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ABSTRACT

One of the most important features of an advanced
control system for articulated robots is the capa-
bility of transforming the work space coordinates,
which naturally characterize any robot task, into
the joint coordinates, on which control actions
are developed {Inverse Kinematic Problem). While
simple kinematical structures allow for closed
form solutions, there is a class of robots for
which this 1is not true. If the three axes of revo-
lution at the end effector intersect two-by-two an
exact solution seems not to exist.

The goal of the paper is to establish a fairly
different solution algorithm, as compared to the
trigonometric approach, which yields solutions in
the above case. The algorithm is shown to be con-
vergent along any trajectory. It proves very fast
since it is based only on direct kinematics. Nume-
rical examples are finally developed.

*Presently Visiting Scholar at Georgia Institute
of Technology, George W. Woodruff School of
Mechanical Engineering, Atlanta, Georgia 30332.

INTRODUCTION

The basis for all advanced robot control is the re

lationship between the Cartesian coordinates of
the end effector, which naturally identify each
task, and the joint coordinates of the manipula-
tor. As a rule, the direct (joint-to-Cartesian
space) relationship is.unique, whereas the inverse
(Cartesian-to-joint) is not. Actually, while there
is only one end effector state for a given set of
joint coordinates,.there are a number of different

joint configurations which all place the end effec

tor in the same position and orientation. In many
cases only one solution corresponding to a given
kinematic configuration is desired, rather than
the entire set of solutions. Usually the solution
is to be implemented in real-time as it constitu-
tes the servo loop reference; a minimum number of
mathematical computations is then to be performed.
Typical six-degree-of-freedom nonredundant ki-
nematical structures have three revolute joints at
the end effector; it is the geometric parameters
of such joints wh1ch determine the spatial configu
ration of the terminal axes of motion. Most of to-
day's structures have a“spherical wrist, i.e.
three intersecting revolute joint axes; the appli-
cation of the well-known trigonometric method,

first proposed in [1], allows for closed form solu
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tions only for these simple structures [2]. In o-
ther cases, such as either two-by-two intersecting
axes or nonconverging at all axes, an explicit so-
Tution seems not to be attainable in closed form.
An iterative solution technique has been proposed
in [3] for the class of two-by-two intersecting re
volute joint axes, but involves an order of magni-
tude and more computations than a closed form solu
tion, even if the trigonometric approach has stil7l
been used. The existence of an explicit solution
to the kinematic equations for this class of mani-
pulators is of great importance in evaluating the
robot's suitability for computer control.

The goal of this paper is to demonstrate how a
fairly different aporoach [4], as compared to the
jterative-trigonometric one adopted in [3], can
provide solutions for those structures with two-
by-two intersecting revolute joint axes at the end
effector [5]. The convergence of the resultant al-
gorithm is proved by means of the Lyapunov direct
method. Effectiveness of the proposed solution
technique mainly lies in the fact that it only
makes use of direct kinematics of the manipulator
and the extra number of mathematical operations re
quired is small, resu1t1ng thus in a contained com
putat1ona] burden, This issue favors the use of
this inverse kinematic algorithm along any trajec-
tory assigned in the task space, since the solu-
tion sample rates can be the same as those of the
servo loops. In addition it will be shown how
joint velocities can be directly generated at ser-
vo rate without any further computations; this is
of a great deal of utility for those advanced con-
trol techniques, such as [6] for instance, which
require reference joint velocities as well as
Jo1nt variables. The same robot prototype as in
[3] is taken as a reference in order to analyze
the computational burden and develop a case study.

KINEMATICS

The kinematics of a serial Tink manipulator can be
specified on the basis of the notations given in
[7]. In order to identify uniquely the position
and the orientation of the end effector, six de-
grees of freedom are needed; typical kinematically
nonredundant structures have three revolute joints
(6,:6.:8.), whereas the first three joints can be
ei%he? afl revolute, such as the PUMA arm [8], or
two revolute and one prismatic, such as the Stan-
ford arm [9]; hence in the fo]]oW1ng these joint
variables will be denoted by (g,,9.,,9,).

As far as the three revoluté Jg % axes at the



end effector are concerned, three basic configura-
tions are illustrated in fig. 1. The case &) is of
particular interest since jt becomes possible to
decouple the position of the end effector from its
orientation, that may be useful for control purpo-
ses. The cases b) and c¢) may also occur in practi-
cal robot designs. A1l such structures can be con-
veniently identified through the following con-
straints on the geometric parameters of the last
three joints. More specifically, the lengths a

and the distances d_ [7] are respectively in the
three cases: n

(fig. la),
=0, dS#O

a) concurrent axes: a4=a5=d5=0

b) two-by-two intersecting axes:
{fig. 1b),

c) nonconverging axes: 3,70, a;#0 (fig. 1c).
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As a consequence the knowledge of the geometric pa
rameters of a kinematical structure allows for its
classification in terms of the three structures il
Tustrated above.

(b)

Fig. 1. The last three revolute axes at the end ef

fector:

a) concurrent, b) two-by-two intersecting,
¢) nonconverging.

On the other hand a robot task is naturally speci-
fied in terms of end effector Cartesian coordi-
nates {p_,p..P.,a,8,y) With respect to the base
frame; p%’syaré the components of the end effector
position1vector p, and a,B,y are the Euler angles
which define its orientation (roll, pitch and yaw
angles can be adopted as well). The orientation,
however, can be conveniently described through a
unit approach vector a, a unit sliding vector s
and a unit normal vector n. The orientation frame
(s,a,n) defined with reference to the base frame
of the manipulator, can be easily determined star-
ting from the Euler angles [10]. Such frame will
be referred to in the following since it allows
for a unique definition of the orientation in
terms of direct relationship with the joint varia-
bles. Under these assumptions, for any robot kine-
matical structure with known geometric parameters,
the direct kinematics can be written as

D _p(g), f.{(q) (n

where g is the (6x1) vector of joint coordinates,
and £ ,f ,f_ are nonltinear vector functions which
are always dnique; n=f (g) is redundant since it
can be determined as the vector product sXa.

Usually the end effector position vector p and
the approach unit vector a are independent of the
last rotation 66' Hence as

s =1

(g), a-=

p' =p - dga, (2)
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p' can be assumed as position vector. Furthermore,
depending upon the particular structure, it fol-
lows that such position vector p' is only depen-
dent on

a) the first three joint variables (a759,,95)>
b) the first four joint variables (q],qz,q3ge4),
c) the first five joint variables (9y:9559564585)

respectively in the three cases of fig. 1. The
first case easily allows the proper definition of
a "wrist" whose position depends on the first
three d.o.f.'s, and a "hand" whose orientation de-
pends on all d.o.f.'s. In the second case, which
is of interest in this paper, four d.o.f.'s are di
sposable to position the vector p', since also 6
concurs to its determination. It is then possib]é
to position p' by-%' values of (Qy,G,5Gq,0,), UN-
Tess one constraint is added in o}de tg obtain a
unique solution. In the Tast case there are five
d.o.f.'s at disposal which involve ¢ values of
(91,9,29429,,0) to position p', except when two
colst aihts 'arg introduced.

THE SOLUTION ALGORITHM

The inverse kinematic problem is reconceived as a
dynamical one in order to achieve a solution algo-
rithm which only invoives the computation of di-
rect kinematics (1), [11], [13]. With reference to
the kinematic notations previously introduced, a
typical robot task in the Cartesian space can be
assigned through the vectors (5,5,3). Let § denote
a solution of (1) relative to these vectors, and g
the algorithm current state variables. Accounting
for the kinematic structures of fig. 1 leads to de
compose the inverse kinematic problem into two sta
ges; in particular, by working back from point P
through the structure, it results convenient to
partition the problem at that point P', dependent
on a reduced number of joint variables, which can
be still expressed in terms of the Cartesian coor-
dinates of the assigned task. Correspondingly the
vector g can be partitioned as

T T T
a =g | g
where g eR3, g.eR3 in case of spherical wrist,
RZ i? the axes intersect two-by-two, and
q eR?, g, ¢R if the axes do not converge at all.
SBeh doing better copes with the actual kinematic
structure and proves very useful as regards robot
control. The case of spherical wrist has been wi-
dely treated in [4]. The aim of the work now is to
establish a two-stage convergent algorithm to sol-
ve (1) in case of two-by-two intersecting axes at
the end effector. For such structures direct kine-
matics (1) becomes

(3)

p'=f (4)

.—p‘
First stage

Since the position vector p' is determined
through four joint variables, a constraint must be
introduced in order to achieve a unique sclution
for q_. To this purpose, once the task has been as
signell, i.e. (§,5,4), the first stage of the algo-

rithm must guarantee not only that p' coincides

(gp), s = a=f (q.8:).

f
=P



with p' but also that the fifth link is oriented
in such a way to form an angle with the sixth 1ink
which coincides with the twist angle between the
two links, G-, so as to be sure that the actual
configuratioﬁ is a feasible one as regards its con
stant geometric parameters. Such a constraint can
be kinematically expressed by

d'z, = cos 0y

(5)

where 827_ is given in the task space, and z, must
be determined through (g,,g ,q3,e4) in order to sa
tisfy the above cohstrai%t 5)%

Setting out & dynamic algorithm allows the de-
finition of the-fedlowing errors:

9_; = (q] G2 Q3 04)(6)

where f_ (g ) is the direct kinematic function
which<f54a%35 to Zy- In order to assure the con
“vergence of the"state 'variables g to the desired
ones g _, error dynamics is involvBd, i.e. in com-
pact form

e P’ J .

Rl R -1 19 (7)

e 4'f alg | 7P

~z4 = =74 = “z4
where J_ is the (3x4) Jacobian matrix af _,/8q and
similarly J_  is the (3x4) Jacobian map??x P
4/ %, TA& point then is to relate §_ to €38,
S0 és 18 guarantee that such errors go Rsymptgti-
cally to zero, and consequently gpeq . Let

T 2 P
Vp = .5(gpgp + ez4) (8)

be a positive Lyapunov function associated with
the above errors. Differentiating with respect to
time and accounting for (7) yield
T P T
eZ4> _éTf‘ (_E_fp
——z4

It is to underline that the matrix premultiplied
to g_ in (9) has rank 4.almost everywhere, since 4
d.o.f.'s are needed to position the point P' and
lay the fifth 1ink on a surface. To be more speci-
fic (fig. 2), the first stage of the algorithm
must assure not only that p'=p' but also that the
fifth 1ink, individuated by d., must lie on the
cone I of axis §, angle a,. and vertix P'; in this
way, however, a and 3 do Rot have necessarily the
same direction, since a is only guaranteed to lie
on the cone T' of axis z,, same angle g and ver-
tix P', so as evidenced_Qn fig. 2. Neve?the]ess,
in the second stage of the algorithm g. will pro-
vide to align a with & and bg> which dBes not mo-
dify a, will take s over S.

So far a first suitable choice for_gp is
c T T a

9, = Ypsanldpes + 3, 8e )

> A 4
v > OB+ 1l

J

e_,)
24 AT
a9

P lq

a, (9)

(10)

J

A p
max)( 3T
- "z4

)']

675

which assures that V_ be negative definite; sgnw =
(sgnw . sgnw_), whth weR', A(A) denotes the mi-
nimum eigenva]ug of matrix A.

Provided that e_(t=0)=0, e_,(t=0)=0, (10) al-
ways guarantees nuT? tracking Bgsition errors but
naturally introduces, in the neighborhood of g =0,
e_,=0, an equivalent gain which tends to . Thi's
1€ue leads to the generation of a q_ rich of har-
monics whose effect on gq_, however, ¥s cut off by
the filtering nature of_the integrators which gene
rate g (see also fig. 3).

On"the other hand, if the kinematical struc-
ture of the manipulator is not so complex as to be
able to evaluate on-line the inverse of the matrix
premultiplied to in a closed form, without ex-
cessive time expenlliture, a rather different
choice is

-1 X
. +
94 LT)p 'TE "
3yl |2y

(1)

* mz4ez4

which reduces V_ to a negative gquadratic form; the
positive definiee raitrix M_ and the positive sca-
tar m 4 affect the converance rate and are at de-
signef’s disposal. The choice (11), though it in-
volves more computations, presents the inherent ad
vantage of providing continuous joint velocities,
as compared with the choice (10).

Fig. 2. Geometric task requirements for the first
stage of the algorithm.

Second stage

In order to align a with & and s with S, the
second stage of the algorithm must be able to de-
termine 8. and 6.. Since both 5 and a are invol-
ved, it i2 naturd1 to define the following errors:

e =5 - f(q)
-7 (12)
_ga = i = ia(_g_p’es)a

where S, 3 are assigned in the task space and s, a

are those in (4). Progressing as for the first sta
ge gives error dynamics

e g o, o .
=s| . I=| _ |'sp _1s T_
-2 - ap a
where J__ and J__ are the (3x4) Jacobian matrices

of /ag_SBnd 3j,789_ respectively, and similarly J
and Japare the®(3xB) Jacobian matrices aj%/th and



of /a_h respectively. Thus q, must be related to
e so as to assure that_@uch errors go asymp-
t8t1~311y to zero (s=%, a=3, and obviously n=n)
and consequently g +ﬁ , where §,_ are the desired
Jjoint variable so-ﬁ ns, togetner with §_, of
(4). To this end Tet P

v, = .S(eTe + eTe )

h =s=s  —a-a (14)

be a positive Lyapunov function associated with
the above errors. Differentiating with respect to
time and accounting for (13) give

+ 80 )é +

sp —.ap’p (15)

Oh = —sTé - aTﬁ - (:TJ
(ATJ + a J )qh
At this extent one must recall the following kine~

matic properties concerning with the unit vectors
s, a [4]

i) rank(JS) = rank(J ) =2 ¥q (16)
i) N(J ) = span{s), N(J ) span(a) ¥q (17)
111) given x,yeR’, Jlx + JTy 0 if (18)

xespan(s), ngpan(ﬁ)

where N(A) denotes the nuil space of matrix A.

By accounting for such properties and obser-
ving that other orientation singularities of (18)
are of no interest for a convergent algorithm, in
[4] it has been already proved that a suitable
choice for g, results

= v, sgn( JTg + JTg),

Hsllm

A3l 0

T
Spsp+J J o)l

ap“ap

where A(A) denotes the maximum eigenvalue of ma-
trix A. It is to underline that (19) suffers from
the same problems concerned with sgn type laws in
(10).

Remarks

In sum, realizing the above two stage algo-
rithm a]ways assures the state variables g conver
ge to q, thus performing the inverse kinematics
required. Since the number of mathematical compu-
tations is easily seen to be contained, the appli
cation of such an algorithm along a prespecified
trajectory in the task space looks attractive;
from the implementation standpgint the solution
sample rates can be conveniently increased up to
the same values of joint servo sample rates. A di
gital implementation by means of a single dedica-
ted microprocessor system, even if for the spheri
cal wrist case, has already been realized in lab,
and fully described in [12].

Nevertheless, as the algorithm provides at
each step a solution which is adjacent to the pre

ceding one, unigueness of the solution is automa-
tically assured. Start1ng with the same initial
conditions q(0)}=a(0), moreover, avoids any pro-
blem of 1ndeterm7nacy concerned with cosag =
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cos and the orientation singularities of

T
It must be emphasized also that the ,algorithm
can directly generate joint velocities coryespon
ding to the assigned task space velocities ﬁ ¢ >3
so as required by advanced control techniques,
such as [6] for instance. To this goal, in order
to avoid joint velocities be rich of harmonics, as
previously illustrated, one must give up null trac
king errors and accept reasonably small errors by
replacing the sgn type laws in (10) and (19) re-
spectively by the proportional type laws

9, = Yp(JH + JZ4_eZ4) (20)
. Ta Ta
qp, =Y, (I8 + 9.3 (21)

With such choices, whose block diagram schemes are
shown in figg. 3a and 3b respectively, V and V
result negative only outside a regjon in Pthe prg
per error spaces which contains the or1gin, thus
assuring limited tracking errors. The maximum trac
king errors will depend directly on task veloci-
ties and inversely on feedback gains; it must be
underscored that the steady-state (p=0, §=Q, 3=0)
errors are jdentically zerc. It is these laws (20)
and (21) which will be adopted in the case study.

fpdap)

Fig. 3a. Inverse Kinematic Scheme: first stage.
QW
G
8
——] .5
dn f 9h
a
Jipan)
i
Gp
Fig. 3b. Inverse Kinematic Scheme: second stage.

A CASE STUDY

The robot prototype of fig. 4, [3], has been selec
ted as a reference to develop a case study for the
inverse kinematic algorithm set forth in this pa-
per, as compared to the jterative procedure propo-
sed in [3].



Fig. 4. The prototype arm reported in [3].

Digital implementation

Kinematics of the manipulator of fig. 4, as
regards the direct functions which are to be eva-
luated at each step of the algorithm just presen-
ted, are not reported here for brevity and can be
found in [14].

The iterative procedure proposed in [3] is
said to converge, only from the experimental stand
point, within four to five iterations, under the
assumptions to admit average orientation errors be
Tow .1° and to be at a sufficient distance from a
point of degeneracy for the kinematical structure.
Adopting such solution requires 8 transcendental
function calls, 41 floating point multiplies, 24
additions, 3 square roots, along with 7 two argu-
ment arctangent function calls, for each itera-
tion. Hence the average number of mathematical com
putations required makes this technique impracti-
cal for performing, at the same servo control
rate, the inverse kinematics along a trajectory gi
ven in the task space, unless interpolation bet-
ween a certain number of via points, obtained at a
Tower solution sample rate, is provided. Neverthe-
less, since the number of iterations cannot be a
priori fixed, the worst case solution period must
be chosen as regards control purposes; the farther
the via points in the joint space are each other,
however, the Tlarger the errors with respect to the
exact joint variables are. If joint velocities are
needed too, an even more conspicuous number of ma-
thematical computations are 1ikely to be involved.

On the other hand the algorithm described in
this paper overtakes most of the above drawbacks:
a moderate number of computations are required (10
transcendental function calls, 112 floating point
multipliés, 58 additions), no problem of solution
nonuniqueness arises since the algorithm starts
with the same initial conditions on the state va-
riables gq and progresses with continuity along a
trajectory, tracking errors are very small while
steady-state errors are practically zero, as it
will be shown later.

A further remark is to be made about the task
trajectory planning. If the desired trajectory pas
ses in the proximity of a singular point, the algo
rithm obviously involves large tracking errors a-
round such point, even if it converges at steady-
state; this is not surprising since the actual ro-
bot trajectory involves very high velocities. The
attempt of increasing the feedback gains in (20),
(21) so as to counteract the terms related to the
above velocities, indeed, can present some diffi-
culties, as far as the digital implementation of
the algorithm is concerned, unless such trajectory
is sTow enough. On the other hand, if the planned
trajectory crosses a point of singularity, the al-
gorithm (20}, (21) always works, since it does not
require any function inversion {Jacobian, etc.).

It is also remarkable that the tracking errors
illustrated in the following numerical examples
are obtained with one iteration of the algorithm
so as to save computation time; in case of trajec-
tories which pass by a singular point, a suffi-
cient number of iterations would allow Tower trac-
king errors.

Last but not least, besides joint coordinates,
even joint velocities are directly generated by
the algorithm, without requiring any further com-
putation, that is & good optional for tracking con
trol.

Numerical examples

In order to show the effectiveness of the pro-
posed algorithm, two numerical examples have been
simulated for the robot prototype of fig. 4. The
desired trajectories to track in the Cartesian
space are illustrated in fig. 5.

Yo

Xo

2o
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Xo 25V2 o ~125V2
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Fig. 5. Task trajectories to be tracked.



Trapezoidal velocity profiles have been imposed
both for the position vector and for the Euler an-
gles of orientation of the end effector. Tab. 1
shows the maximum velocities and time intervals
for each trajectory.

Tab. 1. Parameters for the velocity profiles.
Teajestory | v (s) | Wbl Invs] | 3 [oss] | B (ess) | Lo

1 .75 [ o) o

2
o .15 ) 0 o]
1 .75 Q 135 o]

1
5 .15 Q 27 <

Tne proportional type solutions (20), (21) have
been adopted, with the inherent advantage of di-
rectly generating joint velocities. The computatio
nal burden has suggested a solution sample period
of 2 ms., on condition to use a single dedicated
microprocessor with floating point unit, [12]. The
gains in (20), (21) at designer's disposal have
been set up at: Y_ =7Y, = 500.

Due to lack of space tracking errors are not
shown here, but they can be found in [14]. Posi-
tion errors have resulted below 1 mm. and orienta-
tion errors below .15° for both trajectories. At
steady-state, however, they vanish in virtue of
the closed loop structure of the developed inverse
kinematic algorithm. For the second trajectory, in
particular, simulation results showed that no pro-
blem arises at the singularity (p’!=p'=0) so as it
had been anticipated. Tracking er%orx, finally, in
crease as velocities increase; this issue actually
matches with practice, since robot tracking perfor
mance is likely to result higher in working tasks
than in handling tasks.

CONCLUSIONS

This paper has presented a solution algorithm for
the inverse kinematic problem for robotic manipula
tors whose three end effector revolute joint axes
intersect two-by-two. By working back from tne end
effector through the intermediate links, the algo-
rithm has been partitioned at an opportune point
whose position, dependent on a reduced number of
joint variables, can be expressed in terms of the
Cartesian position and orientation coordinates of
the required task. In this way a first stage provi
des the joint coordinates which determine the posi
tion of the above point along with a feasible di-
rection of the fifth 1ink, while the second stage
yields the remaining joint coordinates which align
the orientation unit vectors. It must be underli-
ned that such technique can also be applied to the
case of nonconverging axes, see [5] for further de
tails, still by working back and accounting for a-
dequate mechanical and geometrical constraints.
The occurrence of singular solutions can be
prevented by starting with initial conditions on
the joint variables congruent with the initial Car
tesian position and orientation of the assigned
task trajectories; .as the numerical algorithm im-
plemented works with continuity along the trajecto
ry, adjacent solutions in the joint space are assu
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red. The computational burden is contained, allo-
wing for solution sample rates equal to those of
joint servos, thus avoiding interpolation. In
short the algorithm presented seems to be prefer-
able to iterative-trigonometric techniques as far
as computation time, occurrence of singularities
and need for joint velocities are concerned.

Future developments are devoted to extend this
dynamical approach for the inverse kinematics to
kinematically redundant manipulators which seem to
show potential advantages over current robot de-
signs.
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