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Abstract

This tutorial work is aimed at surveying an effective local
technigue of redundancy resolution for robotic manipula-
tors al the velocity level, namely the augmented task space
method. The operational task is augmented by the addi-
tion of a proper constraint task that is intended {o specify
the iniernal motion of the arm. Conflicting task situa-
tions that lead 1o the occurrence of artificial singularities
are tackled by resorting to the Jacobian transpose for the
constraint task. Ezrtension of the scheme to the accelera-
tion level is discussed; the issue of null space joint velocity
stabilization is particularly addressed and tested in a case
study.

1. Introduction

Kinematic redundancy is adopted in robotic manipulators
to achieve more dexterous and versatile motions. The
redundant degrees of freedom available with respect to
a given task can be exploited to generate internal joint
motions that reconfigure the structure according to func-
tional constraints [1-6]. Most of the proposed techniques
solve redundancy locally, i.e. treating the manipulator Ja-
cobian as a constant matrix evaluated at the current con-
figuration; see [7,8) for tutorials. Global methods were
proposed [9-12] to achieve optimal behavior along the
whole task trajectory; even if they perform better than
local methods, they are not suitable for real-time sensor-
based robot control applications.

The natural way of specifying the internal joint motion
is the projected gradient method [1,13) that achieves an
iterative minimization of a configuration dependent ob-
Jective function. If the manipulator is guaranteed to keep
off kinematic singularities, a computationally attractive
alternative is to use the reduced gradient method [14] that
is even more efficient in approaching the local optimum.

A convenient framework to handle redundant manipula-
tors is the augmented task space approach independently
introduced in (15] and in [16], and later used in [17) under
the name of configuration control. The idea is to augment
the operational (end-eflector) task with a suitable con-
straint task that influences the internal motion of the arm.
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A typical drawback of this method, however, is the occur-
rence of artificial singularities —originally noted in (18]
in a different context— of the augmented Jacobian ma-
trix which are introduced in addition to the kinematic
singularities, due to conflicts between the two tasks.

The augmented task space approach has a theoretical
affinity with the approach based on inverse kinematic
Junctions [19] which are defined on a singularity-free
workspace; the computation of analytical functions, how-
ever, is feasible only for manipulators with a reduced num-
ber of joints.

Both the above methods enjoy the desirable property of
repeatability, i.e. closed task paths generate closed joint
paths. Nevertheless, the original technique that was aimed
to overcome the non-repeatability problem [20] of the pure
pseudoinverse solution method [21] is the eztended Jaco-
bian technique [18,22]; see also [23] for a mathematical
treatment of repeatable strategies. Differently from the
augmented task method, the constraint task vector is de-
rived through the optimization of a scalar objective func-
tion that needs to be extremized at the initial joint config-
uration in order to propagate optimality throughout arm
motion. However, similarly to the above method, a failure
occurs when the extended Jacobian is singular (artificial
singularity).

In order to manage conflicting task situations in an aug-
mented task space framework, the task priority strategy
was introduced [24] that establishes an order of priority
between the operational task and the constraint task. The
method is computationally more expensive than the pre-
vious ones, but remarkably gives a correct primary opera-
tional task solution as long as the task Jacobian maintains
full-rank. Nonetheless, the solution is ill-conditioned close
to artificial singularities due to the use of a pseudoinverse
of a matrix that becomes near rank-deficient. This draw-
back was addressed in [3], where an effective solution was
devised by treating the above matrix as singular in the
neighborhood of the artificial singularity.

From the preceding discussion it should be quite clear that
important issues in the resolution of manipulator redun-
dancy are:

o efficient exploitation of redundant degrees of freedom;
o effective handling of task conflicts, i.e. avoidance of



artificial singularities;

o repeatability of the joint paths generated with an in-
verse kinematics algorithm;

e reduced computational burden of the solution.

A desirable method that combines the computational sim-
plicity of the augmented task space technique with the ef-
fectiveness of the task priority scheme has been recently
proposed [25,26] and is surveyed in this tutorial work. The
key feature is to adopt the Jacobian transpose for the con-
straint task, so as to generate feasible solutions in the
neighborhood of artificial singularities. The original idea
refers back to [27,28], where the Jacobian transpose was
utilized to cope with kinematic singularities of the end-
effector Jacobian.

Furthermore, the extension of the scheme to the second-
order (acceleration) level is discussed. In fact, if it is de-
sired to dynamically control a redundant manipulator in
the operational space, it is necessary to compute not only
the joint velocity solutions but also the acceleration solu-
tions corresponding to the given operational motion. It
is shown how to derive an augmented task space accel-
eration solution algorithm [29], still using the constraint
Jacobian transpose, with the addition of a suitable damp-
ing term so as to avoid the undesirable effect of unstable
internal motion at the velocity level observed in [30,31].
A numerical case study is developed.

2. Task Space Augmentation

Consider a manipulator with an open kinematic chain of
links connected by joints. Let g denote the (n x 1) vector
of joint space variables and zo the (m x 1) vector of op-
erational space variables, e.g. end-effector location. The
direct kinematic equation can be written in the form

zo = fo(q), (1)

where fo is a vector-valued nonlinear function that is non-
linear for manipulators with revolute joints.

The manipulator is termed kinematically redundant when
the number of joint variables is greater than the number
of operational variables that are necessary to describe a
given task. Therefore, a manipulator is intrinsically re-
dundant when the dimension of the operational space is
smaller than the dimension of the joint space (m < n).
Redundancy is anyhow a concept relative to the task as-
signed to the manipulator. Even in the caseof m=n, a
manipulator can be functionally redundant if only a num-
ber of r omponents of operational space are of concern
for the specific task, with r < m; in other words there
does not absolutely exist a redundant manipulator, but
the same manipulator can be redundant with respect to a
task and non-redundant with respect to another.

Redundancy can provide the manipulator with dexterity
and versatility in its motions [4-6). The typical example is
constituted by the human arm that has seven degrees of

freedom: three in the shoulder, one in the elbow and three
in the wrist, without considering the degrees of freedom
in the fingers [32,33]. This manipulator is intrinsically re-
dundant; in fact, if the base and the hand position and
orientation are both fixed —that requires six degrees of
freedom— the elbow position can be moved thanks to the
additional available degree of freedom. Then, for instance,
it is possible to avoid obstacles in the workspace [3]. Fur-
ther, if a joint reaches its mechanical limit, there might be
other joints that allow the execution of the programmed
end-effector motion [1].

The augmented task space approach [15,16) provides a nat-
ural framework to exploit redundancy in robotic systems.
An additional constraint task is introduced by specifying
a (p x 1) vector zc as a function of the manipulator joint

variables, i.e.
zc = fc(q). 2)

Obviously, it is p < n — r 80 as to constrain at most all
the available redundant degrees of freedom. Augmenting
eq.(1) with eq. (2) gives

= (zo) - (fo(q)

zc fe(q)

whose solution g has to satisfy the original operational
task and meet the constraint task.

3)

An analysis of eq. (3) is difficult in view of its nonlin-
ear form that does not always allow to obtain closed-form
solutions [19]. Hence, it is customary to consider the dif-
ferential mapping that relates joint velocities ¢ to task
velocities 2, i.e.

. (Jo(q)

i= (790 4= a0

(4)

" where Jo and Jc are respectively the (r x n) operational

Jacobian matrix and the (p x n) constraint Jacobian ma-
trix. Eq. (4) is more tractable than eq. (3) thanks to its
linearity in the joint velocities. Therefore, once a task tra-
jectory z(t) is assigned, one might compute a joint veloc-
ity solution ¢ through a (pseudo)inverse of the augmented
Jacobian matrix J(g), i.e.

a=J(9)z, (5)
and then integrate over time —with known initial condi-
tion g(0)— to find a joint trajectory solution g(t). The
symbol “4” denotes the pseudoinverse of a matrix which
reduces to the inverse when the matrix is square. Notice
that (5) corresponds only to a local resolution of redun-
dancy, since the Jacobian changes with the arm configura-
tion. Further, if the whole space of redundancy is spanned,
i.e. p= n —r, the solution (5) generates repeatable joint
paths for repeatable task paths [19,23).

A crucial issue for the Jacobian matrix (pseudo)inversion
is the occurrence of rank deficiencies. In the case of eq. (4),



these are imputable not only to kinematic singularities
of the operational Jacobian Jo(q) and to constraint sin-
gularities of the constraint Jacobian Jc(q), but also to
the singularities of the augmented Jacobian J (). In
other words, even if both Jo and Jc are non-singular,
J may be singular. This happens when the rows of Je
become linearly dependent on the rows of Jo, indicating
that the constraint task is in conflict with the operational
task at the current configuration g. In technical terms, if
rank(Jo) = r and rank(Jc) = p, then rank(J)=r+p
if and only if R(JF) NR(JIE) = {0}, where R(-) denotes
the range space [26].

In this case, the manipulator is said to be in an ertificial
singularity, and no feasible solution for § exists unless
& € R(J). Actually, the constraint task is often chosen
to keep the manipulator off kinematic singularities; thus,
the occurrence of an artificial singularity is really an un-
desirable effect from a practical viewpoint.

An effective way to handle the conflicting task situations
is offered by the task priority strategy [24], that assigns
different priorities to the operational task and the con-
straint task and ensures the correct execution of the task
with higher priority. Instead of solving eq. (4) as in (5),
the joint velocity solution is computed as —dropping the
dependence on g—

i =T s0+(I-I830)(Ic(1-TYdo) \ac-dc T o),

| (6)
where I denotes the (r x r) identity matrix. The operator
- J};Jo) projects the secondary velocity contribution
on the null space M(Jo), guaranteeing correct execution
of the primary operational task which is then unaffected
by the constraint task. Obviously, if desired, the order
of priority can be switched, e.g. in an obstacle avoidance
task when an obstacle comes to be along the end-effector
path.

Solution (6) can be simplified to [3]
a=3}é0+ (e - Bao) e - deatio), @)

since the operator (I -J;Jo) is both hermitian and idem-
potent. -

The above task priority solutions, however, solve the prob-
lem of artificial singularities only in part, because both (6)
and (7) still involve the computation of the pseudoinverse

of the matrix Jo (I --J,I,J’o) which is rank-deficient at an
artificial singularity. In technical terms, if rank(Jo) = r

and rank(Jc) = p, then rank(Je(I - J3Jo)) = p if and
only if R(JE)NR(JF) = {8} [26], which is the same con-
dition as for the above augmented Jacobian matrix. This
in turn reveals that, when a pseudoinverse of the matrix
J(I-J}J0) exists, the task priority solution (6) (or (7))
“becomes just a computationally simpler expression of the
pure augmented task solution (5), and still the problem
remains in the neighborhood of artificial singularities.

A possible remedy to tackle the above inconvenience is
to use a damped laest-squares solution [34,35] in con-

nection with the matrix Jo(I - JI,JO) in such a way
that the errors due to damping will purely affect the sec-
ondary constraint task directions. It is anticipated, how-
ever, that the computational requirements of such a so-
lution might be impractical for on-line implementation of
the technique [36].

3. Constraint Jacobian Transpose Method

A well-established method to solve the inverse kinematics
of robotic manipulators is based on the use of the Jacobian
transpose in lieu of the Jacobian (pseudo)inverse [27,28).
Even if limited tracking errors occur, the former has two
basic advantages over the latter: it is computationally
cheaper and may work also at singularities.

This method can be applied directly to the augmented
task Jacobian in (4), leading to the solution
¢=J"(g9)Ke, (8)
where K is a suitable positive-definite symmetric (diago-
nal) matrix that weighs the task tracking error e = z 4~ z,
being z4 and z respectively the desired and actual task
vectors. A simple Lyapunov argument shows that the er-
ror is ultimately bounded along the trajectory z4(t) —the
larger the elements of K, the smaller the norm of e— and
is driven asymptotically to zero at steady-state (2za =0).
Notice that, in the case of p = n — r, also solution (8)
enjoys the repeatability property of solution (5); to the
purpose, it is sufficient to observe that R(JT) = R(J1).
In spite of the simplicity of solution (8), problems may
occur at an artificial singularity. Specifically, when Ke €
N(JT) with e # 0, it is ¢ = 0 and the algorithm may in

" principle get stuck. Then, depending on the task direc-
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tions specified by z4, the algorithm will guarantee conver-
gence of the sole components of Ke outside N'(JT).

In order to discriminate between the task directions pro-
vided by 2o and z¢, the task priority concept illustrated
above can be adopted to modify solution (8) appropri-
ately. In detail, assuming that higher priority is given to
the operational task, a solution to (4) can be devised in
the form [25)

@=J3Koeo + (I- I} Jo)ITKcec,  (9)

with obvious meaning of the quantities K o, Kc,eo,ec.
Notice that solution (9) can be thought as obtained by
taking the tranpose of the modified augmented Jacobian

where the constraint Jacobian is inherently projected on
the null space of the operational Jacobian.



The algorithm based on (9) ensures boundedness of the
operational tracking error eo, independently of the con-
straint task. Further, if rank(Jc) = p and R(JZ) N
R(JE) = {0}, also the constraint tracking error is
bounded. The proof goes through a Lypaunov argu-
ment [26] and is omitted here.

At this point, it is worth noticing that solution (9) requires
computation of the pseudoinverse of the operational Ja-
cobian in any case. This suggests using a solution of the
kind (5) for the operational task, but still preserving the
use of the Jacobian transpose for the constraint task {26],
ie.

d= T} (20 + Koeo) + (I~ I} J0)ITKcec.  (10)
The algorithm based on (10) gives the same performance
as before, but in addition the operational tracking error
is null, provided that ep(0) = 0. Actually the first term
of (10) represents an effective modification of the pure
pseudoinverse solution that avoids the typical problem of
numerical drift, thanks to the presence of the feedback
correction term Koep.
The essential feature of solution (10) is the use of the con-
straint Jacobian transpose which makes it to be preferred
to the pure task priority solution (7), apart from the pres-
ence of the feedback correction term for the operational
task.
When a constraint task is specified independently of the
operational task, there is no guarantee that the aug-
mented Jacobian remains full-rank along the entire task
path and incompatibility between the two tasks may arise.
The avoidance of the (pseudo)inversion of the matrix

Jo(I = 3370) allows the algorithm to work even at an
artificial singularity. In technical terms, if rank(Jc) = p
but R(JZ) NR(JIT) # {0}, when JIKcec € R(JD),
the second term of solution (10) vanishes with e, # 0;
the higher-priority operational task path is still tracked
(eo = 0) but the errors for the lower-priority constraint
task can be tolerated.

In sum, solution (10) constitutes a nice trade-off between
the computational simplicity of the augmented Jacobian
transpose solution (8) and the effectiveness of the task
priority solution (7). The savings in computation comes at
the cost of non-null tracking errors for the constraint task,
in view of the use of the transpose. It may be observed,
however, that the constraint is often constant over time
(#c = 0); then the actual errors will be smaller, and it
can be concluded that the above savings is worthwhile. A
number of case studies that demonstrate the effectiveness
of the proposed solution method can be found in [25,26).

4. Extension to Acceleration Resolution

All the above schemes solve redundancy at the velocity
level. In order to dynamically control a redundant ma-
nipulator in the operational space, it is necessary to com-
pute not only the joint velocity solutions but also the ac-
celeration solutions to the given operational space motion
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trajectory. The second-order kinematics can be obtained
by further differentiating eq. (4), i.e.
2=J(q)§+J(g,9)d (11)
At this point, it would be quite natural to solve (11)
for the joint accelerations by regarding the second term
on the right-hand side as associated to £. Thus, the
(pseudo)inverse solution corresponding to (5) is
a=J9) (- J(a.9)d) (12)
that can be integrated with respect to time —with known
initial conditions g(0), ¢(0)— to find ¢(t) and g(¢). Then
the set (g, ¢, §) can be fed into the inverse dynamics com-
putation for task space control purposes [37]. A similar

acceleration solution can be devised for the task priority
strategy that corresponds to the velocity solution (7), i.e.

g= -"gwo + (Je(1 - JciaJO))t(yc - JcJE.yo) (13)
with

(14)
(15)

Yo = Tpog — J’o{ir + Kpoéo + Kpoeo
vc =2ca-Jcg+ Kpcéec + Kpoec,

s0 as to include also proportional-derivative feedback cor-
rection terms for the operational and constraint tasks.

One shortcoming of the above procedure is that solving re-
dundancy at the acceleration level may generate internal
instability of joint velocities [30). The occurrence of this
phenomenon, which in fact sets kinetic limitations on the
use of redundancy [38], is basically related to the instabil-
ity of the zero dynamics [39] of the second-order system
described by (11) under solutions of the kind (12). A tech-
nique that overcomes the above drawback was proposed
in (31] but was too computationally demanding, since it
was based on the symbolic expression of the derivative of
the Jacobian pseudoinverse.

Nonetheless, acceleration solutions can be computed by
symbolic differentiation of veocity solutions so as to in-
herit all the properties of a first-order solution and then
avoid the above inconvenience of joint velocity instabil-
ity [40). Further insight into the relationship between
first-order and second-order methods can be found in [41).

In the framework of the augmented task space method
with constraint Jacobian transpose, the second-order so-
lution corresponding to (10) with stabilization of internal
Joint velocities is [29]

g= ngo+(I—JQJO)(JE(Kncéc+KPc80) -Kvq)

(16)
with yo as in (14); Ky is a suitable positive-definite ma-
trix that is used for the damping term in the null space
of the solution that provides well-behaved arm motion.



When e. = 0, solution (16) guarantees exponential stabil-
ity of joint velocities in the null space of the operational
Jacobian Jo. Notice that, in the case of a constant con-
straint task (2c¢ = 0), the added contribution in (16)
serves as a regularizing term that ensures positive defi-
niteness of the matrix JX KpcJc+ Ky premultiplying §.
A simple case study is carried out for a planar arm with
three revolute joints and unitary link lengths; absolute
joint coordinates were used to simplify direct kinematics
computation. The end-effector trajectory to be tracked is
cyclic and is described by

Z2o4(t) = ( 11 I 2%:.3) .

The initial arm configuration is chosen such that ep 0)=
0 but éo(0) # 0. The actual algorithms are discrete-
time versions of the continuous-time solutions presented
above and were simulated over two complete cycles with
a 2nd order Runge-Kutta integration method at 5 msec
sampling time.

In order to show the limitations of solving redundancy
at the acceleration level, the resolved acceleration solu-
tion with feedback correction term (13) but without null
space contribution (no constraint) is tested first, using
Kpo = diag{100,100} and Kpo = diag{20,20}. The
resulting stroboscopic motion of the arm is sketched in
Fig. 1. The joint trajectories (Fig. 2) reveal the build-up
of unstable velocities near the completion of the second
cycle. Note also the non-repeatability of the joint paths
afier the completion of the first cycle.

Fig. 1. Stroboscopic motion of the arm with the pure
resolved acceleration solution: first cycle (above) and sec-
ond cycle (below).
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Fig. 2. Joint trajectories (in degrees) with the pure re-
solved acceleration solution.

Next, the stable augmented task space (16,14) is tested
with the constraint task specified as the typical manipu-
lability measure [42]

zc = sin’(g — ;) + sin?(gs — ¢2)

with zcq4 = 2; the gains are Kpo = diag{100, 100},
Kpo = diag{20,20}, Ky = diag{40,40,40}, kpc
1000, kpc = 5. The overall motion of the arm is now
smoother, and is repeatable after the first cycle comple-
tion (Fig. 3); the joint trajectories (Fig. 4) demonstrate
the expected stability property and the time history of the
constraint task (Fig. 5) shows a satisfactory motion which,
differently from the above resolved acceleration solution,
is well far from kinematic singularities.



Fig. 3. Stroboscopic motion of the arm with the stable
augmented task space solution.
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Fig. 4 Joint trajectories (in degrees) with the stl.He aug-
mented task space solution.
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Fig. 5 Manipulability measure: pure resolved acceler-
ation solution (above) and stable augmented task space
solution (below).

5. Conclusion

The augmented task space approach has been presented as
an effective method to solve kinematic redundancy both
at the velocity and the acceleration level. The task pri-
ority strategy is the congenial way to handle occurrence
of conflicting task situations between the operational task
and the constraint task that cause artificial singularities
of the augmented Jacobian. The adoption of the Jacobian
transpose for the constraint task has been argued to be
a good solution that inherits both the effectiveness of the
operational Jacobian null space projection, at the basis of
the task priority strategy, and the singularity-robustness
and cheapness of the Jacobian transpose computation. A
case study has demonstrated the satisfactory performance
of the acceleration solution scheme which can provide also
stabilization of internal joint velocities.
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