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ABSTRACT

Redundancy represents one key towards design
and synthesis of more versatile manipulators. Ob-
stacle avoidance and limited joint range constitute
two kinds of constraints which can be potentially
met by a kinematically redundant manipulator. The
natural scenario is the inverse kinematic problem
which is certainly a crucial point for robotic ma-
nipulator analysis and control.

Based on a recently proposed dynamic solution
technique, the inverse kinematic problem for redun-
dant manipulators is solved in this paper. The
kinematics of the manipulator is appropriately aug-
mented in order to include the above mentioned con-
straints; the result is an efficient, fast dynamic
algorithm which only makes use of the direct
kinematics of the manipulator. Extensive simulation
results illustrate the tracking performance for a
given trajectory in the Cartesian space, while
guaranteeing a collision-free trajectory and/or not
violating a mechanical joint limit.

INTRODUCTION

A manipulator is termed kinematically redundant
if the number of degrees of freedom (DOF's) is
higher than the number of task space coordinates.
The most general location of an object in the
Cartesian space is completely specified by six co-
ordinates, three for position and three for orien-
tation. In that case a manipulator is considered
redundant if it has more than six DOF's. The space
of redundant solutions can be conveniently exploit-
ed to obtain a more versatile manipulator in terms
of its kinematical configuration and its interac-
tion with the environment. In particular, redun-
dancy can be used to meet constraints on joint
range availability and/or to obtain trajectories in
the joint space which are collision-free in pres-
ence of obstacles along the motion. Ultimately an-
other challenging use of redundancy is in keeping
the manipulator in a configuration which makes it
as dexterous as possible, that is also avoiding
kinematic singularities.
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The crucial point for robotic manipulator anal-
ysis, and then control synthesis, is the capability
of transforming the task space coordinates into the
joint space coordinates, that is solving the in-
verse kinematic problem. The direct kinematic prob-
lem allows one to specify in a unique straightfor-
ward manner [1] the relationship between the (n x
1} joint vector g and the (m x 1) Cartesian vector
X as

x = £(q) (1)
where f is a continuous nonlinear function, whose
structure and parameters are known; it associates
to each g a unique X, while the inverse mapping

q= £t (2)

may have many g's associated to each x and, because
of complexity of (1), is hard to express analyti~
cally.

The most direct approach for solving the in-
verse kinematic problem is certainly to obtain a
closed~form solution to (2) [11]. This does not
apply to all manipulators; a sufficient condition
for obtaining a closed form solution was estab-
lished by Pieper [15].

In order to overcome the drawbacks encountered
in solving (1) in terms of g, an alternative tech-
nique is based on the relationship between joint
velocities g and Cartesian velocities x,

x = J(Q)q (3)

where J(g) is the Jacobian matrix af/aq. The above
relation can be inverted to provide the so-called
Jacobian control method [2] for redundant manipula-
tors

+

g =31(g (4)

1%

which yields locally a minimum norm -joint velocity
vector in the space of least-square solutions to
the left hand side of (3); the superscript + de-
not%s t&e %oore-Penrose pseudoinverse defined as J

= J°(337) The solution to (3) can be also modi-
fied by the addition of a second term to (4) as
§=0"%+ -3 (5)

The projection operator (I - JTJ) selects the com-
ponents of z which are in the space of homogeneous



solutions to (3), and therefore z can be used for
optimization purposes. Joint range availability is
optimized in [3]. Obstacle avoidance is achieved in
[4,16,17]. Conceptually similar are the solutions
based on the use of generalized inverses proposed
for minimization of actuator energy consumption
[5], and obstacle avoidance [6]. A rather different
approach is then proposed in {7]; it is essentially
an iterative technique which is based on a con-
strained nonlinear optimization algorithm using a
modified Newton-Raphson method.

The goal of this paper is to extend the inverse
kinematic solution algorithm proposed in [8,9] to
the case of redundant manipulators. It is shown how
constraints on the joint variables and/or con-
straints due to obstacles in the workspace can be
systematically incorporated in the solution algo-
rithm. The properly extended direct kinematics is
to be evaluated [10]. This assures that all the
advantages of the dynamic solution are retained,
such as continuity of the solution, drastic reduc-
tion of computation time, and generation of joint
velocities at no additional cost. A case study for
a simple planar four DOF's manipulator shows the
performance of the proposed solution.

THE GENERAL DYNAMIC SOLUTION

The general dynamic solution technique present-
ed in [8,9] is generalized in the following to the
case of unconstrained redundant manipulators.

The inverse kinematic problem is conceived as a
dynamical one in order to obtain a general solution
algorithm which requires only the computation of
direct kinematics (1). Let é(t) (n x 1) be a solu-
tion to (1) relative to a given Cartesian trajecto-
ry %(t) (m x 1). The following error vector e(t)
can be defined between the desired trajectory (%)
and the actual trajectory §(t) obtained from the
algorithm state variables g(t),

elt) = x(t) - x(t) (6)
In order to assure the convergence of g(t) to é(t),
error dynamics is involved, i.e. via (3) (dropping

the time dependence),

(7
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With the choice

g-= YJT(g)g Y=o+ (ng) (gTJJTg)’l, @ >0 (8)
the dynamic system of Fig. 1 assures that e - 0,
and then g » i. This issue can be recognized Ey
considering the error Lyapunov function v .5e’e
and verifying that its time derivative is negative
definite by virtue of (8) [8,9,19]. In the follow-
ing it seems appropriate to give some remarks on
the solution algorithm based on (8).

Remark 1. Let rank(J) m, Suppose that e(0)
0; since (8) always guarantees a null tracking er-
;or, it naturally introduces, in the neighborhood
of e 0, an equivalent gain, dependent on state
variéblég, which tends to «. This point leads to
the generation of a é rich in harmonics, whose ef-
fect on g, however, is cut off by the filtering
nature of the integrators. Therefore, whenever also
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joint velocities are needed, either additional fil-
tering on é must be introcduced or finite tracking
errors must be admitted via the purely proportional
control law

QJT

= e

(2)

ke

With this choice v results negative definite only
outside a region in the error space which contains
e 0, that is attractive for all trajectories.
abvioﬁsly the maximum tracking position error will
depend directly on ugn, and inversely on a; it must
be underscored, however, that the steady-~state (g
0) error is identically zero [8,9,19].

- An alternative inverse kinematic solution algo-
rithm can be conceived by considering

q J+(Mg + R) (10)
where M 1is a positive definite matrix whose
eigenvalues affect the position error convergence
rate to zero. The control law (10) recalls a so-
lution similar to the pseudoinverse Jaccobian con-
trol (4). It should be noted, however, that (10)
seems more robust than the pure pseudoinverse
Jacobian control (4), since it is obtained via a
dynamic computational scheme which is dinherently
closed-loop.

Among the three solutions above derived, (8),
(9) and (10), the proportional one (9) seems the
most attractive from the computational point of
view. Since by a proper choice of the feedback gain
the tracking error e can be conveniently bounded,
as shown in several simulations carried out
{10,13,14,19,20], this solution can be adopted in
the following for practical implementation of the
inverse Kkinematic solution algorithm. Furthermore
an appealing feature of the s$olution (9) lies in
the possibility of achieving the following physical
interpretation [9]. A fundamental relationship be~
tween the (n x 1) vector of joint torques T and the
Cartesian (m x 1) force vector f applied at the end
effector is [11] -

t=af (11)
It can be recognized that applying the above in-~
verse kinematic solution algorithm along a trajec~-
tory assigned at the end effector 1s equivalent to
regard the vector ae as the elastic force vector
which has to be applied at the end effector of an
ideal kinematic structure, with null mass and unit
viscous damping coefficient, in order to track the
desired trajectory.

Remark 2. It could be ar-
gued _that J'e 0 when e belongs to the null space
of J7. In the light of the above eqguivalence, how-
ever, the null space of J  is in those directions
along which a Cartesian force applied at the end
effector is completely neutralized by the mechani-
cal constraints of the manipulator. From the imple-
mentation viewpoint, the occurrence of such situa-
tion can be detected by having uéu 0 and Jel # 0.
Then, assuming that the taréét trajectaiy is
planned consistently with the actual jnematic
structure, it can be stated that always Je # O,
when e # 0. - -

Let now rank(J) < m.

As it had been anticipated, only direct



kinematics (f£,J) is to be computed, which drasti-
cally reduces the computational burden. In actual
fact, only one iteration per loop is to be intended
for the digital implementation of the algorithm for
trajectory tracking. The implementation of the al-
gorithm on a single dedicated microprocessor system
has been realized in the laboratory for a
nonredundant manipulator [12].

It should be emphasized that the dynamic system
of Fig. 1, based on the solution (9), will produce
joint velocities é(t) at no additional cost, and
with a slight modification it can also generate
joint accelerations g(t) [9]. This point is very
advantageous for advanced control purposes [8].

Last but not least, it is to be mentioned that
the solution algorithm here derived is completely
general and manipulator independent. An even short-
er number of computations are regquired and better
performance is achievable, however, if the algo-
rithm is customized to each particular kinematic
structure, as regards the last three axes of motion
at the end effector: spherical wrist [10,13,19,20],
two-by=-two intersecting axes {10,14,19,20],
nonconverging axes [10,19,20].

INCLUSION OF CONSTRAINTS

As previously anticipated, redundancy can be
conveniently exploited to solve the inverse
kinematic problem with obstacle avoldance and/or
limited joint range. The occurrence of either or
both of the above situations sets some constraints
which can be systematically incorporated in the
solution algorithm outlined in the previous sec-
tion, on the condition that the task space vector
in (1) is properly enlarged.

A set of task space variables that describe the
configuration of the manipulator with respect to
the obstacle in the workspace and/or to the limits
on the joint variables can be defined. The only
requirement is to express those variables in terms
of the joint variables so as to obtain the augment-
ed direct kinematics [10,19]

]

y =£f (q) (12)
where y is a ((mtv) x 1) vector, with 0 < v < n-m,
which is completely specified in the task space.
Then a solution to (12) can be formally obtained
with a choice of the type (9) which proves very
powerful, especially for on-line control purposes.

For the sake of clarity, the two cases of ob-
stacle avoidance and limited joint range are treat-
ed separately in the following. Nonetheless they
both lead to extend the task space vector as in
(12), and then it will be possible to solve the
inverse kinematic problem under both constraints,
as demonstrated later.

Obstacle Avoidance

One of the potential advantages of a
kinematically redundant manipulator is the use of
the extra (redundant) DOF's to maneuver in a com-
plex workspace and avoid contact with obstacles.
The ability of the human arm to work in such envi-
ronments provides a good model of this ability.

Assume that a manipulator is tracking a desired
collision~free end effector trajectory in the task
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space. One or more links along its kinematical
structure, however, may happen to be too close to
an obstacle in the workspace, and a collision is
expected. Since the inverse kinematic algorithm (9)
provides joint configurations which are adjacent to
each other as the manipulator proceeds along the
trajectory, one or more constraints need to be in~
troduced in order to avoid the collision with the
obstacle. The idea that follows is similar in some
regard to the approach taken in [6] and in [16].

In the following it is supposed that obstacles
are modeled as convex volumes in the 3D-space; this
formalism seems effective because the actual ob-
structions can always be enveloped in a convex vol-
ume (the simplest is a sphere), while it is.easy to
compute the distance from such volumes to the links
of the manipulator. For a planar mechanism one
might simply adopt disks to model obstacles, as
done for instance in [17].

It can be assumed that a link has avoided a
convex obstacle if its minimum distance from the
obstacle is greater than a preplanned threshold
distance. If all links satisfy this condition there
is no reason for modifying the current solution
along the trajectory, and the dynamic solution al-~
gorithm (9) will select one of the o possible
configurations, depending on the initial joint con-
figuration,

On the other hand, if the distance between one
of the links and an obstacle becomes less than the
threshold, the current solution is to be modified.
It is understood that at most n - m constraints of
such type can be activated. One might also think of
setting several values of thresholds in correspon-
dence of each link of the manipulator. This can be
done accounting for the type of sensors used to
detect the above distances, such as proximity sen-
sors, video cameras etc...

In order to illustrate the technique here pro-
posed, assume first that a single link is involved
in a possible collision with a single obstacle., It
is understood that such pair varies as the manipu-
lator's end effector tracks the desired trajectory
of motion. Let then d be the threshold distance
and ¢ denote the position vector of the point of
interest on the obstacle. A point at minimum dis-
tance from the 1link to the obstacle can be deter-
mined [16]; let p indicate the position vector of
this so-called obstacle avoidance point. Both vec-
tors ¢ and p are defined with respect to the same
base frame in which the direct kinematics of the
manipulator is expressed. See Fig. 2 for a planar

example. Another important remark is in order; the
position of the minimum distance point moves, as
the manipulator moves about the obstacle, i.e. p

has to be dynamically recomputed along the trajegg
tory. If the distance ngN between the two points,
where go =B, - & becomes less than the threshold
distance d , there is a danger of collision, and
the joint velocities, which represent the control
inputs to the system of Fig. 1, need to be modified
accordingly to the new constraint activated. This
can be accomplished as follows. In analogy with the
error definition between reference and actual task
variables (6), define the error

{13)

_ ~2 T
& = 5ld; - 48

Differentiating (13) with respect to time gives



. - 2 T T .

€ = dodo - QOE T g2 (14)
with

T T

j = 15

330 = 270 (15)
where J is the Jacobian matrix 3p /3g of the ob-

stacle BVoidance point [16]. If the error dynamics
(7) is opportunely extended by (14), a control i
can be obtained in the same formal way as in (9).
To this purpose, e will indicate the extended error
vector ({m+l) x 1) in the Cartesian space, whose
last component is e defined in (13), and J will
denote the extende%?Jacobian matrix ({(m+l) X n),
whose last row is j defined in (15). In this way
the motion of thoséi%bF‘s which determine the posi-
tion of the cobstacle point p 1s braked, preventing
the link of interest from approaching the obstacle.
As a matter of fact, a link which is candidate for
a collision is forced to move tangentially around
the imaginary sphere with center at ¢ and of radius
d ., It is to note that in (14) both the cases of
moving Qbstacle (é # 0) and varying threshold dis-
tance (d_ # 0) have been considered. In what fol-
lows it is assumed that ¢ 0 and & = 0, without
loss of generality. - - ©

At this extent, it seems quite straightforward
to extend this technigue to other pairs of points
interested to a collision (an obstacle and an ocb-
stacle avoidance point along the structure of the
manipulator, respectively) up to eventually cover
the n - m redundant DOF's. Discussion of when an
obstacle constraint can be released will be provid-
ed after presenting the overall solution.

Limited Joint Range

Conceptually similar is the activation of a
mechanical constraint on a joint variable for the
inverse kinematic scheme of Fig. 1. The idea that
follows is partially inspired by [5]. Assume that a
joint variable g, is kinematically constrained be-
tween two constaﬁt extremal values ¢. . and g, y

imin imax

< q (16)

24

Gimin & 9

imax
If the joint variable approaches either of the lim-
its while the manipulator's end effector is track-~
ing the preplanned trajectory, the sclution given
in {9) is to be modified. As done above for cbsta-
cle avoidance, a threshold distance d  can be de-
fined with the intent that if the diskance of the
current g, from either of the two limits becomes
less thanla , the control (9) needs to be modified.
To this pur%ose define the error

e =4 -4 (173
g9 q q
where either 4 = g, - Umin OF 4a = O oaw ~ 9
depending on which Timit 18 1nvolvgd; note that d

has to be dynamically reccmputed along the trajecs

tory. Differentiating (17) with respect to time
gives
& =4 -ug (18)
q g 1T
where
T (i)
u, = (0 C ... ¥l ... O) (19)
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apply-
to ex-

the sign + applying for %4 i and the sign -~
ing for qimax' Thereforef it seems natural
tend the &rror dynamics (7) by (18), quite in the
same way as it has been done for obstacle avoid-
ance. The extended error vector will include an
additive component due to e in (17), and corre-
spondingly the extended Jacobian matrix will con-
tain a row given by u, in (19). In this way the
motion of that DOF which was approaching the limit
is opportunely braked and kept on the threshold. As

above, }f the threshold distance 1is chosen con-
gtant, d = 0.
Finafly, as in the above case, the technique

can be extended to account for other mechanical
constraints of this type, up to eventually cover
the n - m redundant DOF's. The possibility of re-
leasing a joint limit constraint and the occurrence
of both type of constraints will be discussed in
the following subsection.

The Overall Solution

On the basis of the results of the two previous
subsections, the overall dynamic solution to the
inverse kinematic problem for constrained redundant
manipulators is established in the following. To
this purpose the task space vector x is enlarged

into the ((m+v) x 1) vector y, as anticipated in
(12),
-
X
¥ = | x (20)
X
g
where x is the (k x 1) vectqr whose components are

the quagtities of the type &°d defined in (13) for
each active obstacle constrain ;, and x  is the (r x
1) vector whose components are the Guantities of
the type d defined in (17) for each active joint
limit constraint. Correspondingly the task space

reference vector becomes
2
P=|E (21)
x
%y
with obvious meaning of the vectors X (k x 1) and
gq (r x 1). It must be remarked that
v=k+r<n-m (22)

so as to activate at most n - m constraints on ob-~
stacle avoidance (in number of k) and joint range
availability (in number of r). The control is then
derived in the same formal way as in (9), i.e.

. T
=a
d Jegy (23)
where
J
Je = Jdo (24)
U
is the extended Jacobian matrix which includes,



besides the end effector Jacobian matrix J, the
Jacobian matrix J o {k x n) whose rows j are de-
fined in (15), ang the matrix U (r x n) whose rows

are defined in (19), and

{o

(25)

is the extended error vector in the task space
which includes, besides the end effector error vec-—
tor e, the error vector e (k x 1) whose components
are defined in (13), and the error vector e (r x
1) whose components are defined in (17). Fiﬁgily in
(23) @ > 0 is a feedback gain which determines the
convergence rate of e .

Under the control (23), the end effector tra-
jectory %(t) is still tracked as in (9), and the
redundant DOF's are conveniently used to avoid col=-
lision with the obstacles present in the environ-
ment and/or to avoid the generation of joint tra-
jectories which are not kinematically feasible.

Although (23) is the basis of the inverse
kinematic solution proposed here, proper decision
making by a higher control level is egqually impor-
tant, if not crucial, to successful operation of
the algorithm. This higher control level should be
in charge of trajectory planning and activation +
inactivation of constraints. To this purpose the
following considerations seem appropriate.

The activation of a constraint is simply per-
formed by detecting that one of the threshold dis-
tances (obstacle or Jjoint limit) is violated. The
introduction of constraints naturally sets restric-
tions on joint angles, which contribute to reduce
the manipulator reachability workspace. A conflict
with the desired trajectory £(t), originally
planned for the end effector, may then arise. In
the 1limit one may wind up in a "deadlocked" situa-
tion where further movement is not possible and the
system is overconstrained, for instance in a com~
plex environment with multiple obstacles. The oc-
currence of such situation can be recognized, at
algorithmic level, by the fact that the extended
error vector e in (25) enters the null space of the
extended Jacobian J . In this case it results Héu =
0 and le | # 0, and the inverse kinematic algorithm
must be hborted. This statement can be justified on
the basis of the previous eguivalence outlined for
the unconstrained case.

It should be emphasized, however, that such
situdtion may have not been properly caused by a
complex environment, but rather determined by the
fact that no constraint has been released at all.
Consegquently the option of inactivating a con-
straint should be introduced, in the sense that a
constraint could be released when the end effector
trajectory "naturally" drives the structure away
from the constraint itself. This feature can be
performed at algorithmic level as follows. Remind
that the solution algorithm based on (23) guaran-
tees only a bounded, but not null, tracking error.
Therefore, the criterion for inactivating a con-
straint can be get up in the same way as it is done
for activating a constraint, based on the evalua-
tion of proper distance errors. Thus it is assumed
that a constraint is inactivated if the correspond-
ing distance error becomes negative.
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It might be argued that the convergence of the
solution algorithm as one or more constraints are
either activated or inactivated does not strictly
follows from the convergence properties of the con-
figurations of the system, before and after either
the enlargement or the reduction of the error
space. This statement is theoretically correct, but
from the engineering point of view, several simula-
tion results have shown that the algorithm correct-
ly runs for cases of practical interest, thus en-
couraging the adoption of the technique here pro-
posed.

A CASE STUDY

In order to test the performance of the
posed dynamic inverse kinematic solution for
strained redundant manipulators, a simple
study is developed in the following. A planar
DOF manipulator of the type of Fig.

pro-
con-~
case
four
2 is consid-

ered. The link lengths have been chosen as 11 =1
= 1, =1 = .3 m. A ’'straight line referenceTtra—
jecé%ry is commandgg from é(o) = (.5598 -.15)" [m]
to p(T) = (.8 -.2)" [m] with T = 3 s, where § de=

notes the desired end point position vector; the
velocity profile is the typical trapezoidal, one
(acceleration + cruise + deceleration) with |pi

= .12 m/s. The manipulator is assumed to start from
a joint configuration which places the end point
p(0) at B(0). Remind that the resulting joint tra-
jectories will depend upon the initial joint con-
figuration, since the algorithm progresses with
continuity along the given trajectory. The initial
conditions op the joint variables are g(0) = (180
-30 -90 -30)" [°].

Two constraints of the type previously de-
scribed have been introduc?ﬂ. An obstacle has been
located at ¢ = (,7 -.28)" [m], and a mechanical
limit on the third joint is g, < -80°.

Four different sets of Simulations have been
carried out. Figs. 3 through 5 illustrate the re-
sults. A sampling time of 1 ms has been chosen;
this is seen to be sufficient to evaluate the di-
rect kinematic functions reported in the Appendix,
using a single dedicated microprocessor system with
floating point multiply unit [12]. The end point
tracking error has been computed as the norm of the
end point position error vector e = p - p.

In the first set of results the unconstrained
control (9) has been applied with o = 1000; to this
end in [12] it is shown how discretizing the algo-
rithm leads to the optimal choice of the feedback
gain as the inverse of the sampling time. It is
seen that the manipulator would violate both con-
straints while it tracks the end point reference
trajectory. As a matter of fact the end point
tracking error (Fig. 3) is small, but the fourth
link is involved in a collision with the obstacle
(Fig. 4) and the third joint variable exceeds -80°
(Fig. 5).

In the second set of results only the obstggle
cgnstraint has been activated as soon as e = d -
d,4, becomes greater than zero; the threshéld dgs—
tance d, has been get to .03 m. It is seen that the
end point tracking performance remains satisfactory
(Fig. 3) and the obstacle is avoided (Fig. 4) in
the sense that fd I, after going below 4., tends
asymptotically to this value, as proven in theory.
The constraint on the third joint ~variable,



however, is still violated (Fig. 5).

In the third set of results only the joint lim-
it constraint has been activated as soon as e =
d d becomes greater than zero; the thresﬁ%ld
dggtancg d has been chosen as 2°. Similarly to
the previods case the end point tracking is main-
tained (¥ig. 3) and the third joint variable is
braked against passing the limit (Fig. 5) in the
sense that g, after going above -82°, tends
asymptotically™ to this value, as anticipated in
theory.

Finally both constraints have been activated at
proper instants of time. In this particular case it
can be recognized (Fig. 5) that the joint limit
constraint has been released, as the end point tra-
jectory naturally drives ¢, away from the limit,
due to the activation of the obstacle constraint
meanwhile, It is seen that the end point tracking
is maintained (Fig. 3} and the obstacle constraint
is asymptotically met (Fig. 4).

CONCLUSIONS

This paper has presented a solution to the in-
verse Kkinematic problem for constrained redundant
manipulators. The resulting algorithm is based on a
dynamic reformulation of the problem leading to a
closed loop scheme whose stability is assured by
choosing a control which only involves the computa-~
tion of the direct kinematics of the manipulator.
The only requirement is to systematically enlarge
the direct kinematics in order to include the con-
straints which c¢can be potentially met by a
kinematically redundant manipulator, such as obsta-
cle avoidance and limited joint range. It has been
proven, and shown by an example, that the con-
straints, once active, can be successfully met. The
end point of the manipulator keeps tracking the
desired trajectory and the resulting joint trajec-
tories avoid the collision with an obstacle and/or
avoid violation of a mechanical limit on a Jjoint
variable. Some issues regarding the activation and
the inactivation of constraints have been finally
addressed, The possibility of including constraints
on the manipulator's dexterity is currently being
investigated [18]. Future research efforts will be
likely dedicated to investigate the application of
the technique here presented to particular redun-
dant geometries, such as maintainance robots oper-
ating in plasma vessels.
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Fig. 1. The general inverse kinematics scheme.
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