o1 i, L e W, S o ki oo o AL MY * AN AT AL . SO BLA o 47

—

. L
e S R S —— L SRR

1993 IEEE International Conference on Robotics and Automation

"'“"TORIAL S5

Force and Contact Control in Robotic Systems: A Historical Perspective and
Current Technologies

Stability of Parallel Control

STEFANO CHIAVERINI AND BRUNO SICILIANO

Dipartimento di Informatica e Sistemistica
Universita degli Studi di Napoli Federico Il
Via Claudio 21, 80125 Napoli, ltaly
E-mail: chiaverini@disna.dis.unina.it
E-mail: siciliano@vaxnal.na.infn.it

Abstract

The parallel control approach provides an effective framework to design
force/position controllers for manipulators interacting with the environment.
Control actions are operated in a full-dimensional space without use of se-
lection matrices. Conflicting situations are handled by ensuring dominance
of the force control action over the position control action. The approach is
surveyed in this work and its key features are pointed out. With reference to
elastic contact with a planar surface, both an inverse dynamics control law
and a linear control law with gravity compensation are presented, and a study
of the resulting equilibrium is accomplished. Stability issues are analyzed for
the above controllers. Adaptation with respect to gravity parameters is intro-
duced to ensure regulation of force and posstmu around the same equilibrium
as in the perfect compensation case.
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1. Introduction

3

In order to make a robot manipulator capable of interacting with the en-
vironment, the forces arising from the contact must be properly considered.
When the end-effector of a position-controlled robot manipulator comes into
contact with the environment, the experienced forces are treated as distur-
bances by the controller leading to instability phenomena. It is then op-
portune to design robot control strategies that can handle the interaction
effects.

One can distinguish between techniques that assign a dynamic relation-
ship between force and position variables without explicitly using force sensor
feedback information, e.g. impedance control [1,2], and techniques that pro-
vide the robot with force sensor capabilities and suitably embed the force
measurements into the control scheme, e.g. force feedback control [3,4].

The most widely adopted approach to force/position control of robot
manipulators is the hybrid control [5-8]. Distinct force and position control
loops are designed and selection matrices are introduced to suitably switch
from one loop to the other along each task direction. Therefore, this tech-
nique well matches the framework of natural vs. artificial constraints [9).
One intrinsic drawback of the approach is that the selection mechanism is
based on the available model of the task; thus lack of knowledge about the
environment may cause improper operation of the system. Stability of hy-
brid control was addressed in [10]. The problem of force/position control
with force sensory feedback was also treated in [11] for the general case of
constrained motion tasks.

In the framework of force/position control techniques, a new control
strategy was proposed, namely the parallel control [12], which combines
the simplicity and robustness of the impedance and external force feedback
schemes with the ability of controlling both position and force typical of the
hybrid control schemes. The goal is achieved by using two controllers acting
in parallel and managing conflicting situations by means of a priority strat-
egy, i.e. the force control loop is designed to prevail over the position control
loop. This feature makes the scheme suitable to manage contacts with an
unstructured environment and unplanned collisions, which are known to rep-
resent a drawback for hybrid controllers. Extensive description of the paral-
lel approach and performance analysis of a control scheme with full dynamic
compensation in the case of contact with an elastically compliant frictionless
surface can be found in [13,14).

In the case of a force/position regulation problem, a parallel control
scheme was recently proposed which is based on simple position PD action

* 4 gravity compensation + desired force feedforward + force PI action [15].
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At the equilibrium, for given force and position set points, the force error
is driven to zero at the expense of a position error. Both local asymptotic
and exponential stability of the system have been proved [16,17]. If the
assumption of perfect gravity compensation is relaxed, the closed-loop system
converges to a different equilibrium; a suitable parameter adaptation law can
be designed so as to recover the original equilibrium [18].

This work is aimed at surveying the key features and stability proper-
ties of parallel control laws for a manipulator in contact with an elastically
compliant planar surface.

2. Parallel control

The fundamental issue to consider when designing force/position con-
trol strategies is that it is not possible to simultaneously impose on the
environment arbitrarily assigned position and force values along each task
space direction. As a consequence, the task requirement must be compat-
ible with the contact geometry. This demands for correct modeling of the
interaction task as well as for accurate task planning. Nevertheless, during
task execution, deviations from the planned task are usually experienced so
that the planned requirements may no longer be compatible with the actual
task. Therefore, the control of the interaction must be able to handle also
requirements that are inconsistent with the task.

The hybrid control approach [5] allows force/position control capabilities
but it strongly relies on detailed geometric modeling of the contact. However,
sensor information about the real task is subordinated to a selective action
which is instead performed on the basis of the planned task.

The impedance control approach [2] allows to specify a suitable rule-
based dynamic behavior between the end-effector and the environment. How-
ever, it is not possible to control both position and force variables.

In the external force feedback approach [4], an outer force control loop
is closed around an inner position control loop. However, it is not easy to
achieve position control of the unconstrained motion components of the task.

The goal of the parallel control approach [14] is to combine the simplicity
and robustness of the impedance control and the external force feedback
control with the capability of controlling both force and position of the hybrid
control. This is realized by designing two control loops —one in position and
one in force— acting in parallel along each task space direction. Conflicts
between position and force actions are handled through a rule-based priority
strategy.

A physical analysis of the interaction leads to recognize that dominance
of the force control loop over the position control loop should be achieved
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Figure 1 — Block scheme of parallel control

so as to accomodate unplanned contact forces in any situation. The most
natural way to implement the sought dominance is to use a PI force control
loop working in parallel to a PD position loop. In this respect, the scheme
can be regarded as an extension of an impedance control scheme (with added
direct force control capabilities) and an external force feedback scheme (with
improved position control capabilities). At the same time, force and position
controlled directions are not established a priori in the parallel control, as
instead in the hybrid control; full sensor measurements can thus be exploited
without any task-based filtering action.

The task planning results in force or position references along suitable
task space directions, as in the hybrid control case. A perfect planning
obviously makes the task successful, but contact is safely handled by the
parallel control even in the case of planning errors. Recovery from unexpected
impacts is made possible thanks to the force dominance rule.

A conceptual block scheme of the parallel control is presented in Fig. 1,
where f denotes the contact force, p the end-effector position, u the end-
effector driving force —obtained by adding a force component u; to a posi-
tion component u,— and fa, pg are respectively desired force and position.
In the following, the attention is focused on three-dimensional vectors, i.e.
translational motion and force components.

The dynamic model of the manipulator in a singularity-free region of
the workspace can be written in the well-known form

B(p)p+C(p,p)p+9(p)=u-1, )

where B is the symmetric and positive definite inertia matrix, Cp is the
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vector of Coriolis and centrifugal forces, and g is the vector of gravitational
forces; all quantities are expressed in a common reference frame.

According to an inverse dynamics concept with contact force sensor mea-
surements, the vector of driving forces can be synthesized as

w= %ﬁ(p)m&(p,mma(p)ﬁ, @)

where the hat denotes the available estimates of the dynamic terms, mq is
a desired mass and ¥ is a new force input. Substituting control (2) into
model (1), under the assumption of perfect compensation, gives

mgp = U (3)

that is a linear decoupled purely inertial system.

In the framework of the parallel control approach, the new force input
is designed as [12)

u= ﬁp + 1‘2, (4)

ﬁp = mgﬁd + kpép + kpep (5)
t

ﬁ_,-:k;.—e;+k;/e,-d‘r (6)
0

with e, = ps — p and e5 = f4 — f. Substitution of (4-6) in (3) yields

t
0

which reveals how ey is allowed to prevail over e, at steady-state. Note
that if fo = f during task execution then uy = O and the usual resolved
acceleration behavior is recovered.

The parallel control scheme based on (2,4,5,6) requires complete knowl-
edge of manipulator dynamic model. If a force/position regulation task is
of interest, i.e. p; and f; are constant set points, a computationally lighter
control law can be chosen as [15]

t
u=—kp;'?+kpe,+§(p)+fd+kpef-l-k;]e;dr (8)
. 0

which corresponds to position PD action + gravity compensation + desired
force feedforward + force PI action. Note that the use of gravity compen-
sation is inherited from ordinary PD position control to avoid steady-state
position errors.
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3. Study of equilibrium

In order to analyze the performance of the above parallel control laws,
a study of interaction with the environment must be accomplished.

Accurate modeling of the contact between the manipulator and the en-
vironment is usually difficult to obtain in analytic form, due to complexity
of the physical phenomena involved during the interaction. It is then rea-
sonable to resort to a simple but significant model, relying on the robustness
of the control system in order to absorb the effects of inaccurate modeling.
Following these guidelines, the case of an environment constituted by a rigid,
frictionless and elastically compliant plane is analyzed. The choice of a pla-
nar surface is motivated by noticing that it is locally a good approximation
to surfaces of regular curvature. The rigidity of the contact plane allows to
neglect the effects of local deformation at the contact. The total elasticity,
due to end-effector force sensor and environment, is accounted through the
compliance of the plane. Friction effects are neglected within the operational
range of interest.

With the above assumptions, the model of the contact force considered
takes on the simple form

J =K(p - po), (9)

where p is the position of the contact point, p is a point of the plane at rest,
and K is the constant symmetric stiffness matrix that establishes a linear
mapping between (p — po) and f; note that Equation (9) holds only when
the manipulator is in contact with the environment and all quantities are
expressed in the common reference frame. Further, observe that:
e The contact force is orthogonal to the plane for any vector (p — po);
then, a base of R(K) —R(K') denotes the range space of matrix K—
is the unit vector n orthogonal to the plane, and rank(K) =1 < 3.

o All vectors (p — po) lying on the plane do not contribute to the contact
force; then, a base of A'(K) —A/(K') denotes the null space of matrix
K— is a pair of linearly independent unit vectors (¢;, tz) tangential to
the plane.

e In force of the symmetry of K, R(K) = R(KT), and a convenient
choice for (t;, t2) is such that the columns of the matrix

R=(t; t; n) (10)

form a set of orthonormal vectors constituting a base of IR3.
According to the above remarks, the matrix K can be decomposed as

K = Rdiag {0,0,k}RT = knnT, (11)
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Figure 2 — Construction of the equilibrium in a two-dimensional case

where R is the rotation matrix from the contact frame to the reference frame,
and k > 0 is the stiffness coefficient.

The elastic contact model (9,11) suggests that a null force error can be
obtained only if f3 € R(K). H no information about the geometry of the
environment is available, i.e. n is unknown, the null vector can be assigned
to fs that is anyhow in the range space of any matrix K. Analogously, it can
be recognized that null position errors can be obtained only on the contact
plane (t,,¢;), while the component of p along n has to accomodate the force
requirement specified by fa; thus, ps can be freely reached only in A(K),
i.e. along the unconstrained directions of the task space.

As demonstrated in [14] for the perfect gravity compensation case (g =

g) and in the assumption that f; € R(XK), the equilibrium {pso, foo} for the
system (1) under the control (2,4,5,6) is

Po = %nnT(fd + kpo) + (I — nnT)pa (12)
foo = a5 (13)

this is consistent with the above considerations about specification of position
and force set points. An example of construction of the equilibrium point in
a two-dimensional case is illustrated in Fig. 2. It is not difficult to show that
the same equilibrium is reached also under the control law (8).

If the desired force set point fq is not aligned with n, an equilibrium tra-
jectory rather than an equilibrium point is obtained. In fact, the equilibrium
{Peo, foo} for the system (1) under the control (2,4,5,6) is [14]

Poo(t) =P + Bt (14)
00 = ﬂn.rfds (15)
7
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where

: p==nnT(fs+ kpo) + (I —nnT)pu (16)

k
V= -ki-(I- nnT)fd, (17)
kp

showing a drift motion due to both misalignment of fs with n and presence
of the integral action (k; # 0); note that in practical designs it is kp > k1
which attenuates the magnitude of the drift. A more complex analysis is
needed to compute the equilibiium trajectory for the system (1) under the
control (8).

As a final remark, in the case of a curved surface, a linear contact force
model as in (9) can still be written but K becomes a function of py which
is in turn a function of p [19). The problem becomes far more involved and
deserves further investigation case by case.

4. Stability analysis

In this section it is assumed that the desired force is aligned with the
normal to the contact plane and the contact is not lost after the impact.

The stability analysis of the system (1) under the inverse dynamics paral-
lel control (2,4,5,6) with the environment (9-11) can be developed according
to classical linear systems theory. In detail, plugging (9) in (7) gives

4
map + kpp + (kpI + kpknnT)p + k;kﬂnT/pdf (18)
0
t
= mgpa + kppa + kppa + ke(fa + knnTpo) + ks / (fa+ knnTpo)dr
0

which represents a third-order linear system, whose stability can be analyzed
by referring to the unforced system

t
mgp+ kpp + (kpI + kpknnT)p + k;knnT/ pdr = 0. (19)
0

According to (10), projection of the position vector on the contact frame

yields
T 4|
R'p=|p (20)
Pn
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which leads to the system of three scalar decoupled equations
mgpy + kppr + kppy =0
mgp2 + kpps + kpp2 =0 (1)
mapn + kppn + (kp + krk)pa + k;k/o‘p,.d-r =0;

a stable behavior is then ensured by a proper choice of the feedback gains
kp,kp,kF,k; for the third equation. The following remarks are in order [14]:

e Stability is obtained independently of the actual normal direction to the
plane; this essential feature of the parallel approach allows to design
the controller based on the contact stiffness coefficient while the actual
contact geometry is taken into account only at the planning level.

e The decoupled dynamics of the system (19) derives from structural prop-
erties of the parallel control scheme by virtue of the contact force mea-
surement; this is different from the hybrid approach where a decoupled
dynamics is imposed by the control law on the basis of the environment
model.

The study of stability for the force/position regulation case requires
methods from nonlinear systems theory. To this purpose, an energy-based
argument inspired by the kind of Lyapunov functions used for stability of
PID position control [20] can be pursued. It should be emphasized that the
Lyapunov method is used only as a means to prove stability of the closed-
loop system, and not to derive the control law in a constructive manner;
the control law, in fact, has been postulated above on the basis of physical
considerations related to the parallel approach in a problem of interaction
with an elastically compliant surface.

The key point is to find a state description for the system which is
suitably augmented to take into account the interaction force in respect of
the constraints imposed by the contact. Such a description should lead to
a Lyapunov function composed by a potential energy term related to the
deviation from the equilibrium contact position, a kinetic energy term related
to the system rate of motion, as well as a term related to the energy stored
along the normal direction to the plane due to the integral force action. This
is accomplished by considering the (7 x 1) state vector [16]

()
z=|e], (22)
s

e=pm—p=e,+-—Pd (23)

where
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.s-—-—-l-nT (/‘e d-r—-l-d) (24)
k 0 1 Tk )

a= 2nnT(fu b kipo-pa) (25)

with

being a constant vector taking into account the effects of the environment
contact force and the desired force set point. It is important to remark that
z = 0 corresponds to the equilibrium (12,13), as can be easily verified. Also,
note that

nTe = %nTef (26)
é=—p (27)
i=nTe. (28)

The augmented system described by (1,27,28) under the control (8) can
be written in the standard compact homogeneous form:

z=Fz, (29)
where
-B~Y(C + kpI) B“(ka+k'FknnT) kikB~'n
F = I (0 0 (30)
oT nT 0

with k% = 1 + kp. Note that some handy reductions —using the structural
properties of K in (11) and the definition of s in (24)— have been performed
to derive (30).

On the basis of the above augmented state space description, suitable
Lyapunov function candidates can be constructed to derive local stability
results around the origin of the state space in (22). The key feature of such
functions is the introduction of off-diagonal terms and positive constants
which are remarkably not used by the control law. These constants serve
as additional degrees of freedom to satisfy conditions on the feedback gains
guaranteeing stability of the system (29,30). Two major results have been
recently obtained [17] and are stated below. =

o Local asymptotic stability can be demonstrated by choosing the following
Lyapunov function:

V= -;—zTPz, (31)

10
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where

B -pB 0
P=|-pB (kp+pkp)I+kirk nnT kikn (32)
oT kiknT pkik
with p > 0.

o Local ezponential stability can be demonstrated by choosing the following
Lyapunov function:

W= %zTQz, (33)

where

B -pB —-vBn
Q= ( -BB  (kp+ Bkp)I + kipknnT (krk + vkp)n ) ,
—-ynTB (k1k 4 vkp)nT Bkrk + v(kp + krk)
(34)

with 8,9 > 0.

Technical details about the stability proofs have been omitted for brevity
and can be found in [17]. It is worth reporting here that kp is not involved
by the conditions on the feedback gains that guarantee local asymptotic
stability, and then is available to meet further design requirements during
the unconstrained phase of the task. On the other hand, local exponential
stability is more demanding and in fact leads to more complex conditions on
the feedback gains involving also kp.

It is important to point out that local asymptotic stability holds also in
the case of imperfect gravity compensation. It can be shown that a different
equilibrium {Pec, foo} is reached for the system (1) under the control (8)
with g # g [21], i.e.

Poo = T T(fu+ kpo) + (I = 0" (pa = =(9(Pec) ~ §(Pos)) (35)
fuo=fo (36)

In this case, the force set point is still attained while a different end-effector
equilibrium position is reached compared to the case of perfect gravity com-
pensation. More specifically, a comparison between (12) and (35) reveals
that the components of p along the constrained task direction n coincide,
while the imperfect gravity compensation affects the components of p along
the unconstrained task directions ¢;,¢;.

In order to counteract imperfect estimation of the gravity term, the
control law (8) can be made adaptive with respect to a suitable vector of
manipulator and load constant parameters € in g, i.e.

9(p) = G(p)b. (37)

11
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In view of this, the control law can be rewritten as [18]

1

u=—kpp+kpe, + G(p)8 + fa+ kres + kl‘/o eydr, (38)

where 8 is the vector of estimated parameters. With this choice, the equa-
tions of the closed-loop system become

with z as in (22), F as in (30), and

-B-1G(z)6
p= ( ] ) (40)
0

where 8 = 6 — 8 is the parameter error vector.

In addition to the control law (38), the parameter estimate vector is
determined according to the update law

0=-167(9) (- B(es + 1 [ eser)) (41)

with v > 0.

Local asymptotic stability around the original equilibrium (12,13) can
be proved [18]. It is worth mentioning here that the proof is based on the
Lyapunov function candidate

W'(z,6) = %zTQz + %v‘o’?b’, (42)

in which remarkably Q is the same as in (34). Differently from the local
exponential stability case, 4 is not available to satisfy conditions on the
feedback gains but it is keenly chosen to render the adaptation law a function
of physically measurable quantities already used in the control law (38), i.e.
position, velocity and force measurements [18]. Finally, observe that the
parameter error vector is not guaranteed to converge to zero and a residual
error may exist at steady-state, depending on the structure of the regressor
G, this is like in classical adaptive motion control theory.

5. Conclusions

The key features and stability properties of the parallel control approach
have been surveyed in this work. The effectiveness of the approach resides

12
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in the capability of controlling the interaction while the task geometry is
accounted at the planning level. Two parallel control laws have been illus-
trated: one with full dynamics compensation meant for tracking tasks, the
other with just gravity compensation meant for regulation tasks. Remark-
ably, the two controllers exhibit the same steady-state performance. Stability
izsued have been analyzed for both schemes, in the linear and nonlinear set-
tings respectively. When the assumption of perfect gravity compensation is
relaxed, the system preserves the stability property converging to a different
equilibrium though. Recovering of the original equilibrium can be ensured
by resorting to an adaptive law on the parameter estimates in the gravity
term.
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