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Abstract

The problem of designing a control scheme for robot
manipulators in contact with a compliant surface is
considered in this work. A passivity-based force/posi-
tion control scheme is designed. A keen choice of the
reference vector used in the conirol law is proposed as
a function of the end-effector position and velocily er-
rors and the integral of the contact force error. It is
demonstrated that the scheme ensures tracking of the
unconstrained components of the desired end-effector
trajectory with regulation of the desired contact force
along the constrained direction. In the imperfect model
compensation case, the scheme is made adaplive with
respect to a set of dynamic parameters. Numerical case
studies are presented for an indusirial robot manipu-
lator.

1. Introduction

The use of force sensor measurements is crucial for the
success of an interaction task between the manipulator
and the environment. A number of schemes using force
feedback have been proposed in the literature which
are aimed at controlling both end-effector position and
contact force. The most common strategy is hybrid
force/position control {1]-{4) where either a position
or a force is controlled along each task space direction.
A different strategy is to control both a position and
a force along each task space direction and manage
the conflict between force and position by a suitable
control design; examples of control schemes of this kind
are the inner-outer force/position control [5] and the
parallel force/position control [6].

The parallel control scheme is suitable to manage con-
tacts with scarcely structured environments which are
known to represent a drawback for hybrid controllers.
The performance of a parallel controller with inverse
dynamics compensation in the case of contact with an
elastically compliant frictionless surface was studied
in [7],[8]. Recently a parallel regulator with gravity
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compensation has been proposed [9],[10] which guar-
antees that the force error along the constrained task
direction is driven to zero at the expense of a steady-
state position error. An adaptive version with respect
to gravity parameters has also been developed [11],[12].

This paper is devoted to derive a parallel force/po-
sition control scheme in a passivity framework [13].
In comparison with inverse dynamics controllers,
passivity-based controllers are expected to have en-
hanced robustness since they do not rely on the ex-
act cancellation of nonlinear terms [14]. Also, they
naturally allow making the controller adaptive in the
unknown parameter case.

As in typical passivity-based control schemes for robot
manipulators in free space, the resulting control law is
formed by a nonlinear model-based term and a lin-
ear compensator action. The key contribution of the
present work is to establish a functional expression of
the reference vector to be used in the controller which
is related both to the end-effector position and veloc-
ity errors and to the integral of the contact force error.
This is conceptually different from previous passivity-
based hybrid force/position controllers [15],[16] where
each component of the reference vector is related ei-
ther to a position error or to a force error in respect
of the task space direction selection mechanism.

It is demonstrated that the resulting control scheme
ensures tracking of the unconstrained components of
the desired end-effector trajectory with regulation of
the desired contact force along the constrained direc-
tion. Also, if uncertainty occurs on the dynamic model
parameters, the scheme is made adaptive by introduc-
ing a conventional parameter estimate update law.

An industrial robot manipulator is considered to de-
velop numerical examples aimed at analyzing the per-
formance of the proposed scheme both in the known
parameter case and when an unknown payload mass
is considered.



2. Modeling

The dynamics of a constrained rigid robot manipulator
are described in the task space [2] by the following
equations

B(z)z + C(z,z)z +g(z) =u - f, 1
where z is the (m x 1) vector of task variables (usually
end-effector location), B is the (m x m) symmetric
inertia matrix, Cz is the (m x 1) vector of Coriolis
and centrifugal generalized forces, g is the (m x 1)
vector of gravitational generalized forces, u is the (m x
1) vector of driving generalized forces, and f is the
(m x 1) vector of contact generalized forces exerted
by the manipulator on the environment; all task space
quantities are expressed in a common reference frame.
The (n x 1) vector T of joint actuating generalized
forces is computed as

T =J%(gu, (2)

where g is the (n x 1) vector of joint variables and J
is the (m x n) manipulator Jacobian matrix.

In this work, the case of non-redundant (m = n} non-
singular manipulators is treated. Then the vector =
represents a set of Lagrangian generalized coordinates
and the matrix B is positive definite.

Two notable properties of the dynamic model (1) can
be established [15]:

e There exists a choice of the matrix C such that
the matrix

S(z,z) = B(z) - 2C(z,z) (3)

1s skew-symmetric. This property is a direct con-
sequence of the passivity of the mapping u — z.

e The dynamic model (1) is linear in terms of a
suitable set of manipulator and load constant pa-
rameters, i.e.

B(z)i + C(x,%)& + g(z) = Y(,2,2)0 (4)

where Y (2, &, &) is an (m x p) matrix and 8 is a
(px 1) vector of manipulator and load parameters.

3. Control design
Consider the following control law
u = B(z)r + C(z,2)r +g(z) - Kp(@ —7)+ f, (5)

where ﬁ, ?:, g are the estimates of B, C, g respec-
tively, f is the measured contact force, r is an (m x 1)
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reference vector and Kp is a symmetric, positive def-
inite gain matrix.

Assuming that B , c , g have the same functional form
of B, C, g with a (p x 1) vector of estimated param-
eters 8, the control law (5) can be written as

u=Y(z,z,r,7)0-Kp(z—r)+f  (6)

where the property expressed by (4) has been used.
Notice that the matrix C in (5) must satisfy a property
analogous to the skew-symmetry of the matrix in (3).
Combining (1) with (6) gives

B(z)é + C(x,z)e + Kpe = Y(-)8 (7)

where 8 = 8 — 8 and

e=z—r

(8)
(9)

Consider initially the known parameter case, i.e. 0=
0. A simple energy argument exploiting the passivity
property of the Lagrange model (7) leads to showing
that e € L3'NLT, where LT and L are the standard
Lebesgue spaces [17]; further, e — 0 as t — oo {13].

e=2x —r.

To obtain a force/position controller, the force and
position errors can be obtained as the output of an ex-
ponentially stable, strictly proper filter whose input is
the reference vector e € LT NLT (see the fundamental
input/output theorem on p. 59 of [17]).

The parallel control strategy [6] suggests to relate the
error vector in (8) to both a position and a force er-
ror, without any selection mechanism as in [15],{16] in-
stead. Along the constrained task directions the con-
flict between the position and force actions must be
managed by imposing dominance of the force action
over the position one.

Let #; denote the {ime-varying desired end-effector
position, with 4,24, 24 € LT. Let also f3 denote the
constant desired force. Then indicate by Az = z -z,
the error between the actual and desired end-effector
position, and by Af = f — f4 the error between the
actual and desired contact force. A keen choice for the
error vector in (8) is the following

e=(s+ M)Az + As 1 Af (10)

where s is the Laplace variable and Ay, A3 > 0.

By virtue of this choice, from (8) and (9) the reference
vector 7 and its derivative become

t
r::i:—e::i:d—/\lAz—AZ/Afda (11)
o

T=I-—e=1&4—\Ax - MAf. (12)



These expressions reveal that the control law (5) re-
quires only joint position and velocity and end-effector
contact force measurements.

It is worth noticing that Az and Af are not indepen-
dent since they are constrained by the contact with
the environment. Without loss of generality, the case
of m = n = 3 is taken, i.e. only translational mo-
tion and force components are considered. Also the
environment is thought of as a frictionless, elastically
compliant plane. Hence, the model of the contact force
takes on the simple form

f = K(z — =), (13)

where z is the position of the contact point, z¢ is a
point of the plane at rest, and K is the (3 x 3) constant
symmetric stiffness matrix that can be expressed as

(14)

where k > 0 is the stiffness coefficient and n is the
unit vector orthogonal to the contact plane.

Equation (10) can be effectively decomposed into the
component along n and the components on the plane
of contact, so that the analysis is reduced to the fol-
lowing three (one + two) equations:

K =knnT

en = (s + A1)Az, + Aas™LAf,
ep = (s+A1)Az, — Ays™ fap,

(15)
(16)

where, with obvious notation, Equation (15) involves
the normal components of the force and position vec-
tors, and Equation (16) involves the components par-
allel to the plane. Notice that the contact model
(13),(14) implies f, = 0; hence it is reasonable to
choose f4, = 0. If no information about the plane ge-
ometry is available, i.e. the direction of n is unknown,
it is possible to choose fq = 0.

In view of (13),(14), the position along the normal
direction is given by

Tn =k-1Afn+k_lfdn+IOn- (17)
From (15),(17) it follows that
Afp=k(—2 18
" 52+/\18+k/\26n ( )
s(s+ A1)

—_— — _l —
2+ Ais + k)\z(a:dn k fdﬂ -"-'On)) .

Further, Equation (16) with fz, = O gives

1

A$p = mep.

(19)
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Because the transfer function between e, and Az, is
strictly proper and exponentially stable, by observing
that e, € L3N L2, and e, — 0 as t — 0o, the theorem
on p. 59 of [17] implies that Az,, Az, € L2NLE, and
Azy, Az, — 0 as t — 0.

Regarding the force error along the normal, the trans-
fer function between e, and Af, is strictly proper and
exponentially stable but the presence of the second
term does not allow in general concluding a similar
convergence result as above. In particular, both fy,
and zo, are constant whereas the normal component
of the desired position may be time-varying. This im-
plies that if 24, is a constant then the second term goes
to zero as t — 00; hence, observing that e, € L2NL
and e, — 0 as t — o0, it follows that Af, € L and
Af, — 0 as t — oo in view of a similar argument as
above. On the other hand, if z4, is not a constant,
Z4n € Lo implies Af, € Lo, only.

It remains to show that all the signals in the closed-
loop system (1),(5) remain bounded. This is eas-
ily obtained since from (17)-(19) it follows that
z,2,Af, [Afdo € L3,; further from (10)-(12) it fol-
lows that e, r,+ € £3, and from (7),(9) it is & € £3,.
Next, the unknown parameter case is treated. Choose
the parameter estimate update law as

6=-r-'YT()e (20)
where I' is a (p X p) symmetric, positive definite ma-
trix. This law together with the control law (6) en-
sures that the mapping —e — Y @ is passive [13]. As
a consequence, e € L3N L3, (= LE,. From (19)
Az, Az, € L3N L2, and Az, — 0 as t — oo.
From (18) Af, € Lo and if x4, i1s a constant then
Af, — 0 as t — co. In view of similar arguments as
above, it can be shown that 2,&,r,# € L3, and then
Y(-)8 € £3,. Further, from (7),(9) it follows that
# € L%, and in particular Az, € £2%; this implies
that Az, is uniformly continuous and in turn, since
Az, € L3, Az, > 0ast — o0,

In sum, both in the known and in the unknown pa-
rameter case, it is possible to design a passivity-based
control scheme (with adaptive law) that guarantees
tracking of the end-effector position along the uncon-
strained directions with regulation of the contact force
along the constrained direction.

4. Case study

The proposed control scheme was tested in simula-
tion on the industrial robot COMAU SMART-3 6.12R
(Fig. 1). Only the first three joints were considered,




constituting an elbow manipulator geometry with zero
shoulder offsets. A load of 12 kg mass and zero inertia
was added at the end-effector. The complete dynamic
model and numerical data of robot parameters are re-
ported in [18]. Simulations were run in MATLAB at
a sampling time of 5 ms.

The geometry of the contact plane is characterized
byn=(1 0 0)f and 2o = (107 0 0)T [m].
The gains in (11),(12),(5) were set to A; = 200 s™1,
Ay = 0.1 kg~!, Kp = kpI with kp = 200 kgs™?.
This choice guarantees a well-damped behavior both
for the unconstrained and constrained motion with
an estimate of the stiffness coefficient of the plane
k=105 Nm!.

In the following, simulation results relative to two dif-
ferent tasks are presented. For simplicity a bidimen-
sional task geometry in the zz-plane was considered;
thus the sole z- and z-components of position vector
and the z-component of the force vector are reported.

In the first task the effectiveness of the control scheme
in the known parameter case when an unexpected
contact occurs was tested. A motion from z4 =
(10 O)T [m] tozg = (1.1 0 0.05)T [m] along
a rectilinear path was commanded to the end-effector;
the trajectory along the path was assigned as a raised
cosine time law. A set point f; = 0 was assigned to
the contact force. It can be recognized that a contact
occurs at a distance of 0.03 m from the target point
x4 along the z-axis direction. Figure 2 shows the time
history of the contact force; it can be seen that the
force remains bounded during the contact and goes to
zero at steady state, so as desired. Figure 3 shows the
desired path (dashed line) and the actual path (solid
line) of the end-effector in the zz-plane; notice that
only the unconstrained component of the desired posi-
tion vector, i.e. the 2- component, is followed whereas
the z-component at steady state reaches that of the
environment at rest.

For the second task a stable contact of the end-effector
with the elastic plane was first sought, then a motion
on the contact surface was commanded by requiring
a constant force of 100 N along the normal direction.
The orientation of the contact surface was supposed
known, but the position of the plane at rest was sup-
posed affected by an uncertainty of 0.01 m. To ensure
the contact starting from 24 = (1 0 0)7 [m], the
approach phase was managed by imposing a rectilinear
path towards ®4,, = (1.08 0 0)" [m]. The force set
point was initially set to f4 = 0 and switched to f; =
(100 0 0)T [N] as soon as a non-null contact force
was sensed. Then, by preserving the force set point,
a rectilinear path from z4, = (1.08 0 0)T [m] to
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z4 = (1.08 0 0.03)T [m] was assigned. Rised co-
sine time laws for the reference position trajectories
were considered.

Three sets of simulations were carried out with the
following controllers:

(a) control law (5),(11),(12) with compensated load
mass;

(b) control law (5),(11),(12) with non-compensated
load mass;

(c) control law (6),(11),(12) with initially non-com-
pensated load mass and adaptive law (20).

With reference to (4), the dynamic model has been
parametrized with respect to the three parameters re-
lated to the load. These are the load mass, the first-
order moment with respect to joint 3, and the inertia
of the load mass with respect to joint 3.

The numerical results are illustrated in terms of the
time history of the contact force, the path of the end-
effector in the zz-plane, the time history of the z-
component of the position tracking error, and the time
history of the norm of the parameter error.

Figure 4 shows that the contact force is practically the
same in the three cases thanks to the integral action
on the force error in the control law.

Figure 5 shows the actual paths in the three cases
(solid lines) with respect to the desired path (dashed
line). It can be seen that a deviation along the z di-
rection occurs in case (b) which is caused by the non-
compensated load mass, whereas good reproduction
of the desired path is obtained in the other two cases.
Notice also that the actual path along the z-direction
is constrained by the presence of the contact plane and
thus a deviation from the desired path occurs which
is determined by the amount of desired contact force
and plane stiffness.

Figure 6 shows how the adaptation mechanism,
case (c), allows recovering the tracking position er-
ror which affects the behavior of the control law in
case (b), and the performance favorably compares
with that of the controller with perfect compensation,
case (a).

Finally, Figure 7 shows that the norm of the param-
eter error remains bounded along the trajectory, as
anticipated in theory.

5. Conclusions

A passivity-based force/position control scheme for
robot manipulators in contact with an elastically com-
pliant surface has been proposed in this work. Inspired
by the parallel force/position control framework, the



reference vector used in the control law has been keenly
related both to the end-effector position and velocity
errors and to the integral of the contact force error.
Both theory and simulation results have demonstrated
that the scheme ensures position tracking along the un-
constrained directions and force regulation along the
constrained direction. By virtue of the passivity for-
mulation the scheme has been naturally extended to
handle adaptation with respect to a vector of manipu-
lator and load parameters. In particular the simula-
tion results have demonstrated the effectiveness of the
control scheme with adaptive law in the case of an
unknown load mass.

Experimental tests on the industrial robot COMAU
SMART-3 6.12R using an ATI force/torque sensor FT-
30/100 will be conducted in the near future.
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