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Abstract

A reformulation of dynamic manipulability ellipsoid
for robotic manipulators s established in this paper.
This ellipsoid is a common tool in robotics to measure
the ability of a manipulator to produce arbitrary accel-
erations of the end effector for a given set of torques at
the joinis. As opposed to the original approach where
gravitational forces were imputed to compress the vol-
ume of the ellipsoid, here we show that the effect of
gravity can be taken into account by translating the cen-
ter of the ellipsoid without affecting its volume. Fur-
ther, we characterize the ellipsoid for redundant ma-
nipulators by investigaiing the properties of the ma-
nipulator Jacobian involved in the core of the ellipsoid.
Numerical case studies are developed.

1. Introduction

The concept of manipulability was introduced some
years ago as an effective means to perform task-space
analysis of robotic manipulators [1]. The idea is to
set up quantitative measures of the ease of arbitrarily
changing the location of the end effector by acting on
the joints. This may be advantageous both for optimal
design of manipulator structures and for determination
of optimal postures for executing a given task. The
key at the basis of the definition of such ellipsoids is
the manipulator Jacobian which describes the mapping
from the joint space to the task space.

If we are simply interested to studying the differen-
tial kinematics relationship, together with the statics
relationship that can be derived in force of the dual-
ity principle, kineto-static manipulability ellipsoids can
be defined [2]. For each configuration of the arm, the
velocity ellipsoid gives an index of the ability of per-
forming end-effector velocities along each task-space
direction for a given set of joint velocities. Dually,
the force ellipsoid gives an index of the ability of per-
forming end-effector forces along each task-space direc-
tion for a given set of joint torques. It can be shown
that the principal axes of the two ellipsoids coincide,
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whereas the lengths of the axes are in inverse propor-
tion. These properties have later been refined in [3]
where it is keenly proposed to view the manipulator as
a mechanical transformer from the joint space to the
task space, leading to the definition of suitable task
compatibility indices. Also, several dexterity measures
can be derived for the matrix constituting the core of
the ellipsoid which can be analyzed as a function of
joint configurations [4]. A more recent work charac-
terizes translational and rotational manipulability for
typical manipulators having a shoulder, an elbow, and
a wrist [5].

On the other hand, in all those cases where the arm dy-
namics cannot be neglected, it is necessary to consider
the dynamic manipulability ellipsoid [6] which gives a
measure of the ability of performing end-effector ac-
celerations along each task-space direction for a given
set of joint torques. Related to this concept is the
generalized inertia ellipsoid [7] which gives an index
of the ability of changing end-effector velocities along
each task-space direction for a given value of kinetic
energy. Other manipulability measures have recently
been introduced in the literature including the coupling
coefficients of robot dynamic model [8] which charac-
terize the structural coupling of the dynamic equa-
tions of motion, the acceleration radius [9] which is
defined as the minimum upper bound of the magni-
tude of end-effector accelerations over the entire ma-
nipulator workspace, and the dynamic conditioning in-
dex [10] which is defined as the least-squares difference
between the generalized inertia matrix and an ideal
isotropic matrix for the same manipulator.

One limitation of all the above approaches is that only
the inertia matrix is investigated, and the gravitational
force vector is left out of the analysis, with the excep-
tion of the original work [6] which indeed took gravity
into account in the derivation of the dynamic manipu-
lability ellipsoid. We argue that the effects of gravity
are at least of the same importance as that of inertia
in performing a dynamic analysis of robotic manipu-
lators. This has recently motivated us to reconsider



the whole matter from a critical standpoint and con-
ducted us to derive, what we believe, a more correct
formulation of the dynamic manipulability ellipsoid, as
compared to the ellipsoid defined in [6].

In particular, this work is intended to demonstrate
that, when gravitational forces are properly embed-
ded into the derivation of the dynamic manipulability
ellipsoid, these do not cause any compression in the
volume of the ellipsoid, as shown in [6] instead, but
they just produce a translation of its center which in
general occurs along all task-space directions.

Furthermore, we extend the new formulation to kine-
matically redundant structures because they constitute
the most interesting class of manipulators for employ-
ing these manipulability measures. The extra degrees
of freedom, in fact, can be conveniently exploited to
reconfigure the arm in a more dexterous posture to ex-
ecute the assigned task. In this case, we emphasize the
properties of the manipulator Jacobian involved in the
derivation by showing that only the components of the
accelerations which are in the range space of the Jaco-
bian transpose are mapped into the core of the defined
ellipsoid.

A number of significant case studies illustrate the cor-
rectness and functionality of the approach for ‘easy-to-
understand’ planar arms. )

2. Dynamic Manipulability Ellipsoid

It is well-known that the dynamic model of a robotic
manipulator in the joint space can be written in the
closed form

()

where q is the (n x 1) vector of joint displacements,
M is the (n x n) symmetric, positive-definite matrix of
inertia, ¢ is the (nx 1) vector of Coriolis and centrifugal
forces, g is the (n x 1) vector of gravitational forces, f
is the (n x 1) vector of joint torques,* h is the (m x 1)
vector of end-effector forces (due either to contact with
the environment or to a carried payload), and J is the
(m x n) Jacoblan matrix describing the mapping from
the n-dimensional joint space to an m-dimensional task
space of interest, with m < n. This mapping can be
written as

@)

where v is the (m x 1) vector of end-effector velocities
described with respect to a constant reference frame
(usually chosen at the basis of the arm). If m < n,

M(a)d + c(q,q) +g(a) + I (qh =1

v=1J(q)q

* Notice that by the terms ‘force’ and ‘torque’ we mean actual
generalized forces.
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the manipulator is said to be kinematically redundant.
The above mapping can be differentiated with respect
to time to yield the relationship between joint accelera-
tions and end-effector accelerations, which is of interest
for dynamic analysis,

a=J(q)§+JI(a)a (3)

For the purpose of the present work, we restrict our
study to considering only translational end-effector ac-
celerations, thus m < 3. For typical manipulators
formed by an arm and a (spherical) wrist, in fact, the
dominant part of the dynamics is associated with the
arm. Also, in the case when end-effector forces are
generated by a carried payload, we can express the dy-
namic equations of the payload in the closed form

(4)

where m,, is the payload mass and g, is the (m % 1)
vector of gravitational forces of payload.

mpa+g, =h

The goal is to study the manipulability of the arm in
terms of the mapping between joint torques and end-
effector accelerations.

Similarly to the formulation in [6], we regard the case
when the arm is standing still (q = 0) as the rele-
vant case for analyzing dynamic manipulability. This
implies that we neglect the effect of Coriolis and cen-
trifugal terms in (1), ie. c(q,q) = 0. Accordingly,
in (3) it is J(q)q = 0.

Under the above assumptions, on reduction of (1), (3)
and (4), the following equations can be obtained —
where the dependence on q is omitted for notation

compactness —
Bi+p=f (5)

where B = (M + m,JTJ) is the total symmetric,
positive-definite inertia matrix and p = g + JTg, are
the total gravitational forces resulting for the system
consisting of the arm and payload. Also, equation (3)
simplifies to

3"

which, together with (5), will yield the sought map-
ping.
2.1. Non-Redundant Manipulators

a=1Jq

Let us first consider the case of non-redundant manip-
ulators (m = n). Solving (3') for § gives

Gg=J"'a

(6)

where it has been assumed that the arm is not in a
kinematically singular configuration, i.e. det(J) # 0.
Then, plugging (6) into (5) results into

Bl lat+p=f. (7



At this point, it is opportune to normalize the joint
torques to account for the different torque limits on the
joint actuators. Let then fi max,% = 1,...,n denote the
maximum (positive) driving torque at each joint of the
arm; without loss of generality, we suppose that the
upper and lower torque limits are of equal magnitude.
The normalized torque vector can be introduced as

f=Tf (®)

where T = diag(Th,...,7,) with T; = 1/f; max, i =
1,...,n.
The unit sphere in the space of normalized joint

torques
(9)

maps onto the ellipsoid in the task space of end-effector
accelerations

fff=1

(a+IB~!p)TI"TBT?BI Y(a+IB !p)=1 (10)

which is defined here as the dynamic manipulability
ellipsoid for the arm and payload. Notice that we have
properly factored out the term BJ~! to evidence the
vector a.

It can be recognized that the core of the ellipsoid
J-TBT?BJ~!, which depends on inertial and geomet-
rical characteristics of the system, uniquely determines
the size and the principal axes of the ellipsoid. Notice-
ably, when the Jacobian is singular, it is not possible
to compute § as in (6), because one — or more for
multiple singularities — direction of task-space accel-
erations cannot be accomplished; in this occurrence,
the use of a pseudoinverse of J is required, leading to
the derivation of an ellipsoid in a suitable subspace of
the original task space.

On the other hand, the vector —JB~!p, due to grav-
ity, produces a pure translation of the ellipsoid with
respect to the origin of the reference frame. In fact, by
rewriting (7) in the form

a=JB }{f - p), (11
it is easily understood that the end-effector accel-
eration vector for a given configuration is obtained
by superposition of the contributions of joint torques
and gravity; the latter contribution is fixed for each
given configuration of the system, and thus produces
a fixed displacement on each acceleration vector due
to the joint torques. Moreover, by setting f = 0
in (11), it is seen that the vector —JB~!p represents
the end-effector acceleration vector induced by grav-
ity acting on the whole system when no joint torques
are applied. Notice that, because of the kinematic
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constraints imposed by the manipulator structure on
its different inertial components, the system performs
non-isotropically; this is the reason why, in general, the
vector —JB~!p is not aligned with the direction of the
gravitational field.

This result is in contrast with the formulation devel-
oped in [6], where the absolute value of gravitational
load was subtracted by the torque limit at each joint;
here, we argue that such description always penalizes
the available torques in the joint space, and does not
properly describe the effects of gravity on the possible
end-effector accelerations. With our approach, instead,
it is possible to account for the effects of gravity along
task-space directions in a more correct manner.

Let us consider, for instance, only the effect of a pay-
load mass; it 1s quite natural to expect that, beyond a
certain value thereof, it is no longer possible to accel-
erate the end effector along the upward direction while
is certainly possible to accelerate it downwards. On
the other hand, if one would adopt the other formu-
lation [6], the size of the ellipsoid would progressively
reduce leading to the result that it is not possible to
accelerate the end effector in any direction of the task
space.

2.2. Redundant Manipulators

Let us now consider the case of redundant manipula-
tors (m < n). This time, a unique solution to (3')
cannot be found; in fact, the matrix J possesses a non-
empty null space of dimension (n — m), under the as-
sumption that rank(J) = m, and the general solution
is given by

q=3a+1-3T04 (12)

where JT denotes the Moore-Penrose pseudoinverse

giving the minimum-norm solution and [I—JTJ] is the
operator projecting onto the null space of J. There-
fore, there exists a set of joint accelerations do which
do not produce any acceleration at the end effector.

We take, however, only joint accelerations which are in
the range space of JT — the orthogonal complement to
the null space of J — because we want to characterize
the mapping from the joint torque space to the end-
effector acceleration task space; then we consider

g=Jta (12))
that, plugged into (5), results into
Bifatp=1. (13)

We are now ready to derive the dynamic manipulability
ellipsoid in this case. In fact, the unit sphere in the



space of normalized joint torques in (9) maps onto the
ellipsoid in the task space of end-effector accelerations

(a+3B-'p)T31 BT?BIt (a+ IB~1p) = 1. (14)

We believe that some considerations on the formulation
of the ellipsoid in this case are in order. In particular,
it might be argued that it is improper to factor out the
term BJ' since 313 # L. Observing that JTJ can be
rewritten as I— [I—-JTJ], we have in turn neglected the
joint acceleration components given by B~!p which
are in the null space of J. This is in agreement with
the former choice of considering only joint accelerations
mapped by the range space of J onto the task space.

Further insight about this issue can be gained by con-
sidering the intermediate mapping from joint torques
onto joint accelerations. In fact, the unit sphere
in (9) can also be mapped onto the ellipsoid in the
n-dimensional space of joint accelerations

(G+B 'p)TBT?B(G+B 'p)=1.  (15)
In order to pass from the joint acceleration space to
the lower m-dimensional task acceleration space, we
need to apply the mapping J. With this operation, all
the vectors in the joint space with equal components
in the range space of JT are treated in the same way.
In force of this, the ellipsoid defined in (14) is actu-
ally the image of the projection, along the direction
of the null space of J, of the ellipsoid in (15) on the
subspace spanned by the range of JT. Therefore, the
sole components of the vector B~!p — representing
the displacement of the ellipsoid induced by gravita-
tional loads — to be considered are those orthogonal
to the null space of J. Figure 1 attempts to clarify this
concept for the case of n =3 and m = 2.

3. Case Studies

In this section, we develop a number of case studies in
order to illustrate the concepts presented above. Two-
and three-degree-of-freedom planar manipulators are
considered, with or without a payload; the manipula-
tors operate in a two-dimensional task space for which
a reference frame is chosen so that the vector g, can be
written as (0 —mpgo )T, being go the positive value
of gravity acceleration. For each case study, the se-
lected manipulator configuration and the correspond-
ing dynamic manipulability ellipsoids are reported; for
easeness of comparison, the ellipsoids in each figure are
drawn in the same scale.

Initially, we have considered a two-degree-of-freedom
manipulator whose parameters in SI units are: £; =
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£y =1,£. =Ly =05, my =20, my =10, I; = 20/12,
I, = 10/12, fi max = 600, f2,max = 200, where £; is the
link length, £, is the distance of the link center of
mass from the joint, m; is the link mass, I; is the link
moment of inertia about the joint axis. Notice that the
given inertial parameters correspond to a manipulator
whose links have uniform mass distribution.

In the first case study, the assigned configuration is
q=(60 -120 )T deg. We have considered four dif-
ferent situations: with or without gravity, with or with-
out a payload of 5 kg applied at the end effector. The
resulting ellipsoids are plotted in Fig. 2. It can clearly
be seen that the effect of gravity is a pure transla-
tion of the ellipsoid’s center whilst the directions of
its axes and its size remain unchanged, as anticipated
in theory. The pfesence of a payload has the major
effect to reduce the size of the ellipsoid and change
the orientation of its axes. It is worth noticing that
the translation of the ellipsoid center is different with
respect to the case in which the manipulator is un-
loaded; more specifically, the translation is reduced
when a payload is applied. This phenomenon could
sound strange, since a larger gravitational load might
be expected to produce a larger translation of the ellip-
soid downwards. To gain insight in the combined effect
of gravity and load at the end effector, consider a sin-
gle link manipulator whose mass m is concentrated at
the link center (i.e. I, = I/2, I = 0). When the link
is unloaded, the acceleration at the tip due to grav-
ity acting on the center of mass of the link is twice
as much as the one produced at the center of mass
itself. This occurs because a pure geometric relation-
ship (I/l, = 2) relates the tip of the link to its center
of mass. If a payload M is applied, the center of mass
of the system ‘link+payload’ moves towards the tip of
the link depending on the ratio between the load and

. 1+2M/m
the link mass (I}, = _ITF_W/HIC > I, for M > 0); as

a consequence, the acceleration at the tip is obtained
multiplying the acceleration at the center of mass by

;o l+M/m
the factor I/I, = 21+2M o

to 1 when the ratio M/m grows from 0 to co.

, which decreases from 2

For the second case study, we have selected a differ-
ent configuration, namely q = (70 —50 )T deg, with
no payload. In Fig. 3 the ellipsoids respectively de-
rived with the method in {6] and with our approach
are compared: It is quite evident that with the former
the size of the ellipsoid is reduced in force of an a pri-
ori penalization of torques in the joint space, whereas
with the latter the effects of gravity are correctly taken
into account for the resulting accelerations in the task
space.



The same configuration as above is considered in the
third case study, with a payload of 30 kg. It is clear
from the plotted ellipsoid (Fig. 4) that in this case
it is not possible to produce end-effector accelerations
directed upwards when a payload is present. Further-
more, the set of torques satisfying eq. (9) subjected
to the given torque limits cannot even ensure that the
manipulator stands still. Notice that in this situation,
the formulation proposed by [6] cannot be used since
the ellipsoid cannot be defined at all.

In the fourth case study, the assigned configuration is
q=(9 -90 )T deg and a payload of b kg is con-
sidered (Fig. 5). This configuration evidences that the
translation of the ellipsoid’s center is directed exactly
downwards. This is a particular situation since in gen-
eral — as it occurs in the other examples — the geo-
metrical constraints between the different masses pro-
duce end-effector accelerations with both components
different from zero.

In the fifth and last case study, for the sake of com-
pleteness, a redundant three-degree-of-freedom planar
manipulator is considered. The parameters are (in SI
units): £ = 0.50, £, = 0.73, €5 = 0.20, £, = 0.205,
£ = 0.320, ;3 = 0.023, my 56.5, mq 28.7,
ma = 5.2, I; = 2.58, Iy = 1.67, Iy = 0.0125, fi max =
1890, fo,max = 540, fzmax = 160.5. These param-
eters correspond to the planar structure (joints 2, 3
and 5) of the MANUTEC R3 manipulator {11]. The
maximum allowed payload of 15 kg is considered. In
Fig. 6 the ellipsoids obtained in the configuration q =
(120 =90 —60)T deg are presented.

4. Conclusions

This paper has established a new formulation of the
dynamic manipulability ellipsoid for robotic manipu-
lators. Differently from the original formulation, it has
been demonstrated that the effects of arm and payload
gravitational forces are not to produce a contraction of
the size of the ellipsoid, but only a translation of its
center with respect to the reference frame in which the
ellipsoid is defined. A number of case studies have
been developed to the purpose of evidencing this prop-
erty and thoroughly understanding the influence of link
and payload mass distributions on the size and loca-
tion of the ellipsoid. The concept has also been applied
to the relevant case of redundant manipulators; in this
case it is possible to devise resolution algorithms which
achieve arm reconfiguration by suitably exploiting dex-
terity indices based on the proposed ellipsoid. As an
aside, we have extended the formulation to cooperative
manipulators that present the same kind of manipula-
bility issues [12].
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Fig. 3 Dynamic ellipsoids for case study # 2 — left: Fig. 6 Dynamic ellipsoids for case study # 5.

method in [6]; right: our method.
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