robotr carrying the camerac with respect to
the common base frame,rHe is the homogeneous transforma-
tion matrix of the end effectore with respect to the base frame
of the robotr, and eHc is the homogeneous transformation
matrix of the camerac with respect to the framee of the
end effector where the camera is mounted. Notice thatHr

and eHc are constant and can be estimated through suitable
calibration procedures (see [8]), whilerHe depends on the
current end-effector poserxe and may be computed using the
robot kinematic model.

Therefore, the homogeneous coordinate vector ofP with
respect to the camera framec can be expressed as

cp̃ = cHo(xo, xc)op̃ (2)

where cHo(xo,xc) = cH−1(xc)Ho(xo). Notice thatxc is
constant for eye-to-hand cameras; moreover, the matrixcHo

does not depend onxc andxo separately but on the relative
pose of the object frame with respect to the camera frame.

The (3 × 1) vector cp corresponding tocp̃ in (2) is the
coordinate vector of the pointP with respect to the camera
frame c. Hence, its time derivativecṗ has the meaning of
relative velocity of the pointP with respect to the camera
frame c, expressed in the framec. If the camera is fixed,
this velocity represents also the absolute velocity of the point
P with respect to the base frame, expressed in the camera
frame, denoted bycvP . When the camera frame is moving,
the contribution tocvP due to the motion of the camera must
be taken into account.

The velocity of the camera framec with respect to the
base frame can be characterized in terms of the translational
velocity of the originv̇Oc and of angular velocityωc. These
vectors, expressed in the camera framec, define the velocity
screw cνc = [cvT

Oc

cωT
c ]T . Then, the absolute velocity of

the pointP can be computed as

cvP = cṗ + Λ(cp)cνc (3)

with Λ(·) = [I3 −S(·)], whereI3 is the (3 × 3) identity
matrix andS(·) denotes the (3 × 3) skew-symmetric matrix
operator. Notice that the second term in the sum (3) represents
the velocity of the pointP due to the motion of the camera.

Equation (3) holds for any pointP of the object, hence it
can be applied to the originOo of the object frame. This yields

cvOo = cȯo + Λ(coo)cνc, (4)

wherecoo is the vector of the coordinates ofOo with respect
to the camera framec, cȯo is the relative velocity ofOo with



respect to the camera framec, while cvOo
is its absolute

velocity; all the quantities are expressed in the camera frame
c. On the other hand, the absolute angular velocitycωo of the
object frame expressed in the camera framec can be computed
as

cωo = cωo,c + cωc (5)

where cωo,c represents the relative angular velocity of the
object frame with respect to the camera frame. The two
equations (4) and (5) can be rewritten in the compact form

cνo = cνo,c + Γ(coo)cνc (6)

where cνo = [cv̇T
Oo

cωT
o ]T is the velocity screw corre-

sponding to the absolute motion of the object frame,cνo,c =
[cȯT

o
cωT

o,c]
T is the velocity screw corresponding to the

relative motion of the object frame with respect to the camera
framec, and the matrixΓ(·) is defined as

Γ(·) =
[

I3 −S(·)
O3 I3

]
,

whereO3 denotes the (3×3) null matrix. An useful expression
of the relative velocitycṗ can be obtained observing thatP
is a point fixed in the object frame which is characterized
by a relative velocity screwcνo,c with respect to the camera
framec. Hence, the following equality holds for the rigid body
motion

cṗ = Λ(cp− coo)cνo,c. (7)

III. I MAGE FEATURES

An image feature is any structural feature that can be
extracted from an image, corresponding to the projection of
a physical feature of the object onto the camera image plane.
An image feature can be characterized by a set of parameters
that can be calculated from the image. Examples are, e.g.,
the image plane coordinates of points, the distance between
two points in the image plane and the orientation of the
line connecting those two points, the area of the projected
surface, the parameters of lines in the image plane. The image
feature parameters for the camerac can be grouped in a
vector f c = [fc,1 · · · fc,k]T , where fc,j is a real value and
k is the dimension of the image feature parameter space. The
mapping from the position and orientation of the object to
the corresponding image feature parameters can be computed
using the projective geometry of the camera and can be written
in the form

f c = hc(cHo(xo,xc)), (8)

where only the dependence from the relative pose of the object
frame with respect to the camera frame has been explicitly
evidenced. Usually, for visual tracking and visual servoing
applications, it is required the computation of the differential
mapping

ḟ c = Jo,c
cνo,c (9)

where the matrixJo,c is the Jacobian mapping the relative
velocity screw of the object frame with respect to the camera
frame into the variation of the image feature parameters.

Taking into account the velocity composition (6), the equa-
tion (9) can be rewritten in the form

ḟ c = Jo,c
cνo − Jc

cνc (10)

whereJo,c is also the Jacobian corresponding to the contribu-
tion of the absolute velocity screw of the object frame while

Jc = Jo,cΓ(coo) (11)

is the Jacobian corresponding to the contribution of the abso-
lute velocity screw of the camera frame. The Jacobian (11) is
known in the literature as interaction matrix [6].

IV. EXTENDED KALMAN FILTER

In this work, the problem of the estimation of the pose
vector xo of the object with respect to the base frame from
the measurements of the image parametersf c obtained using
a system ofn eye-in-hand/eye-to-hand cameras is considered.
The proposed solution is based on the Extended Kalman
filter. To this purpose, a discrete-time state space dynamic
model has to be considered, describing the object motion.
The state vector of the dynamic model is chosen asw =[
xT

o ẋT
o

]T
. For simplicity, the object velocity is assumed to

be constant over one sample periodTs. This approximation is
reasonable in the hypothesis thatTs is sufficiently small. The
corresponding dynamic modeling error can be considered as
an input disturbanceγ described by zero mean Gaussian noise
with covarianceQ. The discrete-time dynamic model can be
written as

wk = Awk−1 + γk, (12)

whereA is the (2m× 2m) block matrix

A =
[

Im TsIm

Om Im

]
.

The output of the Kalman filter is the vector of the image
feature parameters measured on the image planes of then
cameras at the timekTs

ζk =
[
ζ1,k

T . . . ζn,k
T
]T

,

where ζc,k = f c,k + νc,k, c = 1, · · · , n, being νc,k the
measurement noise of the camerac. The measurement noise is
assumed to be zero mean Gaussian noise with covarianceΠc.
The covariance matrix can be evaluated during the calibration
procedure of the cameras or by means of specific experiments.

Taking into account the equation (8), the output model of
the Kalman filter can be written in the form:

ζk = g(wk, ck) + νk,

whereck = [xT
1,k . . . xT

n,k]T , νk = [νT
1,k . . . νT

n,k]T and

g(wk, xc,k) =




g1(wk,x1,k)
...

gn(wk,xn,k)


 (13)

with gc(wk, xc,k) = hc(cHo(wk, xc,k)), c = 1, · · · , n.
Notice thatxc,k is the pose of the camera framec at timekTs;



this quantity is known and constant for eye-to-hand cameras
while it can be computed from the robot direct kinematics for
eye-in-hand cameras.

Since the output model is nonlinear in the system state, the
EKF must be adopted. The first step of the EKF algorithm
provides an optimal estimate of the state at the next sample
time according to the recursive equations

ŵk,k−1 = Aŵk−1,k−1

P k,k−1 = AP k−1,k−1A
T + Qk−1,

whereP k,k−1 is the covariance matrix of the estimate state
error. The second step improves the previous estimate by using
the input measurements according to the equations

ŵk,k = ŵk,k−1 + Kk(ζk − g(ŵk,k−1))
P k,k = P k,k−1 −KCkP k,k−1,

whereKk is the (12× 2ns) Kalman matrix gain

Kk = P k,k−1C
T
k (Rk + CkP k,k−1C

T
k )−1,

beingCk the Jacobian matrix of the output function

Ck =
∂g(w)

∂w

∣∣∣∣
w=ŵk,k−1

=
[
∂g(w)
∂xo

O

]

w=ŵk,k−1

,

whereO is a null matrix of proper dimension corresponding to
the partial derivative ofg with respect to the velocity variables,
which is null because functiong does not depend on the
velocity.

In view of (13), the computation ofCk requires the com-
putation of the Jacobian matrix ofgc with respect toxo. In
the case of eye-in-hand cameras, it is

ġc = ḣc =
∂hc

∂xo
ẋo +

∂hc

∂xc
ẋc. (14)

On the other hand, the time derivative ofhc can be computed
also according to (10) as a function ofcνo and cνc. The
velocity screws can be expressed in the form

cνo = cL(xo)ẋc,
cνc = cL(xc)ẋc

wherecL(·) is a Jacobian matrix depending on the particular
choice of coordinates for the orientation. Hence, comparing
(10) with (14), the following noticeable equality can be found

∂gc

∂xo
=

∂hc

∂xo
= Jo,c

cL(xo),

where the JacobianJo,c depends on the choice of image
features for the camerac while cL(xo) depends on the
parametrization used to represent the orientation of the ob-
ject frame. Obviously, the same result holds for eye-to-hand
cameras (in this casėxc = 0 and cνc = 0).

The above equality allows to separate the computation of
the Jacobian dependent on the choice of the image features
(hereafter referred asimage Jacobian) from the computation
of the Jacobian dependent on the object pose representation
(hereafter referred aspose representation Jacobian). By virtue
of this property, the Kalman filter formulation becomes quite

flexible and can be applied with straightforward modifications
to different kinds of image features, using both eye-in-hand
and eye-to-hand cameras and any kind of parametrization of
the object orientation.

In the following the expression of the Jacobian matricesJo,c

andcL will be given for different kinds of image features and
orientation representations.

V. I MAGE JACOBIAN

The computation of the image JacobianJo,c depends on
the type of image feature parameters and can be performed
using a procedure similar to that adopted in [6] to compute
the interaction matrixJc. In the following, the case of points
and segments and are considered as examples.

A. Points

Consider a pointP of the object with coordinatescp with
respect to the camera framec. The image feature parameters
are chosen as the coordinates of the projection of the point
P on the image plane, that can be computed using the
equations 12, i.e.

f c =
[
X
Y

]
= hc(cp).

Differentiating these equations with respect to the time and
taking into account the expression ofcṗ given in (7), the
following equality holds

ḟ c =
∂hc

∂cp
cṗ =

∂hc

∂cp
Λ(cp− coo)cνo,c, (15)

hence the image Jacobian has the expression:

Jo,c =
∂hc

∂cp
Λ(cp− coo).

Being
∂hc

∂cp
=

λc

z

[
1 0 −x/z
0 1 −y/z

]
,

the following explicit expression can be found forJo,c:

Jo,c =
1
z

[
λc 0 −X −ryX rzλc + rxX −ryλc

0 λc −Y −rzλc − ryY rxY rxλc

]
,

where cp − coo = [rx ry rz]T is a vector depending on
the orientation of the object frame with respect to the camera
frame.

By virtue of (11), the same result can be obtained starting
from the interaction matrixJc for point features derived in [6]
and using the equality:

Jo,c = Γ−1(coo)Jc.

On the other hand, starting form (15) and computingcṗ from
(3) with cvP = 0, the following expression can be found for
Jc

Jc = −∂hc

∂cp
Λ(cp)

which is the same used in [6].



B. Segments

Consider a segment connecting the pointsP1 e P2 of the
object, with coordinatescpj = [xj yj zj ]T , with j = 1, 2,
respectively. The image feature parameters are chosen as the
two coordinates of the medium point of the projection of the
segment on the image plane, its length and its angle with
respect to the axisXc, that can be computed as follows

f c =




Xm

Ym

L
Θ


 =




(X1 + X2)/2
(Y1 + Y2)/2√
∆X2 + ∆Y 2

tan−1(∆Y/∆X)


 = hc(f1, f2)

where∆X = X1 − X2, ∆Y = Y1 − Y2, f j = [Xj Yj ]T ,
with j = 1, 2.

Differentiating these equation with respect to the time, the
following equality holds

ḟ c =
∂hc

∂f1

ḟ1 +
∂hc

∂f2

ḟ2

=
(

∂hc

∂f1

J1 +
∂hc

∂f2

J2

)
νo,c

where J j is the image Jacobian for the point featurePj ,
computed as in the previous section. Therefore, the image
Jacobian for the segment is

Jo,c =
∂hc

∂f1

J1 +
∂hc

∂f2

J2,

where

∂hc

∂f1

=




1/2 0
0 1/2

∆X/L ∆Y/L
−∆X/L2 ∆X/L2




∂hc

∂f2

=




1/2 0
0 1/2

−∆X/L −∆Y/L
∆Y/L2 −∆Y/L2


 .

VI. POSE REPRESENTATIONJACOBIAN

The pose representation JacobiancL(xo) depends on the
paramtrization of the orientation. In fact, the following ex-
pression can be found

cL(xo) =
[
RT

c O

O RT
c

] [
I O
O T (ϕo)

]

whereRc is the rotation matrix of the camera framec with
respect to the base frame andT (ϕo) is the matrix defining
the mapping

ω̇o = T (ϕo)ϕ̇o (16)

which depends on the coordinate vectorϕo chosen to represent
the orientation. In the following, the case of the RPY (Roll-
Pitch-Yaw) angles and of the unit quaternion are considered.

A. RPY angles

A minimal representation of orientation can be obtained
by using a set of three Euler anglesϕ =

[
φ ϑ ψ

]T
.

Among the12 possible definitions of Euler angles, the RPY
representation can be considered leading to the rotation matrix

R(ϕ) = Rz(φ)Ry(θ)Rx(ψ)

whereRz, Ry, Rx are the matrices of the elementary rotations
about three independent coordinate axes of successive frames.
The RPY angles can be extracted from a given rotation matrix
by using closed-form inversion formulæ [9]. The matrixT
in (16) is

T (ϕo) =




0 −sφ cφcϑ

0 cφ sφcϑ

1 0 −sϑ



−1

,

with cα = cos α and sα = sin(α). Notice that this matrix is
singular wheneverϑ = ±π/2 (representation singularity).

B. Unit quaternion

An alternative description of the orientation can be obtained
by resorting to a four-parameter singularity-free representation
in terms of a unit quaternionϕo = [η εT ]T with

η = cos
θ

2
, ε = sin

θ

2
r, (17)

whereθ andr are respectively the rotation and the (3×1) unit
vector of an equivalent angle/axis description of orientation
corresponding toRo. Notice that the quaternion components
are constrained by

‖ϕo‖2 = η2 + εTε = 1. (18)

Several algorithms exist to extract the quaternion from a given
rotation matrix; an efficient one is reported in [10]. The matrix
T in (16) is

T (ϕo) = 2
[−ε ηI − S(ε)

]
,

which is a (3× 4) matrix.

VII. S IMULATION

The proposed estimation algorithm has been tested in a
simulation case study. For the purpose of this work, the case
of a fixed mono camera visual system has been considered, by
using the quaternion representation for the object orientation
and two kinds of image features: points and segments.

The effective focal length of the adopted camera is8 mm,
the pixel dimensions are10 × 10 µm, the resolution of the
sensor is500× 500 pixel, and the sample rate is 50 Hz.

The target object is a planar square with a dimension of
10×10 cm. A suitable feature extraction algorithm is employed
to extract four image features (the four corners in the case of
points and the four sides of the square in the case of segments)
at each sampling time.

The object moves according to a spiral trajectory for the
position that, starting from the background of the scene, comes
towards the camera. The axis of the spiral is the optical axis



Fig. 2. Time history of the position components of the object frame trajectory.

Fig. 3. Time history of the orientation components of object frame trajectory
(RPY angles).

of the camera (Fig. 2). The trajectory for the orientation is
shown in Fig. 3.

Notice that, although the orientation trajectory is assigned
in terms of RPY angles, the model used by the Kalman
filter is based on unit quaternions, to avoid any occurrence
of representation singularities.

White independent Gaussian noise has been added to the
true projections of the object on the cameras image plane. The
variance of the noise has been set to1 pixel, corresponding to
spatial sampling and quantization errors.

The output measurement covariance matrixΠ has been
chosen according to the variance of the noise added to the
measurements. The state noise covariance matrix has been
selected so as to give a rough representation of the errors
due to the simplification introduced on the model (constant
velocity), by considering only velocity disturbance, i.e.

Q = diag{0, 0, 0, 0, 0, 0, 0, 500, 500, 50, 1, 1, 1, 1} × 10−6.

The corresponding image trajectory of the object corners
is represented in Fig. 4 (solid lines). The estimated image
trajectory obtained using point features (the object corners) is
shown in the same figure (dotted lines). Notice that the esti-
mated trajectory cannot be distinguished from the real object

Fig. 4. Object trajectory (solid lines) and estimated trajectory (dotted lines)
on the image plane.

Fig. 5. Time history of the estimation error in the image plane in the case
of point features.

trajectory. In fact, from the time history of the estimation error
in the image plane, reported in Fig. 5, it can be seen that the
maximum error is lower than±2 pixel, corresponding to the
added noise range.

In order to appreciate the error due to the dynamic model
approximation, in Fig. 6 the time history of the estimation
error in the absence of noise added to the measurements is
reported.

The simulation results obtained using segments (the sides of
the square) as image features are very similar to those obtained
using the points. However, the simulation does not take into
account that, in real applications, the feature extraction process
in the case of segments may be more accurate and robust than
in the case of points. For brevity, only the estimation errors
on the image plane have been reported in Figure 7.

VIII. C ONCLUSION

An algorithm for the estimation of the position and orien-
tation of a moving object using an hybrid eye-in-hand/eye-to-
hand multi-camera system has been presented in this paper.
Based on the extended Kalman filter, this approach exploits
the data provided by all the cameras without “a priori”
discrimination, allowing real-time object pose estimation. The



Fig. 6. Time history of the estimation error in the image plane in the case
of point features, without measurement noise.

Fig. 7. Time history of the estimation error in the image plane in the case
of segment features.

proposed formulation can be used with different kinds of
image features. Moreover, different kinds of representation
of the object orientation can be adopted. Experimental tests
are under development to fully exploit the capability of the
proposed approach using an hybrid eye-in-hand/eye-to-hand
camera configuration.
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