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Abstract— In many real life scenarios, which span from
domestic interactions to industrial manufacturing processes, the
objects to be manipulated are non-rigid and deformable, hence,
both the location of the object and its deformation have to be
tracked. Different methodologies have been applied in litera-
ture, using different sensors and techniques for addressing this
problem. The main contribution of this paper is to propose a
Weightless Neural Network approach for non-rigid deformable
object tracking. The proposed approach allows deploying an
on–line training on the shape features of the object, to adapt
in real–time to changes, and to partially cope with occlusions.
Moreover, the use of parallel classifiers trained on the same set
of images allows tracking the movements of the objects. In this
work, we evaluate the filtering/segmentation performance that
is a fundamental step for the correct operation of our approach,
in the scenario of pizza making.

I. INTRODUCTION

In our daily life, robots have to deal with the manipulation
of numerous objects, which are non-rigid or deformable, such
as, for example, clothes and foods in domestic applications,
rubber tubes, sheet metals, cords, paper sheets in manufac-
turing processes, as well as soft tissues, including muscles
and skin, in robotic assisted medical operations. Despite this
fact, only a few efforts have been made in investigating
the tracking of deformable (or non-rigid) objects during
manipulation. Hence, deformable object tracking by a robotic
system still offers an important challenge to the community.
The main problem of tracking these objects is that their shape
changes during the manipulation, and then both the location
of the object and its deformation have to be controlled.

The object tracking problem consists in reconstructing
the trajectory of objects along the sequence of images. It
is considered a basic problem in many computer vision
applications and it is inherently difficult, especially when
applied to real world conditions, where unstructured forms
are considered for tracking, real time responses are required
for adapting the robot movements in time, computational
capabilities are limited to on-board units and where problems
of brightness and non-stationary background can affect the
performance of the elaborating system. Moreover, in case of
non-rigid objects, the task of dynamic tracking becomes even
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more challenging. The state of the art of tracking deformable
objects is still rather far from the real applicability within
robotic applications. Recent projects have been proposed, in
the last few years, trying to cope with this kind of problem.
The recent RODYMAN1 project proposes, for example, the
development of a unified framework for dynamic dexterous
manipulation control, considering mobile platforms able to
manipulate non-prehensile non-rigid objects, trying to fill the
gap in the current state of the art. In order to achieve dexter-
ous manipulation abilities, a fundamental step is to provide
robots with the ability to efficiently track the objects to be
manipulated. Both dynamic object tracking and manipulation
become, in fact, the most complex categories of robotic tasks,
which, if solved, could increase the opportunities for a wide
adoption of robots within human co-habited environments.

The tracking capabilities we want to achieve have to be
very flexible to identify all the different shape instances, but,
at the same time, highly specific, in order to not misclassify
the tracked target. In general, Neural Networks can be
exploited in these contexts, since they can express highly
nonlinear decision surfaces, and thus they are mostly used
to appropriately classify objects presenting a high degree
of shape variation. In this paper, we propose a particular
Weightless Neural Network (WNN) approach, a WiSARD–
based system, used as shape detector for tracking deformable
objects during manipulation. Classifiers based on WNNs
have been shown to be effective, very flexible and easy to use
[1]. Moreover, this particular WNN system has the property
of being noise tolerance and capable of learning step–by–
step the new appearance of the moving object on a dynamic
background without needing a model of the object to track.
In the proposed approach there is no distinction between the
recognition process of an object and the tracking, since the
latter is treated as a classification process. In this framework,
the image filtering process, used to train classifiers, is a
fundamental step for the correct operation of the tracker.
In this paper, we evaluate the tracking performance obtained
with the use of four different filters to provide the foreground
extraction, in the scenario of pizza making.

II. RELATED WORKS

A wide class of approaches in object tracking explicitly
assumes a model of the tracked objects. Usually, these
methods provide robust solutions (e.g., they can cope with
partial occlusions), but require the use of considerable
computational resources in the object recognition process.
Kalman filters and Gaussian distributions are often used as

1http://www.rodyman.eu/
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Fig. 1. RAM-neuron (a) and a WiSARD discriminator (b).

approaches to track the individual modeled objects [2]. More
recently, particle filters have been introduced to estimate
non-Gaussian, non-linear dynamic processes [3]. However,
most of these successful approaches focused their efforts on
the recognition, pose determination and tracking of 3D rigid
objects, while only few approaches considered deformable
objects. In tracking deformable objects, some attempts have
been proposed in order to have a flexible model to track the
objects [4] and to represent the elasticity and deformation
characteristics during the physical interaction. In some of
these cases, the authors consider a pre-defined initial shape
to be manipulated into a deformable contour model. In [5]
authors use physical, although very general, models and a set
of constraints on the model to estimate the state of objects
(e.g., a rope or a flag). In particular, they assume that a set
of K points with 3D coordinates can be associated with the
object and completely define its current configuration.

Our proposed solution is more in line with features or
appearance–based approaches, as the method of [6], where
non-rigid objects are tracked based on visual features such as
color and/or texture, object contours, regions of interest. In
[6], a statistical distribution is used to characterize the object
of interest. The approach is based on mean shift iterations
to find the target candidate that is the most similar to a
given target model. In [7] authors presented a feature method
for tracking both rigid and deformable objects, and human
beings shapes in video sequences. The proposed tracking
algorithm segments object regions based on motion and
extracts some feature points to track by using optical flow
with online training. Conversely, in our work we track the
complete appearance of the object. In [8] authors use a train
of discriminative classifiers in an online manner to separate
the object from the background with a model, which evolves
during the tracking process as the appearance of the object
changes. Finally, in [9] the estimation of non–rigid object is
obtained by means of energy minimization and graph cuts.

III. A WISARD APPROACH FOR DEFORMABLE OBJECTS

WiSARD systems are a particular type of WNNs, that
can be developed directly on reprogrammable hardware [1].
A WiSARD is composed of a set of classifiers, called
discriminators, each one assigned to learn binary patterns
belonging to a particular category. Therefore, a WiSARD
has as many discriminators as the number of categories it
should be able to distinguish. Each discriminator consists
of a set of RAM nodes, which store the information of
occurrences of binary patterns during the learning stage. All

RAMs of a discriminator have the same size, i.e. the same
number of locations. Given a binary pattern of size s, the
so–called retina, it can be classified by a set of WiSARD
discriminators, each one having X RAMs with 2n locations
such that s = X × n. Since each RAM location is uniquely
addressed by an n-tuple of bits, the input pattern can be
partitioned into a set of n-tuples, each one addressing one
location in the set of RAMs. n-tuples are pseudo-randomly
selected and biunivocally mapped to RAMs (see right part of
Figure 1), in a way that the input binary pattern is completely
covered. The mapping is fixed and it is the same for all
discriminators. The WiSARD training phase is described as
follows:

1) Inizialization - all RAMs locations for each discrimi-
nator are set to 0.

2) Training Set Selection - a training set, formed by binary
patterns (or training samples) of the same size, is
selected. Each sample of the training set is known to
belong to, and thus to represent, only one category.

3) Training - for each training sample the discriminator
assigned to the belonging category is selected. The
psuedo-random mapping is used to extract, from the
binary pattern of the sample, the n-tuples of bits; each
n-tuple is a unique address of a RAM location of the
discriminator, whose content is set to 1.

Once the training of patterns is completed, if the location
of a RAM is 0, then its address (in binary notation) never
occurred across all samples in the training set at the corre-
sponding n-tuple of bits in the retina; otherwise it occurred
at least in one sample.

The WiSARD classification works as follows:
1) Test Set Selection - a test set, formed by binary patterns

(or test samples) of the same size, is selected. We want
to know the belonging category of each sample.

2) Classification - on each test sample, the psuedo-
random mapping is used to extract, from the binary
pattern, the n-tuples of bits; all addressed contents are
read and summed by an adder (Σ) obtaining a number
r, the so–called discriminator response, which is equal
to the number of RAMs that output 1.

It is easy to see that r necessarily reaches the maximum X
if the input pattern belongs to the training set. r is equal
to 0 if no n-tuple of bits in the input pattern appears in
the training set. Intermediate values of r express a kind of
“similarity measure” of the input pattern with respect to the
patterns in the training set. The Σ adder enables this network
of RAM nodes to exhibit (just like other ANN models based
on synaptic weights) generalization and noise tolerance [10].

DRASiW [11] is an extension to the WiSARD model.
Instead of having RAM locations set to 1 if accessed under
training, they are incremented by 1 at each access. Thus, at
the end of the training, RAM contents store the number of
occurrences (frequency) of a specific n-tuple of bits across
training samples. One should notice that the new domain
of memory content values (non negative integers) does not
induce a different behavior with respect to regularly trained
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RAM–discriminators if the Σ adder counts the number of
addressed memory locations whose content differs from 0.
DRASiW allows a mechanism of backward projection then
reduction of RAM contents onto the retina that can be used
to generate prototypes (i.e., graphical representations) of
learned categories, the so–called “mental” images (MIs).

A. DRASiW for Object Tracking

The proposed tracking activity is performed as follows (see
Figure 3). At the beginning, the system is fed with an image
representing the object (with its initial shape and position)
to be followed. The image, as well as the video stream, is
preprocessed by a filter as described in Subsection III-B.
The filtered image is used to train the DRASiW system.
The DRASiW system, we propose, is formed by a set of
discriminators, each one looking at different parts of the
frame image of the video (see Figure 2). We can distinguish
left, right, up and down discriminators, respectively, to
classify (i.e., to track) left, right, up and down displacements
of the tracked object. Except for the retina (input field) of
the central discriminator, all the other retinas are placed all
around the initial position. Doing so, each discriminator is
identified by its relative coordinates. The displacement of
all the retinas forms what is called prediction window. In
particular, since we consider a prediction window precision
of 10 pixels, we will use 21× 21 = 441 discriminators
(included the central one). Let (0,0) be the retina coordinates
of the central discriminator (d0,0) and h and w the size of
the prediction window. The whole set of discriminators are
labeled as dn,m, with n ∈ [−w/2,w/2] and m ∈ [−h/2,h/2].

The generic discriminator di, j is going to be responsible
for detecting the object in case its new position is identified
by (i, j) in the prediction window. The higher is the response
the more probable the object is in that part of the prediction
window. Finally, the new position of the central retina will
be set to di, j to track the object. The system always trains
itself with the image on the retina of the discriminator
that outputs the best response. Hence, in order to avoid
RAM memory location saturation, we introduce a forgetting
mechanism (bleaching [11]) that allows DRASiW to store in
its MI an updated shape of the tracked object. In particular,
all the sub-patterns of the new image on the retina are
combined with those of the MI (this means increasing their
frequencies in the RAM contents). On the other hand, those
subpatterns which were not addressed by the image on the
retina are decremented (−1). So doing, DRASiW system will

Fig. 2. Prediction window and discriminator retinas.

Fig. 3. Overview of the proposed tracking process.

always get an updated MI of the object shape it is tracking.
Furthermore, with the MI stored during time, we can produce
a sort of object shape history, which can be used to extract
some information about the cinematic/dynamic model of the
object to be manipulated.

B. Filtering the Input

Before the tracking starts, the object to be tracked is
selected by the user by drawing a bounding box (the blue
rectangle in Figure 6). Such bounding box, representing the
retina, can also be evaluated by implementing a motion–
based segmentation. In order to transform the input video
frame image in a suitable format for DRASiW discriminators
(i.e., a black and white image) we used the 4 following filters.

a) GrabCut filter: it applies the well–known GrabCut
method [12] to separate the foreground and background
regions of the image enclosed in the retina box. The method
evaluates the color distribution of the target object and that
of the background in the retina using a Gaussian mixture
model.

b) Gregor filter: it is a novel filtering technique we
developed for the purpose (see Figure 4). First a focus area
covering the target object is identified. The focus area is a
box (the red rectangle) with the same center of the retina and
with size equal to a α% fraction of the retina size. The filter
uses the focus area to compute the histogram representing the
pixel color (HSV) frequencies in the focus. The histogram is
then ordered and cut to leave only the more frequent pixel
colors representing the β percentage of the color frequency
histogram. The selected colors are used to mark pixels in
the bounding box as foreground, while the rest are marked
as background (binarization).

c) Kalman filter: it applies the well–known Kalman
method [13] to label as foreground the pixels in the retina
whose RGB channel are within a certain range around a
reference pixel color.

d) Threshold filter: it uses a dynamic threshold com-
puted at runtime according to the Otsu algorithm clustering-
based image threshold method [14] in order to segment
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foreground/background pixels in the retina.

Fig. 4. Gregor filter functioning.

IV. A CASE STUDY IN PIZZA MAKING

As a benchmark to test our approach for tracking de-
formable object, we adopt the Pizza Making case study.
Despite its apparent simplicity, this task represents a very
challenging test bed, both for object tracking and for robotic
manipulation. Figure 5 shows a simulation of the RODY-
MAN robot in manipulating a pizza. Pizza is a non-rigid
deformable object that can assume whatever shape we want.
Hence, it is not possible to define a model for the tracking.
In this context, the robot should be able to dynamically
identify the pizza dough and robustly track it without prior
knowledge. In Figure 6 we show some snapshots from the
main considered actions (or sub-tasks) for making pizza: the
manipulation, the stretching until the pizza is completely
extended and the seasoning (we do not consider the tossing
in this first testbed). During all these phases temporary oc-
clusions can occur due to the manipulation, while stationary
occlusions occur during the seasoning process. We test the
performance of different filters in the proposed DRASiW-
based tracking system, in order to evaluate the ability of the
MI to keep a 2D representation of the pizza dough up-to-date
and of tracking such moving deformable object in time.

A. Experimental Results

For the experimentation, a real pizza dough was used. In
order to evaluate the performance of the proposed method
in Pizza Making, we individuated five different phases (see
Figure 7) as follows:

a) Translation: the pizza is in the hands of the user who
makes horizontal, vertical and circular movements;

b) Dynamic Background: the pizza is in one hand of the
user who moves the other changing the background;

c) Manipulation: the user manipulates the pizza;
d) Extension: the user modifies the appearance of the pizza

dough in order to reach its final shape;
e) Seasoning: seasoning toppings may occlude the pizza

dough that is now ready to be baked.
We evaluated the performance of the DRASiW consid-

ering both its ability to track the shape of the pizza and
to follow the position of the object in time. As shown in
Figure 7, the MI of the network keeps track of the shape
of the pizza during the interaction. In particular, the first
two snapshots in figure show how the MI model of the pizza
finely overlaps the target object during both pizza translation
and passing from hand to hand. While in translation the pizza
silhouette changes slightly, in the latter case the background
suddenly changes and we can notice how well the MI model

Fig. 5. Sketches of the RODYMAN robot manipulating a pizza.

Fig. 6. Sketches of the main actions for making pizza.

succeeds to separate the changeable background from the
target. In the third snapshot taken during manipulation, the
target object is often and suddenly occluded by fingers: as we
can see, the mental model quite well adapts to the frequent
changes of the visible target, although some occluding parts
(see right hand fingers in figure) are late to disappear in the
model due to the chosen DRASiW’s forgetting latency. This
is not really a big issue since most of the MI model overlaps
the target and in successive frames it will better adapt to the
visible object, by gradually degrading the part of the model
corresopnding to the occluded parts. In the fourth snapshot,
we can see how, as soon as the user starts to enlarge the shape
of the pizza dough, the MI model consequently adapts to the
larger visible silhoutette. In case of hole generation during
extension, holes will be initially covered my the mental
model, although as soon as the forgetting mechanism starts
having visible effects, corresponding holes will appear in
the MI thus detecting those parts as background. In order
to evaluate the tracking abilities, the system evaluates the
center of mass on the MI (i.e., the red cross in Figure 7).
Finally, we keep track of the position of the central retina
classifier. Recall that, frame by frame, the position of the
central classifier is updated according to the classifiers with
the best response at the previous frame.

In Table I we reported the performance, obtained by
adopting different segmentation filters, evaluated on the five
subtasks. For each sequence, we evaluated common per-
formance metrics for quantitative comparison. In particular,
we considered the Tracking Error (TE), also referred to as
central-pixel error, evaluated as the Euclidean distance (in
pixels) between the MI center of mass, as generated by
the DRASiW network, and the center of the real object
from a Ground Truth (GT) evaluation (i.e., the green cross
in Figure 7). Specifically, the GT is computed by visually
evaluating, frame by frame, the center of mass and selecting
the correspondent points over the videos (with resolution
854× 480). Then, we analyzed the Success Rate (SR) that
measures, in percentage, for how long a tracker is able to
maintain the target object within its field of view (i.e, its
retina) with respect to the entire duration of the video. In
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Gregor Grabcut Threshold Kalman
sub-task # frames TE (px) TE≤45 (px) SR(%) TE (px) TE≤45 (px) SR(%) TE (px) TE≤45 (px) SR(%) TE (px) TE≤45 (px) SR(%)
Tran 630 8±7 8±7 100 9±7 7±7 38 16±12 10±12 29 9±7 6±6 38
Back 151 5±3 5±3 100 24±6 24±6 100 25±39 13±11 90 5±4 5±4 100
Man 854 53±23 5±3 16 8±4 8±4 100 20±12 15±9 74 41±32 10±7 39
Ext 586 62±28 26±7 11 124±45 11±9 10 43±18 9±10 11 212±54 17±13 1
Seas 482 20±8 19±8 99 4±6 3±5 100 25±10 25±10 99 66±52 5±7 17

TABLE I
AVERAGE NUMBER OF FRAMES, TRACKING ERROR AND SUCCESS RATE MEASURES EVALUATED ON THE 5 SUB-TASKS.

Fig. 7. Sketches of the DRASiW tracking results in a sequence (from
left to right). The first row shows snapshots from the original video (one
for each task), while figures on the second row are the relative DRASiW
mental images. The green cross represents the Ground Truth (GT), while
the red one identifies the mass center of the Mental Image (MI).

particular, we computed the success rate by considering the
number of frames a system is able to track the target object,
with a tracking error value of less than k pixels, until the
first failure. k is computed as the sum between the half of
the retina dimension (35px in this setting) and the prediction
window precision (10px). We also showed the TE until the
first failure and we reported the dimensions of each video
in terms of number of frames. For what concerns the frame
rate, its average value on single tasks is about 10 f ps. It
still remains open the possibility to speedup the software by
adopting some optimization and parallelization techniques.
Our aim, here, is to identify the best segmentation solution
for coping with the different issues shown in the considered
5 sequences. In case of translational movements, the best
segmentation filter applied to the DRASiW is the Gregor
filter. The DRASiW system endowed with the Gregor filter,
in fact, is able to track the target object in all the directions
with a very low TE (8± 7px) and to reach the 100%
of true classifications (SR) of the target object. The other
filters do not achieve the same performance since they are
not able to maintain the attentional retina focused on the
object. Here, the main challenge is to separate the object
from the background that is characterized by a colorful
tablecloth with colors similar both to pizza dough and to
the hands. As shown in Table I, the problem of changing
background is well treated with all filters, which, once
combined with the DRASiW tracker, are able to reach a
very high SR (100% for Gregor, Grabcut and Kalman, and
90% for the Threshold filter) with an associated low TE
(of about 5px with both Gregor and Kalman filters). In this
setting, DRASiW classifiers are well trained on the static
object pattern. However, Grabcut and Threshold filter are

more sensitive in the segmentation process of a moving
background.

Differently from previous cases, during the phase of
manipulation of the pizza dough, the Gregor filter is not
appropriate, producing a large TE and a very low SR. This
is probably due to the great number of occlusions that occur
during manipulation, which, by entering within the focus area
of the Gregor filter box, changed the priority colors. The
best result, during the manipulation process, is achieved by
the GrabCut, both in terms of TE and SR. More similar to
this task, in term of TE, it is the seasoning (20px with the
Gregor filter, 25px if using the Threshold filter, and 66px for
the Kalman), where the best performance is achieved by the
GrabCut. Here, the error is not due to the movements (in fact,
during this phase, the position of pizza is fixed) but to the
occlusions that can occur during the task. Furthermore, while
in the manipulation phase, we evaluated quick occlusions
of the pizza made by user’s hands, during the seasoning
there are permanent occlusions (for example, tomatoes and
basil) that may cause a little modification in the mass center.
Considering the manipulation, we note that when the pizza
shape is fixed the system reaches a low tracking error of
about 8px, while in the case of extension, some occlusions
occur (e.g., the human hands occlude the pizza during
manipulation), the perceived 2D pizza shape quickly changes
by moving the dough from the horizontal plane to the vertical
one, and so the tracking error increases a little bit while the
SR drastically decreases. Hence, the hardest problem to cope
with, is the managing of the extension. This task involves,
indeed, big movements of the mass center, causing bigger
TE values with respect to the other sequences.

In Figure 8 we showed the trend of the Tracking Errors
evaluated on the different phases of the pizza making task by
using the different filters. By analyzing the plots it is possible
to observe the different behaviors of the filters during the
tracking process individuating frames of correct tracking and
phases in which the target is lost.

V. CONCLUSIONS AND FUTURE WORKS

The main contribution of this paper is to propose a
methodology for object tracking in order to achieve both
flexibility and robustness in tracking non-rigid deformable
objects without prior-model of them. The proposed tracking
is appropriate for a large variety of deformable objects
with different color/texture patterns, being robust to partial
occlusions, and drastic shape modification. The on–line train-
ing characteristic of the proposed DRASiW neural network
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Fig. 8. Plots showing the trend of the Tracking Error obtained by using
different filters on the five subsequences of the entire video.

model allows the robot to adapt in real–time to any new
situations, such as, a new shape of the object and color and
luminosity changes, and so on. The reinforcing behavior of
the DRASiW system provides a mechanism that partially
copes with occlusion. Moreover, the use of parallel classifiers
trained on copies of the object silhouette, which are displaced
along XY in the proximity of the target, allows tracking the
movements of the objects in the space with an average error
that is acceptable and comparable with the ground truth.

From the analysis of the experiments we can make the
following concluding remarks. In general, the chosen fil-
ters seem to work orthogonally: apart from the dynamic
background case in which the target is followed until the
end of the video independently from the used filter, in the
other cases one filter outperforms the others. For example,
the translation case is well solved by the Gregor filter,
while the Grabcut filter works better in the manipulation and
seasoning cases. The extension case proved to be the killing
situation for our tracker. Indeed, none of the filter+DRASiW
combinations was able to follow the target for a long time.
A motivation of this failure could be the impossibility, at
the time being, to adapt and enlarge the bounding box size,
which is the “focus window” of the DRASiW on the video
scene. When the pizza dough is extended, it exceeds the
box size, thus reducing the DRASiW possibility to model
and then recognize its entire silhouette. By considering the
tracking error measurements, we can say that in all cases,
but the extension one, the error is limited, in particular, if
we consider its average value over the time the target is

followed by the tracker.
As many methods that deal with online learning of the

object shape, also our approach cannot completely solve the
problems of permanent occlusions. Moreover, if the system
does not correctly track the object and starts to lose it, it will
inevitably start learning the appearance of other objects in
the attention window. So, when the mental model becomes
sufficiently far from reality, it usually does not recover.
Hence, as future work, in order to improve the performance
of the proposed DRASiW–based visual servoing system,
we plan to investigate the adoption of a dead reckoning
strategy to anticipate the object current/next position by
using its previously determined positions, and so, also to
dynamically displace classifiers on salient and more probable
areas, improving even more the frame rate, and so, real time
tracking ability. Finally, the next step will be the extension
of the proposed method from this 2D approach to 3D and
the introduction of inferences about some characteristics of
the object in order to fill the gap in manipulation issues.
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