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Abstract— In this paper, an approach to interaction control
of a robot manipulator with a partially known environment
is proposed. The environment is a rigid object of known
geometry but of unknown and possibly time-varying position
and orientation. An algorithm for online estimation of the object
pose is adopted, based on visual data provided by a camera as
well as on forces and moments measured during the interaction
with the environment. This algorithm is embedded into an
impedance control scheme, resulting in a position-based visual
impedance control. Experimental results are presented for the
case of an industrial robot manipulator in contact with a planar
surface.

I. INTRODUCTION

Vision and force are two complementary sensing capa-
bilities that can be exploited in a synergic way to enhance
the autonomy of a robot manipulator. In fact, thanks to the
visual perception, a robot may achieve global information
on the surrounding environment that can be used for task
planning and obstacle avoidance. On the other hand, the
perception of the force applied to the end effector allows
adjusting its motion so that the local constraints imposed by
the environment during the interaction are satisfied.

In recent years, several approaches where force and vision
measurements are combined in the same feedback con-
trol loop have been proposed, such as hybrid visual/force
control [1], shared and traded control [2], [3] or visual
impedance control [4], [5].

The approach adopted in this work is based on the
observation that, when the robot moves in free space, a
position-based visual servoing strategy [6] can be adopted,
where vision is used to estimate the relative pose of the
robot with respect to the environment. On the other hand,
when the robot comes into contact with the environment, a
position-based impedance interaction control strategy can be
adopted [7]. The impedance controller may take advantage of
the estimation of the geometry of the environment computed
online from all the available sensor data, i.e., visual, force
and joint position measurements.

The estimation algorithm, based on the Extended Kalman
Filter (EKF), is an extension of the visual pose estimation
approach proposed in [8] to the case that also force and
joint position measurements are used. Remarkably, the same
estimation algorithm can be adopted both in free space and
during the interaction, simply modifying the measurements
set of the EKF. The resulting control scheme can be classified
as a position-based visual impedance control.
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Fig. 1. Position-based visual servoing.

This scheme was originally proposed in [9], where only
preliminary simulation results are shown. In this paper, the
position-based impedance control strategy is experimentally
tested on a 6-DOF industrial robot equipped with a standard
analog camera and a wrist force/torque sensor.

II. POSITION-BASED VISUAL IMPEDANCE

The position-based visual impedance control proposed in
this paper can be derived from a typical position-based visual
servoing scheme represented in Fig. 1. This scheme requires
the estimation of the relative pose of the robot end-effector
with respect to a target object by using the vision system;
the estimated pose is then fed back to a pose controller.

Notice that pose estimation is a computationally demand-
ing task, because it requires processing of the measurements
of some geometric features extracted from the images of one
or more cameras. Hence, the frequency of the pose estimation
algorithm is usually lower than the frequency of the pose
control loop (greater or equal to 500 Hz in standard robot
manipulators, to guarantee tracking accuracy and disturbance
rejection). The bottleneck is usually represented by the
camera frame rate (between 25 Hz and 60 Hz for low-cost
cameras used in common applications).

Pose control is performed through an inner-outer control
loop. The inner loop implements motion control (indepen-
dent joint control or any kind of joint space or task space
control). In the outer loop, the block named Dynamic Tra-
jectory Planner computes the trajectory for the end-effector
on the basis of the current pose of the robot with respect to
the object and of the desired task.

If the robot interacts with the target object, an interaction
control strategy must be adopted, based on force and moment
measurements achieved via a force/torque sensor mounted at
the end-effector wrist. In the presence of uncertainties on the
object location, one of the most effective interaction control
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Fig. 2. Position-based visual impedance control.

strategies is impedance control, which, in addition, is able to
manage both contact and free-space motion phases [7].

When the robot is in contact with the target object, the
force/torque measurements, as well as the joint position mea-
surements, can be suitably exploited, together with the visual
measurements, to improve the accuracy of the estimation of
the target object pose.

The resulting control algorithm, represented in Fig. 2, can
be classified as a position-based visual impedance control.

A position-based impedance control is adopted, based on
the concept of compliant frame [7]. In detail, the Dynamic
Trajectory Planner generates a pose trajectory for a desired
end-effector frame d specified in terms of the position
of the origin pd and orientation matrix Rd. Moreover, a
compliant frame r is introduced, specified in terms of pr

and Rr. Then, a mechanical impedance between the desired
and the compliant frame is considered, so as to contain
the values of the interaction force h and moment m. In
other words, the desired position and orientation, together
with the measured contact force and moment, are input to
the impedance equation which, via a suitable integration,
generates the position and orientation of the compliant frame
to be used as a reference for the motion controller of the
robot end effector.

As far as the compliant frame is concerned, the position
pr can be computed via the translational impedance equation

Mp∆p̈dr + Dp∆ṗdr + Kp∆pdr = h, (1)

where ∆pdr = pd − pr, and Mp, Dp and Kp are
positive definite matrices representing the mass, damping,
and stiffness characterizing the impedance.

The orientation of the reference frame Rr is computed via
a geometrically consistent impedance equation similar to (1),
in terms of an orientation error based on the (3 × 1) vector
rεdr, defined as the vector part of the unit quaternion that
can be extracted from rRd = RT

r Rd. The corresponding
mass, damping and inertia matrices are Mo, Do and Ko

respectively. More details about the geometrically consistent
impedance based on the unit quaternion can be found in [7].

The estimation of the object pose is crucial in order to
compute the desired absolute end-effector motion from the
desired task assigned in terms of the relative motion with
respect to the target object. In the following, the main issues
concerning pose estimation are considered in detail.

III. MODELLING

Consider a robot in contact with an object, a wrist force
sensor and a camera mounted on the end-effector (eye-in-
hand) or fixed in the workspace (eye-to-hand). In this section,
some modelling assumptions concerning the object, the robot
and the camera are presented.

A. Object

The position and orientation of a frame attached to a rigid
object Oo–xoyozo with respect to a base coordinate frame
O–xyz can be expressed in terms of the coordinate vector of
the origin oo =

[
xo yo zo

]T
and of the rotation matrix

Ro(ϕo), where ϕo is a (p × 1) vector corresponding to a
suitable parametrization of the orientation. In the case that
a minimal representation of the orientation is adopted, e.g.,
Euler angles, it is p = 3, while it is p = 4 if unit quaternions
are used. Hence, the (m×1) vector xo =

[
oT

o ϕT
o

]T
defines

a representation of the object pose with respect to the base
frame in terms of m = 3 + p parameters.

The homogeneous coordinate vector p̃ =
[
pT 1

]T
of a

point P of the object with respect to the base frame can be
computed as p̃ = Ho(xo)õp, where õp is the homogeneous
coordinate vector of P with respect to the object frame and
Ho is the homogeneous transformation matrix representing
the pose of the object frame referred to the base frame:

Ho(xo) =
[
Ro(ϕo) oo

0T
3 1

]
,

where 03 is the (3 × 1) null vector.
It is assumed that the geometry of the object is known

and that the interaction involves a portion of the external
surface which satisfies the continuously differentiable scalar
equation ϕ(op) = 0.

The unit vector normal to the surface at the point op and
pointing outwards can be computed as:

on(op) =
(∂ϕ(op)/∂ op)T

‖(∂ϕ(op)/∂ op‖ , (2)

where on is expressed in the object frame.
Notice that the object pose xo is assumed to be unknown

and may change during the task execution. As an example, a
compliant contact can be modelled assuming that xo changes
during the interaction according to an elastic law.

A further assumption is that the contact between the robot
and the object is of point type and frictionless. Therefore,
when in contact, the tip point Pq of the robot instantaneously
coincides with a point P of the object, so that the tip position
opq satisfies the constraint equation:

ϕ(opq) = 0. (3)

Moreover, the (3 × 1) contact force oh is aligned to the
normal unit vector on.

B. Robot

The case of a n-joints robot manipulator is considered,
with n ≥ 3. The tip position pq can be computed via the
direct kinematics equation:
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pq = k(q), (4)

where q is the (n×1) vector of the joint variables. Also, the
velocity of the robot’s tip vPq

can be expressed as

vPq
= J(q)q̇

where J = ∂k(q)/∂q is the robot Jacobian matrix. The
vector vPq

can be decomposed as

ovPq
= oṗq + Λ(opq)

oνo, (5)

with Λ(·) = [I3 −S(·)], where I3 is the (3 × 3) iden-
tity matrix and S(·) denotes the (3 × 3) skew-symmetric
matrix operator. In Eq. (5), oṗq is the relative velocity of
the tip point Pq with respect to the object frame while
oνo = [ovT

Oo

oωT
o ]T is the velocity screw characterizing

the motion of the object frame with respect to the base frame
in terms of the translational velocity of the origin vOo

and
of the angular velocity ωo; all the quantities are expressed
in the object frame.

When the robot is in contact to the object, the normal
component of the relative velocity oṗq is null, i.e.:

onT (opq)
oṗq = 0. (6)

C. Camera

A frame Oc–xcyczc attached to the camera (either in eye-
in-hand or in eye-to-hand configuration) is considered. By
using the classical pin-hole model, a point P of the object
with coordinates cp =

[
x y z

]T
with respect to the

camera frame is projected onto the point of the image plane
with coordinates [

X
Y

]
=

λc

z

[
x
y

]
(7)

where λc is the focal length of the lens of the camera.
Let Hc denote the homogeneous transformation matrix

representing the pose of the camera frame referred to the base
frame. For eye-to-hand cameras, the matrix Hc is constant,
and can be computed through a suitable calibration proce-
dure, while for eye-in-hand cameras this matrix depends on
the camera current pose xc and can be computed as:

Hc(xc) = He(xe)eHc

where He is the homogeneous transformation matrix of the
end effector frame e with respect to the base frame, and
eHc is the homogeneous transformation matrix of camera
frame with respect to end effector frame. Notice that eHc

is constant and can be estimated through suitable calibration
procedures, while He depends on the current end-effector
pose xe and may be computed using the robot kinematic
model.

Therefore, the homogeneous coordinate vector of P with
respect to the camera frame can be expressed as

cp̃ = cHo(xo,xc)op̃ (8)

where cHo(xo,xc) = cH−1(xc)Ho(xo). Notice that xc is
constant for eye-to-hand cameras; moreover, the matrix cHo

does not depend on xc and xo separately but only on the
relative pose of the object frame with respect to the camera
frame.

The velocity of the camera frame with respect to the
base frame can be characterized in terms of the translational
velocity of the origin vOc

and of angular velocity ωc. These
vectors, expressed in camera frame, define the velocity screw
cνc = [cvT

Oc

cωT
c ]T . Analogously to (5), the absolute

velocity of the origin Oo of the object frame can be computed
as

cvOo
= cȯo + Λ(coo)cνc, (9)

where coo is the vector of the coordinates of Oo with respect
to camera frame and cȯo is the relative velocity of Oo with
respect to camera frame; all the quantities are expressed
in camera frame. On the other hand, the absolute angular
velocity cωo of the object frame expressed in camera frame
can be computed as

cωo = cωo,c + cωc (10)

where cωo,c represents the relative angular velocity of the
object frame with respect to the camera frame. The two
equations (9) and (10) can be rewritten in the compact form

cνo = cνo,c + Γ(coo)cνc (11)

where cνo = [cvT
Oo

cωT
o ]T is the velocity screw corre-

sponding to the absolute motion of the object frame, cνo,c =
[cȯT

o
cωT

o,c]
T is the velocity screw corresponding to the

relative motion of the object frame with respect to camera
frame, and the matrix Γ(·) is defined as

Γ(·) =
[

I3 −S(·)
O3 I3

]
,

where O3 denotes the (3 × 3) null matrix.
The velocity screw rνs of a frame s with respect to a

frame r can be expressed in terms of the time derivative of
the vector xs representing the pose of frame s through the
equation

rνs = rL(xs)ẋs (12)

where rL(·) is a Jacobian matrix depending on the particular
choice of coordinates for the orientation. The expressions of
rL(·) for different kinds of parametrization of the orientation
can be found, e.g., in [10].

IV. OBJECT POSE ESTIMATION

When the robot moves in free space, the unknown object
pose can be estimated online by using the data provided
by the camera; when the robot is in contact to the target
object, also the force measurements and the joint position
measurements can be used. In this section, the equations
mapping the measurements to the unknown position and
orientation of the object are derived. Then, the estimation
algorithm based on the EKF is presented.

A. Vision

Vision is used to measure the image features, i.e., any
structural feature that can be extracted from an image,
corresponding to the projection of a physical feature of the
object onto the camera image plane.
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An image feature can be characterized by a set of
scalar parameters fj that can be grouped in a vector f =
[f1 · · · fk]T , where k is the dimension of the image feature
parameter space. The mapping from the position and orien-
tation of the object to the corresponding image feature vector
can be computed using the projective geometry of the camera
and can be written in the form

f = gf (cHo(xo,xc)), (13)

where only the dependence from the relative pose of the
object frame with respect to camera frame has been explicitly
evidenced.

For the estimation of the object pose, the computation of
the Jacobian matrix

Jf =
∂gf

∂xo
.

is required. To this purpose, the time derivative of (13) can
be computed in the form

ḟ =
∂gf

∂xo
ẋo +

∂gf

∂xc
ẋc, (14)

where the second term in the right hand side is null for
eye-to-hand cameras. On the other hand, the time derivative
of (13) can be expressed also in the form

ḟ = Jo,c
cνo,c (15)

where the matrix Jo,c is the Jacobian mapping the relative
velocity screw of the object frame with respect to the camera
frame into the variation of the image feature parameters.
The expression of Jo,c depends on the choice of the image
features; examples of computation can be found in [10].

Taking into account the velocity composition (11),
Eq. (15) can be rewritten in the form

ḟ = Jo,c
cνo − Jc

cνc (16)

where Jc = Jo,cΓ(coo) is the Jacobian corresponding to
the contribution of the absolute velocity screw of the camera
frame, known in the literature as interaction matrix [11].
Considering Eq. (12), the comparison of (16) with (14) yields

Jf = Jo,c
cL(xo). (17)

B. Force and joint measurements

In the case of frictionless point contact, the measure of the
force h at the robot tip during the interaction can be used to
compute the unit vector normal to the object surface at the
contact point opq, i.e.,

nh =
h

‖h‖ . (18)

On the other hand, vector nh can be expressed as a function
of the object pose xo and of the robot position pq in the
form

nh = Ro
on(opq) = gh(xo,pq), (19)

being opq = RT
o (pq − oo).

For the estimation of the object pose, the computation of
the Jacobian matrix

Jh =
∂gh

∂xo
.

is required. To this purpose, the time derivative of (19) can
be expressed as

ṅh =
∂gh

∂xo
ẋo +

∂gh

∂pq

ṗq. (20)

On the other hand, the time derivative of (19) can be
computed also in the form

ṅh = Ṙo
on(opq) + Ro

oN(opq)
oṗq, (21)

where oN(opq) = ∂on/∂opq depends on the surface cur-
vature and oṗq can be computed from (5). Hence, compar-
ing (20) with (21) and taking into account (12) and the
equality Ṙo

on(opq) = −S(nh)ωo, the following expression
can be found:

Jh = −[N S(nh)−NS(pq−oo)]L(xo), (22)

where N = Ro
oN(opq)R

T
o .

The measurement of the joint position vector q can be used
to evaluate the position of the point P of the object when in
contact to the robot’s tip point Pq, using the direct kinematics
equation (4). In particular, it is significant computing the
scalar

δhq = nT
h pq = ghq(xo,pq), (23)

using also the force measurements via Eq. (18).
For the estimation of the object pose, the computation of

the Jacobian matrix

Jhq =
∂ghq

∂xo
.

is required. As in the previous subsection, the time derivative
of δhq can be expressed as

δ̇hq =
∂ghq

∂xo
ẋo +

∂ghq

∂pq

ṗq. (24)

On the other hand, the time derivative of δhq can be com-
puted also as

δ̇hq = ṅT
h pq + nT

h Ro(oṗq + Λ(opq)
oνo)

where the expression of the absolute velocity of the point
Pq in (5) has been used. Using the identity (6), the above
equation can be rewritten as

δ̇hq = pT
q ṅh + nT

h Λ(pq − oo)νo. (25)

Hence, comparing (24) with (25) and taking into ac-
count (21), (22) and (12), the following expression can be
found

Jhq = pT
q Jh + nT

h Λ(pq − oo)L(xo). (26)

C. Extended Kalman Filter

The pose vector xo of the object with respect to the base
frame can be estimated using an Extended Kalman Filter.
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To this purpose, a discrete-time state space dynamic model
has to be considered, describing the object motion. The state
vector of the dynamic model is chosen as w =

[
xT

o ẋT
o

]T
.

For simplicity, the object velocity is assumed to be constant
over one sample period Ts. This approximation is reasonable
in the hypothesis that Ts is sufficiently small. The corre-
sponding dynamic modeling error can be considered as an
input disturbance γ described by zero mean Gaussian noise
with covariance Q. The discrete-time dynamic model can be
written as

wk = Awk−1 + γk, (27)

where A is the (2m × 2m) block matrix

A =
[

Im TsIm

Om Im

]
.

The output of the Kalman filter, in the case that all the
available data can be used, is the vector of the measurements
at time kTs

ζk =
[
ζT

f,k ζT
h,k ζhq,k

T
]T

,

where ζf,k = fk + µf,k, ζh,k = hk + µh,k, and ζhq,k =
δk+µhq,k, being µ the measurement noise. The measurement
noise is assumed to be zero mean Gaussian noise with
covariance Π.

Taking into account the Eqs. (13), (19), and (23), the
output model of the Kalman filter can be written in the form:

ζk = g(wk) + µk,

where [µT
f,k µT

h,k µT
hq,k]T and

g(wk) =
[
gT

f (wk) gT
h (wk) gT

hq(wk)
]T

(28)

where only the explicit dependence on the state vector wk

has been evidenced.
Since the output model is nonlinear in the system state,

the EKF must be adopted, which requires the computation
of the Jacobian matrix of the output equation

Ck =
∂g(w)

∂w

∣∣∣∣
w=ŵk,k−1

=
[
∂g(w)
∂xo

O

]
w=ŵk,k−1

,

where O is a null matrix of proper dimensions corresponding
to the partial derivative of g with respect to the velocity
variables, which is null because function g does not depend
on the velocity.

The Jacobian matrix ∂g(w)/∂xo, in view of (17), (22),
and (26) has the expression

∂g(w)
∂xo

=
[
JT

f JT
h JT

hq

]T
.

The equations of the recursive form of the EKF are
standard and are omitted here.

Notice that the proposed algorithm can be used to estimate
online the pose of an object in the workspace; hence it allows
the computation of the constraint Eq. (3) with respect to
the base frame in the form ϕ(RT

o (pq − oo)) = 0. This
information can be suitably exploited to implement any kind
of interaction control strategy.

Fig. 3. Experimental setup.

V. EXPERIMENTS

The experimental setup (Fig. 3) is composed by a 6-DOF
industrial robot Comau SMART-3 S with an open control
architecture based on RTAI-Linux operating system. A six-
axis force/torque sensor ATI FT30-100 with force range
of ±130 N and torque range of ±10 N·m is mounted at
the arm’s wrist, providing readings of six components of
generalized force at 1 ms. A visual system composed by a
PC equipped with a Matrox GENESIS board and a Sony
8500CE B/W camera is available. The camera is fixed and
calibrated with respect to the base frame of the robot.

The environment is a planar wooden horizontal surface,
described by the equation onT op = 0, assuming that the
origin Oo of the object frame is a point of the plane and
the axis zo is aligned to the normal on. The plane has
an estimated stiffness (along on) of about 46000 N/m. The
object features are 8 landmark points lying on the plane at
the corners of two rectangles of 10×20 cm size (as in Fig. 3).

The end-effector tool is a rigid stick of 15 cm length
ending with a small sphere, so that the hypothesis of point
contact is reasonable.

The impedance parameters are chosen as: Mp = 40I3,
Dp = 26.3I3 and Kp = 1020I3, Mo = 15I3, Do =
17.4I3 and Ko = 3I3; a 1 ms sampling time has been
selected for the impedance and pose control. Notice that
the stiffness of the object is much higher that the positional
stiffness of the impedance, so that the environment can be
considered rigid.

The desired task is planned in the object frame and con-
sists in a straight-line motion of the end-effector along the zo-
axis keeping a fixed orientation with the stick normal to the
xoyo-plane. The final position is opf = [0 0 0.05]T m,
which is chosen to have a normal force of about 50 N at
the equilibrium, with the selected value of the impedance
positional stiffness. A trapezoidal velocity profile time-law
is adopted, with a cruise velocity of 0.01 m/s. The absolute
trajectory is computed from the desired relative trajectory
using the current object pose estimation. The final position
of the end-effector is held for 2 s; after, a vertical motion in
the opposite direction is commanded.

In the EKF, the non null elements of the matrix Π have
been set equal to 2.5 pixel2 for f , 5·10−4 for nh and 10−6 m2

for δhq. The state noise covariance matrix has been selected
so as to give a rough measure of the errors due to the
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Fig. 4. Measured force (top) and moment (bottom) in the 1st experiment.

simplification introduced on the model (constant velocity),
by considering only velocity disturbance, i.e.

Q = diag{0, 0, 0, 0, 0, 0, 0, 10, 10, 10, 1, 1, 1} · 10−9.

Notice that the unit quaternion has been used for the orien-
tation in the EKF, to avoid any occurrence of representation
singularities. Moreover a 38 ms sampling time has been used
for the estimation algorithm, corresponding to the typical
camera frame rate of 26 Hz.

Two different experiments are presented, to show the effec-
tiveness of the use of force and joint position measurements,
besides visual measurements.

In the first experiment only the visual measurements are
used. The time history of the measured force and moments in
the sensor frame are reported in Fig. 4. Notice that the force
is null during the motion in free space and becomes different
from zero after the contact. The impedance control keeps the
force limited during the transient while, at steady state, the
force component along the z axis reaches a value of about
−65 N, which is different from the desired value of −50 N.
This is caused by the presence of estimation errors on the
position of the plane due to calibration errors of the camera
and to the use of a monocular vision system. Moreover, the
moment measured by the sensor is different from zero due to
the misalignment between the estimated and the real normal
direction of the plane.

The same task is repeated using also the contact force and
the joint position measurements for object pose estimation;
the results are reported in Fig. 5. It can be observed that
the benefit of using additional measurements in the EKF
produces a force in the vertical direction which is very
close to the desired value, due to the improved estimation of
the position of the plane; moreover, the contact moment is
also reduced because of the better estimation of the normal
direction of the plane.

sec

N

x

y

z

sec

Nm

x

y

z

Fig. 5. Measured force (top) and moment (bottom) in the 2nd experiment.

VI. CONCLUSION

A 6-DOF position-based visual impedance control scheme
was proposed in this paper. The environment is a rigid object
of known geometry but of unknown and possibly time vary-
ing pose. A pose estimation algorithm is adopted, based on
visual, force and joint positions data. The proposed approach
can be cast into any kind of interaction control strategy.
Moreover, it can be applied also to the case of multiple
cameras in hybrid eye-in-hand/eye-to-hand configuration.
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