Proceadings of the 1992 IEEE
1 Conference on and A

Nice, France - May 1992

Cooperative Control Schemes for
Multiple Robot Manipulator Systems

Pasquale Chiacchio

Stefano Chiaverini  Bruno Siciliano

Dipartimento di Informatica e Sistemistica
Universita degli Studi di Napoli Federico 11
Via Claudio 21, 80125 Napoli, Italy

Abstract

Three schemes are developed which are aimed at
achieving cooperative control of multiple arm systems
manipulating a common object. The first scheme oper-
ates wholly on the object task space variables. The sec-
ond scheme operates on the joint space variables that
can be derived via a kinematic inversion from the co-
operative task space variables. The third scheme com-
bines the features of the above two by solving the co-
operation at the inverse kinematic level and acting the
control at the object level. Simulation results are pro-
vided for a two-arm planar system to investigate the
behavior of the controlled system in the case of inaccu-
rale object modeling.

1. Introduction

Typical requirements of a control algorithm for multi-
ple robot manipulator systems are recognized to be:

o control of the absolute motion of the carried object;

e control of the internal forces acting in the system,
e.g. object stretching, shearing, bending.

These goals can be met only if an effective coordination
of the arms is accomplished, which in turn demands for
a truly cooperative control system to be designed.

One of the most promising approach to task modeling
of multiple arm systems seems to be the symmetric for-
mulation proposed in [1] for the case of two arms, and
later generalized also to the case of multiple arms [2].
This allows a natural definition of both external and
internal task (force and velocity) vectors that can be
handled for control purposes. Experimental verifica-
tion of hybrid position/force control schemes that make
use of the above formulation can be found in [3,4].

The problem of choosing the proper variables to be
controlled is critically examined. A first scheme is dis-
cussed which requires both specification and control of
task variables defined in the object space [5]. An al-
ternative two-stage control scheme is proposed which
presents the cascade of a kinematic inversion block for
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the task variables that characterize the cooperation [6]
and a pure joint space controller. Finally, a new scheme
is introduced according to which the cooperative task
variables can be specified independently of the object
space where the control operates. This scheme will be
shown to have some advantages over the previous two.

An impedance behavior is adopted for the controlled
variables [7], resulting in a computationally cheaper
solution that also avoids the use of force sensors [5], as
in most previous schemes instead [3,4,8].

The performance of the three schemes is extensively
tested out in a number of simulated case studies for a
two-arm planar system when inaccurate object model-
ing occurs.

2. Task Modeling

The symmetric formulation proposed in [1] provides a
natural framework for modeling a cooperative task in
terms of a suitable set of external and internal vari-
ables, forces and velocities respectively.

Without loss of generality, consider a system of two
planar manipulators holding a common object. Let
assume that the grasp is tight, so that each arm can
exert both a force and a moment on the object; then
h;, i = 1,2 denotes the (3 x 1) vector of contact
forces —two components of forces and one component
of moment— exerted by the end-effector at the con-
tact point. Correspondingly, the position variables are
identified as x;, i = 1,2 —two components of position
and the orientation angle— expressing the position of
the end-effector at the contact point. All these quan-
tities are intended to be expressed in a common base
frame. '

Choose a coordinate frame located on the object and
consider the virtual sticks pointing from the two con-
tact points to the origin of the object frame. Each stick
is assumed to be rigidly attached to the end-effector of
the arm. Let then @;, denote the location of the stick
tip expressed in the base frame. Accordingly, the force
at the stick tip h;, has to be considered as the contact
force.



The use of virtual sticks allows a simple description
of force and moment composition. It is supposed that
the deformation due to object elasticity is small, so
that the locations of the two stick tips can be taken
as both coincident with the origin of the object frame.
If h, denotes the (3 x 1) vector of absolute (external)
forces acting on the object, the relationship between
contact and object forces is given by

h,,=W(Z:)=(I I)(

where W is the (3 x 6) grasp matrix, and I denotes
the (3 x 3) identity matrix. As anticipated above, the
expression of the grasp matrix is particularly simple,
thanks to the use of virtual sticks.

hl.s
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For given object forces, Eq. (1) can be inverted by using
the pseudoinverse of W, that is simple to compute as
well. A solution to (1) is given by
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where V is a (6 x 3) matrix spanning the null space
of W, and h, is a (3 x 1) vector of relative (internal)
forces. Eq. (2) can be compacted into

(1) <0 (2) =on,

with U = (W’f V'), which gives the relationship
between object forces h, and stick forces h;.
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Direct application of the principle of virtual work yields
the relationship between the (6 x 1) vector of object
velocities v, and the (6 x 1) vector of stick velocities

v, in the form
)=v"(

w=

with obvious meaning of the components of v, and v,.
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Further, assume that the two arms hold a purely elastic
object. Then, the interaction between the arms and
the object can be described by the simple linear model

bt = —ha = Ko (2 - (e2(@2) - (@), )

where K, is the (3 x 3) diagonal matrix of object con-
stant spring coefficients, and Z is a (3 x 1) vector char-
acterizing the object at rest; thus, contact forces arise
only from object deformation.
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3. Cooperative Control Schemes

Below are illustrated three different control schemes
that can be devised according to which space the vari-
ables are specified and which space they are controlled
in. More specifically, let denote by task space the space
where the variables that describe the cooperative task
are specified; this space does not necessarily coincide
with the object space that indicates the space where
the absolute and relative variables of the above for-
mulation are defined. Finally, the joint space is the
space where control actions are actuated in terms of
joint driving torques. This distinction will allow to re-
veal the distinctive features of each of the schemes that
follow.

It should be remarked that all the schemes can adopt
any kind of controller for the relevant variables; in
other words, what matters here is the space in which
control actions are designed rather than the particular
control algorithm used.

In the present work, an impedance behavior is adopted
for the controlled variables, following the guidelines
of [5]. This choice is motivated by the desire of avoid-
ing measurements of contact forces; force sensors must
be frequently retuned, suffer from low signal-to-noise
ratios, require significant preprocessing of the raw out-
put data, and then their use in industrial environments
may be not desirable. As a further advantage, a com-
putationally cheap control law is obtained, as opposed
to the decoupling schemes that make use of full non-
linear compensation, e.g. [8). Nevertheless, it is conve-
nient to compensate for gravitational forces since this
yields a significant improvement on the steady-state
performance of the system at low computational ex-
pense.

3.1. Control in object space

In this case, the task space is chosen as coincident with
the object space. This implies that the variables to
be specified are directly those defined in the object
space [5]. :

Let then z, denote the location of the origin of the
object frame; the kinematic constraints imposed by the
closed-chain of the arms and object lead to computing
the absolute object location as

1
To= 5(331; + ), (6)

while the relative location between the tips of the two
sticks is given by

Ty = T2 — T1s.
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By combining #, and @, into x, = (:cg‘ , the
following PD control laws can be designed:

ho = Kp(Z, — ) + Kp(Zo — %0),  (8)

where Z, contains reference values for x,.

Once h, has been synthesized, the stick Jacobians J;,
have to be computed by expressing &;, as a kinematic
function of the joint variables g; for each arm. Then,
the design is completed by computing the joint control
torques 7 = (7T 7T )T of the impedance type [7] as

9

where h, is given in (3), and a compact notation has
been used for J, = diag(Jy,,Jos), ¢ = (aF q7 )T;
further, g = (g7 ¢T )", with g; being the vector of
gravitational forces for each arm. The resulting block
diagram scheme based on Egs. (8,9) is shown in Fig. 1,
where K pp is the short-hand notation for the PD con-
trol laws (8), k, denotes the direct kinematic functions
that are needed to compute ,, and the gravity com-
pensation has not been evidenced.

T =J (q)h, + g(q),

It can be argued that specification of these variables
might be problematic. Regarding #,, while the ab-
solute object position does allow a natural task vari-
able specification, less meaningful is the specification of
the absolute object orientation when this is computed
via (6). The situation is more dramatic for the relative
stick location, for which it might be inconvenient to
adopt two position variables and one orientation vari-
ables.

Another pitfall of this control scheme is that it does not
offer the possibility of exploiting eventual kinematic
redundancies available in the system; these occur when
the total number of joints is greater than the number
of task (object) space variables of interest, six in this
case.

3.2. Control in joint space

In order to overcome the drawbacks of the above
scheme, the radically opposite scheme that can be de-
vised is one that operates completely in the joint space.
In other words, a set of meaningful task space variables
are specified that describe the cooperative task. Next,
the corresponding joint reference variables are com-
puted via a kinematic inversion procedure. Finally,
the control is designed completely in the joint space.

For the two-arm system at issue, an effective choice
of absolute and relative task variables can be obtained
as in [6]. It is anticipated that such variables allow
an effective description of the cooperation between the
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multiple arms and the object, although they are not di-
rectly related to the variables of the above object level
formulation. Notice, however, that any set of variables
can be selected as long as they lead to a complete de-
scription of the cooperative task; the particular choice
presented below is related explicitly to the task to ex-
ecute, but others are feasible for different tasks.

The absolute position of the object is computed as

pa=%un+pﬂ, (10)
where p; and p, are the position vectors of the end-
effectors of the two arms expressed in the common base
frame. Let consider a reference frame fixed to the ob-
ject with origin in p, and z-axis aligned with the vector
w = py — p1. Then, the absolute orientation of the ob-
ject can described as the angle formed by the z-axis of
the object frame with the z-axis of the base frame, i.e.

$a = atan2(wy, wy). (11)
Next, the relative variables must be specified. First,
the relative position of the two end-effectors can be
described by the vector w. However, if w is conve-
niently expressed in the object frame, only the z, com-
ponent of w is significant; this leads to considering
one scalar variable (the signed distance between the
two end-effectors) to describe this portion of the task,
thus overcoming the drawback of the previous strategy.
Then it is

(12)

As for the remaining variables, the grasp angle of each
arm relative to the z-axis of the object frame can be
selected, i.e.

Pr = Wz COS §q + Wy Sin ¢,.

¢r1=¢a—¢1
bra =7+ dg — @2,

(13)
(14)

where ¢; and ¢ represent the orientation angles of the
two end-effectors with respect to the base frame; by the
way, each angle is given by the sum of the respective
joint coordinates.

Having specified a certain task in terms of the above
variables, say a (6 x 1) vector &, Eqs. (10-14) can be
used to find the corresponding joint variables g; this
stage can be performed even off-line. Those variables
constitute the references for a simple PD + gravity
compensation control of the kind

T=Kp(@—q)+Kp(a—q) +g(q). (15)



The resulting control scheme is illustrated in Fig. 2,
where this time K pp is the short-hand notation for the
PD control laws (15), and the block k~! denotes the in-
verse kinematic function which is required to transform
the chosen task space variables into the corresponding
joint space variables.

Compared to the scheme of Fig. 1, there now exists the
possibility of explomng kinematic redundancies at the
kinematic inversion level; to this purpose, the relevant
Jacobians for absolute and relative variables have to
be computed if a Jacobian based algorithm is going to
be used to solve for redundancy, e.g. {9]. The weakness
of this solution, however, resides in the high sensitivity
to imperfect modeling of the cooperation; the feedback
control loop, in fact, does not operate at the object
level and then cannot effectively contrast any distur-
bance and/or model inaccuracy occurring between the
arms and the held object.

3.3. Control in object space with specifica-
tion in task space

In order to combine the advantages of the above two
schemes, a third new scheme is proposed in the fol-
lowing. The design key is to allow specification of the
variables in the task space, like for the second scheme,
but to let the control act in the object space, like for
the first scheme. This objective is met by retaining the
two-stage structure of the scheme in Fig. 2 in principle,
i.e. kinematic inversion followed by control, and mod-
ifying the control stage in such a way that the object
variables of the scheme in Fig. 1 are involved.
Specifically, if (§ — ) and (@ — g) indicate joint posi-
tion and velocity errors, they can be regarded —at first
approximation— as generating elastic and damping
feedback terms at the stick level of the type J,(g — q)
and J,(§ — ¢). These terms can then be transformed
into object (absolute and relative) velocities through
the relation (4) and then the rest of the scheme fol-
lows from that in Fig. 1. In detail, the vector of object
forces is selected as

ho = KpUTJ.(q)(@—q) + KpUT J.(q)(@— q) (16)

and the design is completed by computing h; as in (3)
and T as in (9).

Notice that the PD control actions now operate in the
object space and allow different weighting of the force
and moment components. The resulting block diagram
scheme is illustrated in Fig. 3, where the same short-
hand notation as for the other schemes has been used
for the block Kpp.

In sum, the nice feature of the proposed solution is
that the kinematic inversion is executed on task space
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variables which can be different from the ones which
are controlled. In this fashion, the user is offered the
following advantages:

o specify the task in terms of a set of convenient, phys-

ically understandable variables;

exploit eventual kinematic redundancies, for in-
stance by reconfiguring the system in a more dex-
terous configuration for the execution of the given
task [6], e.g. on the basis of task space manipulabil-
ity ellipsoids [10,11];

rely on the robustness of a control algorithm that
operates on the object space variables and then is
capable of rejecting disturbance effects occurring be-
tween the contact points and the point of interest on
the object.

4, Case Studies

The three cooperative control schemes presented in the
preceeding section have been tested on a system of two
equal three-degree-of-freedom planar arms holding a
common disk-shaped object. Link parameters in SI
units are reported in the table below where £ is the
link length, £ is the distance of the link center of mass
from the joint axis, my is the link mass, I is the link
inertia, and dj is the joint viscous friction coefficient.

Link L Lok mg Ix dy
1 0.4 0.2 15 0.228 1.5
2 0.3 0.15 10 0.080 1.5
3 0.2 0.1 5 0.019 1.5

The base frame is located at the base of the first arm
and the object frame with its z-axis oriented along the
line connecting the two contact points. The base of
the second arm is located at a distance of 0.6 from the
reference frame along the z-axis.

The object spring matrix is K, = 10°T and the vec:
tor characterizing the object at rest is (0.2 0 ﬂ')
expressed in the object frame; then, a proper coor-
dinate transformation is accomplished to obtain & as
used in (5).

The reference task requires the object absolute posmon
to follow a rectilinear path from P,(0) = (0.3 0.5)T
to Pafty) = (0.2 0.4)" in a time ¢ 2sec.
The initial end-effector position vectors are $;(0) =
(02 0.5)T and $,(0) = (0.4 0.5)T, respectively.
The assigned grasp is such that the last link of each
arm is aligned with the z-axis of the object frame, and
this must be kept constant along the path. A sketch of
the required motion is given in Fig 4. The trajectories
for the reference variables are generated by using an



interpolating polynomial of fifth order with null initial
and final velocities and accelerations.

In order to demonstrate the necessity of a control that
operates in object space variables, the actual object
location is (0.201 0 )T but the control assumes
the object to be located at (0.200 0 7r)T. It will
be seen that even a 1 mm offset will cause apprecia-
ble differences in the performance of the three control
schemes. The feedback gains of the PD control actions
have been properly tuned so as to get approximately
the same kind of response for the three schemes. The
resulting trajectories for object absolute location are
not reported since all the schemes show satisfactory
tracking behavior.

The control scheme in object space (¥ig. 1) is tested
first. The location of the two stick tips have to be
computed. It is easily obtained #1, = (0.3 0.5 O)T
and 25, = (0.3 0.5 7)T. The absolute location of
the object (6) moves from Z,(0) = (0.3 0.5 =/2)T
toF,(t;) =(02 04 /2 )T, while the relative loca-
tion between the stick tips (7) is & = (0 0 1|')T
to be kept along the entire path. Incidentally, it
can be pointed out that a geometrical interpreta-
tion of the value of the third component of Z,
is not straightforward. The gains in (8) are cho-
sen as Kp = diag(20000,20000, 2000,0,0,0), Kp =
diag(15000, 15000, 1500, 5000, 5000, 1250). Notice that
the choice of zero proportional gains for the relative
variables implies that it is desired to hold the object
without deforming it in regard to its rest state. A good
behavior is observed for the forces and moment (Fig. 5)
in spite of inaccurate object modeling.

Next, the control scheme in joint space (Fig. 2) is
tested. The reference values for the absolute object
position in (10) have already been specified above; the
absolute object orientation must be kept constant at
s = 0. As far as the relative variables, these are
immediately computed from (12), i.e. p, = 0.2, and
from (13,14), ie. ¢r1 = ¢r2 = 0 to be constant as
well. Notice that, with respect to the previous scheme,
the specification of task space variables is more direct
and easy to understand from the geometry of the sys-
tem. Then, from the above references the correspond-
ing joint space trajectories are derived via a simple
kinematic inversion. The gains in (15) are chosen as
Kp = diag(25000, 25000, 25000, 25000, 25000, 25000),
Kp = diag(500,500,500,500,500,500). This time,
the feedback gains are chosen all equal; in fact, the
controller operates in the joint space and it is cum-
bersome to associate the motion of a particular joint
to the motion of the corresponding task space compo-
nent. The internal forces reported in Fig. 6 reveal that

a bias effect occurs at steady-state due to inaccurate
object modeling.

Finally, the control scheme in object space (Fig. 3) with
specification in task space is tested. The reference val-
ues for the absolute object location are obviously cho-
sen as in the second scheme, and the kinematic inver-
sion takes place yielding the same joint reference vari-
ables as for the second scheme. The gains in (16) are
chosen as Kp = diag(360000,360000,36000,0,0,0),
K p = diag(5000, 5000, 500, 2500, 2500, 625). As above,
no object deformation is desired at rest. The result-
ing trajectories for internal forces reported in Fig. 7
dc.x  .strate that the effects of inaccurate object mod-
cing are soon recovered.

5. Conclusions

The problem of cooperative control of multiple robot
manipulators holding a common elastic object has been
addressed in this work. The focus has been pointed to
the issue of effective task variable specification and con-
trol. This has lead to deriving three different schemes
which achieve, namely; control in object space, control
in joint space, and control in object space with specifi-
cation in task space. This last scheme seems the most
attractive one since it attempts to combine the advan-
tages of the first two schemes. A number of case stud-
ies have been developed to illustrate the performance
of the three schemes. In particular, it has been shown
how the occurrence of imperfect modeling is success-
fully tackled only by the first and the third schemes.
The particular two-arm system analyzed, however, was
quite a simple one and the difficulties in programming
the reference values for the task space variables in the
first scheme could not fully been appreciated in order
to ‘break the tie’ in favor of the third scheme. Future
work will be dedicated to exploit eventual kinematic
redundancy in the system.
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Fig. 1 Block scheme of control in object space.
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Fig. 2 Block scheme of control in joint space.

Fig. 3 Block scheme of control in object space with
specification in task space.
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Fig. 4 Required motion for the two-arm system.
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