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ABSTRACT

The control of a flexible arm is the focus of
this work. The dynamic model is obtained via an
assumed mode method, and a singularly perturbed
model of the system is then derived. The new fea-
ture of this model is that multiple boundary layers
are considered, one for each assumed mode. A com-
posite control strategy i1s then pursued. First a
slow control is designed for the rigid system, then
a number of fast controls (one for each layer) make
the fast dynamics in the layers suitably damped. A
case study is finally worked out and simulation
results are presented.

INTRODUCTION

Lightweight flexible arms have been recently
introduced with the goal of achieving benefits like
lower arm cost, higher motion speed, better energy
efficiency, improved mobility etc. {1]. Control
certainly represents one key to an effective use of
flexible arms. One successful way of obtaining a
dynamic model for a flexible arm is based on an
assumed mode method [2]. The much more complicated
dynamics assoclated with a flexible arm, however,
hardly complicates the control problem; an extended
number of state variables is to be handled for con-
trol purposes. Some of the research efforts pro-
duced so far can be found in [2,3,4].

In [5] a singular perturbation approach has
been first pursued to derive a new model for the
system so that a composite control strategy can be
applied. The same idea is also at the basis of this
work. Here, the new feature is to obtain a singu-
larly perturbed model with multiple boundary layers
[6], each of them obtained in correspondence of
each assumed mode. The inherent advantage with this
choice is that a number of scalar systems is to be
controlled. A composite control strategy is again
adopted for the multilayer system. It is shown,
also, that a state variable filter is used in order
to reconstruct higher order derivatives of joint
variables, which are needed@ to synthesize the fast
controls.
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It has to be mentiocned, however, that full
state availability on the flexible variables is
assumed for fast control design. A case study is
finally developed and extensive simulation results
are provided.

THE DYNAMIC MODEL

The flexible arm of fig. 1 is considered in
this work. A solution to the flexible motion of the
link can be obtained through modal analysis, under
the assumption of small deflections of the link,

m
y(n.t) = ?Zi éi(t)¢i(ﬂ) (1)

where ¢, is the eigenfunction expressing the dis-
placement of assumed mode i of link deflection, §,.
is the time-varying amplitude of mode i of the lin
and m is the number of modes used to describe the
deflection of the link.

If the vibrating beam is clamped at the joint
end and free ad the distal end, the orthonormal
modal eigenfunctions in (1) are given by

¢i(€) = sin(BiE) - sinh(B.&) + (2)
vi(cos(BiE) - cos (BiE))
sinfB, + sinhB,
vi=——l——~—l— i=1,...,m
cosﬁ.l + coshBi
2_4
4 pA(2ﬂfi) L
By = ———
EI
where:
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The dynamic equations of motion for the one
link flexible arm can be written in the following
form [7]
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where
8 is the joint ¥ariable,
§ = (&, ... 8 ) is the vector of deflections,
u is t%e control torgue at joint location,
M is the inertia matrix
M1 M Ml
m .. I . m . .
M = 1p pp Pq (4)
. .. . . .
pq
m1,m+1 oot - mm+1,m+{_

2 T2
Iy + M LT+ o+ M (9 8)

T3 T Y% TP
m = L¢ + w
tp ML ~l’; p-1 2 P=2,...,mtl
= + 1
"op T ™ * ML¢p-l,e Jp¢p-1,e
= + J’ 1 1
mpq ML¢p-l,e¢q—1,e p¢p—1,e g-1,e
g = p+tl,...,m+l
with
0T = (¢ L6y, 6, =0.(E)
~e le © me’ ' ie i £=1
T d¢i(€)
' = (¢ ... ¢' ), ¢! = — i=1,...,m
e le me ie at £=1

1
2
w, = AL jo ¢, (£)EAE

where:
mb = beam mass
M~ = payload mass
L . ) X
IO = joint inertia
J0 = beam inertia relative to joint
Jp = payload inertia,
f and g are nonlinear terms
» T Tt
= 5
£ = 2M 8(0_8) (9.8 (5)
.2 T
= - 6
g = -M6°(9.9) 8 (6)
K is an equivalent spring constant matrix

K = diag(k1 e km) (7)

2

e 1 [a%e, (&)
ag.

k., = I
LMo |ag?
Since the clamped-~free assumption has been made for
the vibrating beam, there is no displacement at
joint location and then no control force in the

lower egs. of (3).
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A SINGULARLY PERTURBED MODEL

In the following a singularly perturbed model
for the system (3)-(7) will be derived. Being the
inertia matrix (4) positive definite, it can be
inverted and partitioned as follows:

. s |t
M = | e T (8)
t | =
T
by
H=[h ...n 1=|.
o
=-m
T
= e )
he = (h n, ) i=1 n
24 i1 o Mim e
Egs. (3) then become
§ = -sf - ETg - E?Kg + su (9)
3, = -t.f-hlg~-hw&Xé+tu i=1 (10)
T ST A = treeem

The system (9)-(10) will be transformed now to a
singularly perturbed form. One difficulty in per-
forming this transformation is the proper choice of
fast and slow variables, and the selection of one
(or @ore) perturbation parameters. In [7] the ratio
EI/L” in (7) was regarded as the inverse of the
perturbation parameter; that choice, however, does
not truly match the physical nature of the subsys-
tem (10), since one parameter is picked for all the
modes. Therefore, a more realistic approach seems
to introduce m perturbation parameters for the m
assumed modes as €, = 1/k, (i=1,...,m), performing
thus a multi-time Scaling “with €. ,...,e_. Such do-
ing leads not only to a boundary Hayer,]gut also to
a sublayer, a subsublayer and so forth., A further
advantage is gained by this choice; m scalar prob-
lems are obtained which can be solved in an explic~
it feedback form, thus simplifying the implementa-
tion of the control law [6]. Defining then

St
[

z :=K§ = (11)

~ Mz

i
§ = Ez E=x"t

= dlag(el . em)

yields the egs.
turbed form, i.e.

of the system in singularly per-

6 = -s(Ez)£(8,Ez,E2) - t (Ez)g(d,Ez) + (12)
—ET(EE)E + s(Ez)u
€7, = -t (B2)£(8,Ez,E2) - b} (B2)g(8,Bz) + (13)

'EE(EE)E + ti(EE)u i=1,...,m
In the following it is reasonable to assume that
the contributions of the deflections to the inertia
matrix M in (4) are negligible, i.e. m 1(E_z_) = ﬁi .
As a consequence, the quantities in (8) will not %e
functions of the fast variables z, [5].

At this point the typical éteps of singular



perturbation formulation can be taken. Starting
from the bottom of (13), because of the presence of
€ , the last system of (13) exhibits a boundary
lgyer phenomenon in the fast variable z . If the
boundary layer decays, then the dynamics Of 9 and z
will vary slowly. Formally setting e = 0 accom-
plishes a model order reduction from m + 1 to m,
because the last differential equation in (13)
degenerates into the algebraic transcendental equa~
tion

. m-1 m-1 .
0=-t f(8,% ,€.2,, = ,€.2,) + (14)
m 141 17171
1 1
T o m-1 m-1
- Z - =z z o+ a
ha(8, ?zislzl) izi mi“i mm m tm m

where the bar is used to indicate that the vari-
ables belonyg to the so-~called slow subsystem with

€. = 0. Being H in (8) positive definite, h > 0;
tRerefore it is possible to find the distinc%mquasi
steady-state solution Em to (14). Plugging this
solution into +the upper egs. of (13) formally
yields the slow subsystem or the reduced order sub-
system

. . m-1 m-1 .
9 = -sf(6, =% .2, & .c,2,) + (15)
i i%i i7i%i
1 1
oL m-1 m—-1 _ _ _
-t g6, = .€.z.) - X .t.z. - t z + su
-2 ;i i7i7i mm i

To derive the fast subsystem or the boundary layer
system, it is assumed that the slow variables arg
constant in the boundary layer; that is § = 0 and z
= 0. Operating the fast state variable change
around the equilibrium trajectory z o = Zm T Em'
and correspondingly u = u - u_, the fast subsys-
tem of (13) results (Em= 0 and §n= 0 on the bounda-
ry layer)

e

= 16a
szfm hmmzfm * tmufm ¢ )
that is
dzzfm
= -h =z + t u (16b)
2 mm fm m” fm
drt
m
where 1 = t/e_ is the fast time scale.

It should ge clear now that the above procedure
can be iterated for the intermediate layers up to
obtain the slowest scalar subsystem; it can be
checked that the slowest subsystem is right the
rigid system, i.e.

H
[

(17)

@|

]
BI‘

el

11

where it is understood that Gl is the slowest con-
trol obtained via

m
u=u + = u_, (18)
1

As evidenced by the rigid system (17) and the m
boundary layers of the kind (16), the goal now is
to design the slow control W , and then design the
fast controls u_., which damp™ out the fast dynamics
of the boundary #fayers.

COMPOSITE CONTROL

Under the results of the previous section, the
design ol a feedback control u for the full system
(12)-(13) can be divided into m + 1 separate de~
signs of feedback controls G, and u.. i = 1,...,m
for the m + 1 scalar systems, namely a multi~time
scale composite control [6] as in (18), with the
constraints that u_, (z..,=0) = 0 such that ug, are
inactive along the $oldtions z,, i = 1,...,m.

As far as the slow control is concerned, if an
angular trajectory 8(t) is to be tracked, an obvi-
cus choice for Gl would be

Uy T MgV (19)

..

v =8+ kv(é -8+ kp(é -9

where k and k_ are position and velocity gains.
The traékinq control (19), however, is not feasible
for fast controls design. More specifically, from
(1léb) the equation of the i-th boundary layer re-
sults

dzzfi
= -h,.z_. + t.u_.. (20)
dT? i1 £ 17fi
i
The control ufi can be thought of as
1
Sei T T Pate Y Ve (21)
i
where Ves is the new input to the system given by
Ve T Yprifes T OVEiRugi®es (22)

where k £ and k are feedback gains to be de~
signed Pitorder €6 ‘achieve a suitably damped fast
dynamics. Here, the first crucial assumption to
make is that full state availability is assumed as
regards the fast variables. In particular, the de-
flections §, can be obtained from strain gage mea-
surements [8], whereas their derivatives need to be
reconstructed; this is an open research issue that
will soon be investigated. )

In order to evaluate z,.., however, z. is also
needed and, via (14), the 1¥st order derivative of
the slow control U, needs to be evaluated. There-
fore, , if the contré& u, would be chosen as in (19),
also § would be needed. In order to overcome this
drawback, a second order state variable filter
needs to be placed at the output of the rigid sys-
tem. In terms of the Laplace variable s, the rigid
system (17) under a control ﬁl = mllv, results

s76 = v. (23)

Let



A(s)8 = 10 (24)

2
A(s) = Zli a;s, a, = 1
0
be an asymptotically stable reference model for the
system (23), where U is the input to the model
which allows to track the trajectory specified by
8 The goal of the design is to achieve output per-
fect model following, when a state variable filter
is placed at the output of (23). Let then

1 1
= y f2 =1 (25)
F(s) 2 i
Zli fis
0
be the transfer function of a second order
asymptotically stable state variable filter. Per-

fect model following will be achieved if the trans-
fer function 8(s)/a(s) of the system plus the con-
troller is equal to that of the reference model
1/A(s). To this purpose the controller configura-
tion of fig. 2 can be considered, where

G(s) (26)

H
oM N
Q
w
~

D(s) (27)

I
oM =

The design goal is then reformulated as that to
find the coefficients in (26)-(27) such that

o(s) G(s) 1

(28)

a(s) E‘(s)s2 + D(s) A(s)

At this extent, defining the filtered values of the
variables 8 and U respectively as

8.(s) = 8(s)/F(s) (29)

G (s) = G(s)/F(s) (30)
leads to write the input v to the system as

v(s) = G(s)ﬁf(s) - D(s}o.(s). (31)
It is easy to recognize that, accounting for (26)

and (27), the first order derivative of the control
v, which is needed by v in (22), is physically
available now, on condition that the desired tra-
jectory §(t) is sufficiently smooth (at least up to
the third order derivative).

A CASE STUDY

The control strategy outlined in the above sec-
tions has been tested via simulations for the one
link flexible arm existing in the Flexible Automa-
tion Laboratory at Georgia Tech. Two assumed modes
have been considered in the expansion (1) [8]. The
data for the dynamic model in the form (3) can be
found in [9]. It is significant to report here that
the two perturbation parameters are respectively £

= 0.1805 and 52 = 5,036E-3.
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AnAangular trajectory is commanded from 6(0) =
0° to 6(?) ?0° ’ f?}lOWLng the smoot% velocity
profile g = ot (T - t) o =140 x 90 / T T = 2s.

As far as the slow control design, two poles in

-2.5 have been chosen for the reference model, i.e.
a, = 6.25 and a, = 5 in (24). The poles of the fil-
tér have been ail placed at -12, i.e. f0 = 144, f1
= 24 in (25).
Two poles in -3 have been chosen then for the
two boundary layer systems of kind (20), i.e. k £1
= 9 and Ve k_ VELk .. =6 in (22). %

Pgﬁree sets 5& slmulat%ons have been carried
out; first only the slow control has been applied
to the system (3), then the slow control + the fast
control for the first layer, finally the slow con-
trol + the two fast controls for the two layers. In
Figs. 3-5 reported are the tracking errors at the
tip of the arm, under the above three controls. It
can be seen that the addition of the fast controls
improves the tracking performance and the tracking
error at steady-state is conveniently damped out.
An interesting point is that the improvement gained
by the second fast control is minimum. This is in
accordance with the issue that the amplitudes of
the upper modes are much smaller as compared to
that of the first mode; the contribution to the tip
deflection is then minimum.

CONCLUSIONS

A singular perturbation approach has been de-
veloped for control of a lightweight flexible arm.
The flexibility distributed along the structure has
been modeled by an assumed mode method. The novelty
is that a multi-boundary layer structure has been
obtained for the system, in virtue of the defini-
tion of the perturbation parameters as the inverses
of the spring constants for each assumed mode. A
composite control strategy has been then adopted
leading to the design of a slow control for the
rigid system + a number of fast controls for the
boundary layers taken into consideration. The actu-
al slow controller requires a state variable filter
in order to have practically implementable fast
controllers. A case study has been finally worked
out, showing the effectiveness of the proposed
multi-time scale control strategy.
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Fig. 3. Tip position error (slow control).
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Fig. 4. Tip position error (composite control:
Fig. 1. The flexible arm. slow + fast-1st layer).
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Fig. 5. Tip position error (composite control:
Fig. 2. The linear tracking controller. slow + fast-~lst layer + fast-2nd layer).
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