
 
 

 

 

Abstract—In this paper an adaptive multi-priority nonlinear 
control algorithm for a redundant manipulator system is 
developed based on the Lyapunov like approach. The method 
considers the parametric uncertainties in the system and 
defines a proper filtered error signal to achieve asymptotic 
stability and convergence in tracking error, both for the main 
task and sub-tasks according to the allocated priority. The 
performance of the proposed method is studied by some 
numerical simulations. 

I. INTRODUCTION 
INEMATICALLY redundant robots have more degrees 
of freedom than those necessary to achieve a desired 

task. The redundant degrees of freedom can be conveniently 
used to perform some additional tasks besides the main task. 
These additional tasks can be a defined performance 
objective or any secondary task as somehow similar to the 
main task. For example a given Cartesian position for a 
point on the body of robot different from its end-effector can 
be considered as the additional task.  

There are plenty of papers that deal with how to use 
redundancy effectively to optimize some performance 
objective besides the main task control. This optimization is 
usually performed in the null-space of the main task to 
ensure its perfect tracking. In order to solve the conflict 
between tasks in a case where several objective functions 
are going to be satisfied simultaneously, the so-called task 
priority strategy developed in [1,2] is adopted. The 
formulation has later been extended to a general framework 
for managing multiple tasks by Siciliano and Slotine [3]. 
Their formulation uses first-order differential kinematic 
equation and solves redundancy in the Least-Squares (LS) 
sense, based on the assigned priority by resorting to pseudo-
inverse solution. Because of using the pseudo-inverse of the 
projected Jacobians –the Jacobians of the lower-priority 
tasks that are projected into the null-space of the higher-
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priority tasks– the formulation may suffer from high 
velocity norms during transition into and out of algorithmic 
singularities. 

Usually a singularity-robust pseudo-inverse that allows 
limiting joint velocities at the expense of small tracking 
error in lower priority tasks is the first remedy to cope with 
this problem. Efficient damping techniques have been 
suggested by Nakamura and Hanafusa [4] and Wampler [5] 
and also by Nenchev and Sotirov [6] for the case of multiple 
priorities. 

Chiaverini [7] proposed the singularity-robust task-
priority resolution without using the projected Jacobian. 
This formulation always involves tracking errors in the 
additional tasks but singularities do not occur as long as the 
Jacobian of each additional task is full rank. The stability of 
this formulation has been shown in [8]. 

In contrast to velocity-based control approach, The 
acceleration-based control approach computes the desired 
joint accelerations for a given tasks [9,10,11,12]. Synthesis 
of joint accelerations in a redundant robot usually requires a 
more involved analysis. However, for second-order systems 
such as robotic systems this formulation is the most natural 
one that offers improved tracking ability due to the explicit 
incorporation of the acceleration information. 

Adaptive nonlinear tracking control of kinematically 
redundant manipulators has been presented in [13] by 
Zergeroglu et al and later in [14] by Tatlicioglu et al. They 
used a Lyapunov approach to design a controller that 
achieves asymptotic tracking in the task space with 
systematic integration of the sub-task control into the 
stability analysis. 

In this paper a nonlinear controller for the case of multiple 
tasks control based on the allocated priority is designed. 
Usually in a multi-priority control algorithm the joint space 
trajectories are obtained based on the inverse kinematics 
formulation, considering the priority orders. This joint space 
trajectory is then tracked by an inner control loop. A 
resolved acceleration or an inverse dynamics controller is 
typically adopted to track these joint space trajectories [15]. 
The resolution which is performed at velocity or 
acceleration level is usually based on the kinematics of the 
manipulator and thus is model dependent. It is clear that in 
the case of parametric uncertainty, the joint space 
trajectories obtained are no longer accurate. In addition to 
this deficiency, the inverse dynamics control method which 
is usually used for the joint space trajectory tracking is also 
model dependent. This, itself, doubles the system errors. 
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 Since the controller proposed in this paper takes 
explicitly into account the robot’s dynamic and is based on 
Lyapunov analysis, it has more flexibility and can be easily 
redesigned as an adaptive controller to compensate for 
dynamic parametric uncertainties. 

II. ADAPTIVE CONTROL IN THE CARTESIAN SPACE 
The dynamic model for an n-link robot manipulator can 

be expressed by  
( ) ( , ) ( ) ,fM q q C q q q g q F q  (1)

where nRq  is the vector of joint variable, ( )M q  is the 
inertia matrix, ( , )C q q q  contains Coriolis, centrifugal terms, 

( )g q  is the vector of gravitational torques and fF is the 
constant, diagonal, friction matrix.  
   Equation (1) possesses some interesting properties for 
control purposes. 

 
Property 1: 

The inertia matrix ( )M q  is symmetric, positive definite 

and there exist positive scalars 1m and 2m that satisfy the 
following inequality 

2 2
1 2|| || ( ) || || , .T nm mx x M q x x x  (2)

 
Property 2: 

The centrifugal and Coriolis force matrix ( , )C q q , can be 
chosen in such a way that ( 2 )M C  is skew symmetric, i.e. 
for any nonzero vector, nR , ( 2 ) 0T M C . 
 
Property 3: 

The left hand side of the robot dynamics (1), can be 
linearly parameterized as follows 

( ) ( , ) ( ) ( , ) ,fM q q C q q q g q F q = Y q q,q a  (3)
where a  contains constant parameters and the regression 
matrix ( , , )Y q q q  is bounded for bounded argument signals. 

Adaptive control in the Cartesian space is similar to that 
in joint space one and originally was proposed in [16]. In 
detail, for a non-redundant manipulator, the reference 
trajectory is introduced by  

-1[ ( )].r d dq J x x x  (4)
where ( )J q is the Jacobean matrix and is a constant 
positive definite matrix. By defining 

-1[( ) ( )],r d ds q q J x x x x  (5)
and the regression matrix ( , , , )r rY q q q q  and parameters 
vector a as 

( ) ( , ) ( ) ,r r fYa M q q C q q q g q F q  (6)
one can come up with the following control and adaptation 
laws 

.T

= Ya + Ks

a = Y s
 (7)

where K and  are symmetric positive definite matrices.   
More details about the above adaptive algorithm can be 
found in [16,17,18]. 

III. MULTI-PRIORITY CONTROL; ERROR FORMULATION 
Multi-priority inverse kinematics is a well-established 

framework to manage the tasks in a kinematically redundant 
robotic system. Assume that the robot mission is composed 
of two prioritized tasks. The first-priority task (main task) is 
specified by the first manipulation variable 1

1
mRx and the 

second-priority task (sub-task) by 2
2

mRx . The kinematic 
relationships between the joint vector nRq and the vectors 
of task variables are expressed by 

( ) , ( 1,2)i i ix J q q  (8)
where ( ) im n

i RJ q is the Jacobian matrix of the i-th task. 
The inverse kinematics solution considering the priority of 
the main task over the sub-task is given by 

† † †
1 1c 1 2 2c 2 1 1c 2( ( ) ) ,q J x N J x J J q x N  (9)

where †(.) is the pseudo-inverse of the related matrix. 

2 2 1J J N is the projected Jacobian, which gives the 
available range for the sub-task to be executed without 
affecting the main task, † †

1 1 1 2 1 2 2( ), ( )N I J J N N I J J  
and is an arbitrary vector [2].  
In (9) 1cx and 2cx are the command velocities for the main 
task and sub-task respectively. They can be given as 

( ),ic id i id ix x x x where i are appropriate positive 
definite matrix gains and index d stands for the desired 
trajectory. Also notice that identity † †

1 2 2( ) ,N J J can be used 
in (9) for further reduction. 
 A recursive extension of (9) for k prioritized tasks was 
proposed in [3] and is given by  

( ) ( -1) † ( -1)
1

1

†
1

(0)
0

( ) , 1,...,  

( ),

, ,

i i i
c c i i ic i c i

i i i

i
i j j

c

i kq q N J x J q N
J J N

N I J J

N I q 0

(10)

By the above resolution, the main task is performed 
completely. Indeed by multiplying both sides of (9) by 1J , 
using (8) and defining 1 1 1( ) dt =x x x , the closed-loop error 
dynamics for the main task is obtained as  

1 1 1 1 1 .c= + =x x x x 0  (11)
Multiplying both sides of (9) and generally (10) by iJ  and 
further by †

i iJ J  and using its idempotency property, the 
closed-loop error dynamics for the sub-task i is given by 

†( ) , ( ) , 2,..., .i i i i i i id it i k+J J x x 0 x x x  (12)
Thus it is clear from (12), that in the case of independent 

tasks, †
i iJ J I and the main task and sub-tasks i are 

performed completely. However, in the case of dependent 
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tasks instead, the solution (12) ensures minimization of 
|| ||i i ix x  subject to all higher priority constraints. 

In multi-priority algorithm, if iJ  is singular (task 
singularity), the i-th task cannot be satisfied, regardless of 
all the other tasks. If iJ  is singular, without iJ being 
singular (algorithmic singularity), the i-th task cannot be 
satisfied given the previous i-1 tasks. This will happen when 
tasks are dependent. Namely, two generic tasks are 
dependent when  

1
1 2

2

( ) ( ) ( ),
J

J J
J

 (13)

where (.)  denotes rank of a matrix. For more details about 
task independency conditions and algorithmic singularities 
see [7, 8, 19]. 

It is obvious that singularities may be introduced by the 
lower-priority tasks. Near the singularity, a damped least 
square inverse can be adopted for the projected Jacobian. 
For a singularity-robust task-priority handling, Chiaverini 
[7] proposed the following formulation for the case with two 
tasks 

† †
1 1c 1 2 2c ,q J x N J x  (14)

Comparing this with (9), algorithmic singularities are 
absent in the cost of a greater tracking error for the sub-task 
[8,20]. 

IV. ADAPTIVE MULTI-PRIORITY CONTROL 
In this section, initially we design a nonlinear multi-

priority control. Then we illustrate how this controller can 
be used as an adaptive controller for the case of parameter 
uncertainties. 

The goal is to find an adaptive control algorithm which 
ensures asymptotically stable closed-loop error dynamics for 
the main task as well as all sub-tasks. To this end and based 
on (9) a filtered error signal s is defined as follows  

,rs q q  (15)
where  

† † †
1 1 1 2 2 2 1 1( ( ) ).r c c cq J x N J x J J q x  (16)

Note that based on this definition, the main task error 
dynamics is obtained as 

1 1c 1 1 1 1.=J s x J q x + x  (17)
Multiplying both sides of (16) by 2J  gives  

† † †
2 2 1 1c 2 2 2c 2 1 1c 2( ( ) ) .=J s J J x J J x J J q x J q  (18)

Further, by multiplication of both sides by †
2 2 ,J J  the error 

dynamics for the sub-task is given by 
† †

2 2 2 2 2 2 2 2( ).J J J s J J x x  (19)
Generally in the case of k sub-tasks, rq used in (16) can be 

obtained from the recursive scheme (10) and the error 
dynamics for sub-task i is obtained as 

† †( ), 2,..., .i i i i i i i i i kJ J J s J J x x  (20)

The attractive property of definition (15) is that it contains 
the entire sub-task errors. In other word when s goes to zero 
all the projected sub-task errors defined based on (12) 
converge to zero as it can be seen from (20).  

Based on the above error analysis, the following 
controller is introduced. 
Theorem 1: Consider the robot manipulator dynamics 
presented in (1) with the following control law 

1 1
TkYa Ks J x ,  (21)

where 1k  is a positive gain, K is a symmetric positive 
definite matrix and Ya  based on property (3) is given by 

( , , , ) ( ) ( , ) ( ) .r r r r fY q q q q a M q q C q q q g q F q  (22)
Tracking errors of the main task and all sub-tasks based on 
the error definition (12), asymptotically converge to zero. 
Proof: see the proof of theorem 2. 
 
Theorem 2. In the case of parametric uncertainties the 
control law and adaptation law given by   

1 1 1 ,

,

T

T

kYa Ks J x

a Y s
 (23)

where K and are symmetric positive definite matrices, 
and 

( ) ( , ) ( ) ,r r fYa M q q C q q q g q F q  (24)
guarantee asymptotic minimization of the main task and all 
the sub-task tracking errors in the sense of (12). 
Proof:  The manipulator open loop dynamics (1) can be 
rewritten in a useful form, based on (15) and (22) as 

.Ya Ms Cs  (25)
   Upon substitution of the proposed controller into (25), the 
closed-loop system equations can be obtained as 

1 1 1( ) ,

,

T

T

kMs Ya C K s J x

a Y s
 (26)

where a a a . Equations (26) together with (17) and (20) 
constitute the closed-loop dynamic of the system. A non-
negative function can be defined in terms of variables 

1[ , , ]T T T Tx = x s a  as 

-11
1 1

1 1( , ) ,
2 2 2

T T TkV tx x x s Ms a a  (27)

where  is a constant positive definite diagonal matrix. 
Note that ( )M q  is a time-varying positive definite matrix. 
Using property (2) it is clear that  

0 1

1 1 1
0 1 1

1 2 2
1 1 1

( ) ( , ) ( ),

( ) ,
2 2 2

( ) ,
2 2 2

T T T

T T T

V V t V
k mV

k mV

x x x

x

x

x x s s a a

x x s s a a

 (28)

where 1 2,m m and 1 2,  denote minimum and maximum 
eigenvalues of M  and -1 respectively. Also note that 

( , ) 0.V t0  Hence V  satisfies the positive definiteness and 
decresent conditions. 
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It is worth remarking that the nonnegative function given by 
(27) is a Lyapunov-like function candidate, because the 
vector variable x is not a complete set of state variables and 
there exist other variables ix  that are closely related to s  by 
equation (20) and not considered in (27).  

Time derivative of (27) along the system trajectories is 
given by 

1 1 1 1 1 1 1

-1

( ) ( ( ) )
1 .
2

T T

T T

V k kT
1x J s x s Ya C K s J x

s Ms a a
  

(29)

    Substituting the adaptation law (23) and assuming 
constant system parameters vector a yields 

1 1 1 1 0,T TV kx x s Ks  (30)
where the skew-symmetry of ( 2 )M C has been taken into 
account.  

Equations (27) and (30) indicate that 1, x s and a  are all 
bounded. The Barbalat’s lemma can be used to check the 
uniform continuity of .V  Time derivative of V  is  

1 1 1 12 2 .TV k Tx x s Ks  (31)
From the dynamics of the closed-loop system (as we will 

show in the following) ,s 1x  and thus V remains bounded. 
The application of Barbalat’s lemma then indicates 
that 0V and consequently  1 , 0 x s  as .t  

Now we only have to show that ,s 1x  remain bounded. 

From (17) it can be easily inferred that 1x  is bounded 
because of boundedness of s  and 1 x . Furthermore since 
(16) resolve the redundancy of the system through first-
order multi-priority inverse kinematics, the internal motion 
does not exist and thus rq  is bounded. This in turn, implies 
that q which is given by rq q s  and also rq are bounded. 
Notice that we implicitly assume that ( )id tx and its 
derivatives are bounded and the Jacobians are also bounded 
for all possible ( )tq . Finally by the closed-loop dynamic 
(26) s  is bounded. Therefore all the projected sub-task 
errors defined based on (12) converge to zero as it can be 
seen from (20).  
Yet the problem that may seem to exist is the self motion of 
redundant manipulator and boundedness of ( )tq  especially 
in the case that we don’t have enough sub-tasks. However, 
as pointed out above since redundancy is resolved at 
velocity level, internal instability does not occur. 
Nevertheless, let us assume the case that we don’t have any 
sub-tasks. The error signal s is given by (15) and  

†
1 1 1 .r c nq J x N q  (32)

where nq  is null-space velocity. Substituting (32) in (15) 
and multiplying both sides by 1,N  the null-space error 
dynamics is obtained as  

1 1( )nN s N q q  (33)
For the case where 0nq  it can be seen that null-space 

velocity converges to zero as 0.s  

V. NUMERICAL SIMULATION 
Performance of the above control algorithm has been 

verified on a 4 DOF serial planar manipulator. The 
numerical values of the manipulator parameters are as 
follows 

1 2 3 4

1 2 3 4

2
1 2 3 4

1 2 3 4

0.5, 0.4, 0.35, 0.2 ( ),
1.4, 1.3, 1.2, 1.1 ( ),

0.5, 0.45, 0.4, 0.3 ( . ),
1.7, 1.6, 1.5, 1.4 ( .sec).

l l l l m
m m m m kg

I I I I kg m
c c c c Nm

 (34)

 The mass centre of each link, ,ir  is assumed to be in the 
middle of each one. The desired trajectory for the main task 
is selected as follows 

( ) [sin(0.25 ) 0.2,cos(0.25 ) 0.15]T
d t t tx  (35)

The initial condition used in all simulations 
is T

0 [0.8727,1.7,-1.6,0.85] .q  
This system with the above operational task creates a 
redundant system with two degrees of redundancy. For our 
purpose of multi-priority control two sub-tasks are defined 
with allocated priority. The orientation of the last link and 
angular position of the first link are chosen as the second 
and third priority sub-tasks respectively. The desired 
orientation for the first sub-task is considered in such a way 
that last link to be perpendicular to the main task trajectory. 
The desired value for the third task is assumed to be a 
constant joint position, 3 35 .dx  The arm configuration 
during the operation and the desired and actual trajectories 
are depicted in Fig 1. 

As the first case study we assume no uncertainty in the 
system and the nonlinear controller (21) is applied to the 
system. The results are provided in Fig 2.  

 

 
 

Fig 1. Four DOF planar robot arm configuration  
 

One can obtain similar results if the feedback linearization 
controller is used. These results are not presented here for 
the sake of shortness. As it can be seen, for this case where 
tasks are independent, both main task and sub-tasks are 

296



 
 

 

performed successfully. 
In the second case study, the capability of adaptive 

controller (23) is studied. Here we assume uncertainty in 
dynamic parameters (i.e. mass and inertia of the links, 
position of mass center of each link and friction 
coefficients). The system parameters vector a includes 18 
parameters and is given by  

2 2
1 1 1 2 3 4 2 2 2 2 2

2 2
3 3 3 3 3 4 4 4 4 4 1 2 3 4

[ , , , , , , , ,

, , , , , , , , , ]T

m r I I I I m m r m r
m m r m r m m r m r c c c c

a
 (36)

The controller parameters including  for the adaptive 
control case, are chosen as follows 

1 2 3

(0.1,0.2,0.2,0.2,0.2,0.2,0.2,0.1,
0.2,0.2,0.1,0.2,0.2,0.1,30,30,20,10) ,

8 ,
5 , 4 , 4 .

diag

K I
I I I

 (37)

 

 
 

 
 

Fig 2. Main task error and sub-tasks errors  
 

To show the performance of adaptive controller (23) the 
simulation first is performed by the controller (21) with 50% 
uncertainty in system parameters vector (i.e. (0) 0.5a a ). 
The corresponding tracking errors for the main task and sub-
tasks are plotted in Fig 3. As we can see this controller is 
somehow robust encountering with parametric uncertainty. 
In the next simulation adaptive controller (23) is used with 
the same controller gains as the previous analysis, starting 
with 50% a priori information about the system parameters. 
The result is illustrated in Fig 4. 

The estimated parameters vector a is shown in Fig 5 for 
the case of adaptive controller.  

Notice that the nonlinear controller also works in the case 
of dependent tasks. The only problem that exists is the 
transition into and out of singularities. 

 
 

 
Fig 3. Main task error and sub-tasks errors, using controller (21) with 

50% uncertainty 
 

 
 

 
 

Fig 4. Main task error and sub-tasks errors under adaptive control 
 

 
 

Fig 5. Parameters estimation under adaptive control  
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Since the redundancy is resolved at velocity level, 
damped pseudo-inverse †

iJ can be easily used instead of †
iJ  

in the reference joint trajectory rq . To see the performance 
of adaptive controller near singularity we continue the above 
simulation for 3 more seconds using damped pseudo-inverse 
with 0.1 for the second sub-task. The result is shown in 
Fig 6 and Fig 7 and also in accompanying video. As we can 
see second sub-task is sacrificed in order to perform high 
priority tasks, the same that happens also by feedback 
linearization controller. 

 

 
 

 
 

Fig 6. Main task error and sub-tasks errors under adaptive control and 
using damped pseudo-inverse in controller 

 

 
 

Fig 7. Parameters estimation under adaptive control and using damped 
pseudo-inverse in controller 

 

VI. CONCLUSION 
A nonlinear control algorithm for multi-priority task 

control has been presented in this paper. The flexibility 
provided by this approach allows a simple extension to an 
adaptive control algorithm by proper error definition. The 
provided simulations show that this controller can be 
effectively used instead of model based multi-priority 

control algorithm.  
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