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Abstract:
An algorithm for real-time estimation of the pose of a moving object of known ge-
ometry is considered. The algorithm is based on a discrete-time Extended Kalman
Filter which computes the object pose on the basis of visual measurements of
the object features. The robustness of the algorithm with respect to measurement
noise and modelling errors is improved by considering a full adaptive version of
the Extended Kalman Filter. A complete experimental study is presented to test
the performance and feasibility of the approach. Copyright c© 2005 IFAC
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1. INTRODUCTION

The autonomy of a robotic system operating in
unstructured environments can be significantly
enhanced if a visual system is adopted to achieve
direct measurements of the task in progress.

Since visual measurements are affected by signifi-
cant noise and disturbances, the accurate estima-
tion of the position and orientation of a target ob-
ject in motion may be a difficult task. For this rea-
son, the Extended Kalman Filter (EKF) is usually
adopted to achieve noise rejection and enhance
estimation accuracy (Wang and Wilson, 1992).

If the quality of the camera sensors is good, the
illumination of the scene is stable, and the model
of the object is accurate, then the use of a classic
formulation of the EKF may guarantee satisfac-
tory results. In fact, in the above hypothesis, it

⋆ This work was supported by CNR and MIUR.

is reasonable to assume that the statistics of the
state noise and of the observation noise are known
a priori and remain constant, as required by the
EKF. On the other hand, if one ore more of the
above conditions are not verified, it may be con-
venient to adopt an Adaptive Extended Kalman
Filter (AEKF) (Myers and Tapley, 1976). Vari-
ous formulations of AEKF are available, which
address the problem of the real-time adaptation
of the statistical parameters of the covariance
matrices of the state and observation noise (Jetto
et al., 1999; Ficocelli and Janabi-Sharifi, 2001).

In the work (Lippiello et al., 2004), an AEKF
has been presented, based on the visual motion
estimation algorithm proposed in (Lippiello and
Villani, 2003). The adaptive law is inspired to the
heuristic approach of (Myers and Tapley, 1976).
The novelty of the algorithm mainly concerns
with the adaptive law for the observation noise
statistics, which is suitably designed for a visual
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Fig. 1. Pin-hole model of the camera and reference
frames

motion estimation problem based on the use of a
variable set of image features.

This paper is aimed at presenting a complete ex-
perimental study to demonstrate the effectiveness
of the adaptive approach proposed in (Lippiello et
al., 2004). A number of case studies are presented,
to compare the EKF versus the AEKF with dif-
ferent object trajectories as well as to appreciate
the effects of the update laws for the state and
observation noise covariance matrices separately.

2. MODELING

Consider the pin-hole model of a video camera
fixed with respect to a base coordinate frame O–
xyz represented in Fig. 1. Let Oc–xcyczc be a
frame attached to the camera (camera frame),
with the zc-axis aligned to the optical axis and
the origin in the optical center. A superscript will
be used to denote the reference frame of a variable,
whenever different from the base frame.

The sensor plane is parallel to the xcyc-plane
at a distance −fe along the zc-axis, where fe

is the effective focal length of the camera lens.
The image plane is parallel to the xcyc-plane at a
distance fe along the zc-axis. The intersection of
the optical axis with the image plane defines the
principal optic point O′

c, which is the origin of the
image frame O′

c–uv whose axes u and v are taken
parallel to the axes xc and yc, respectively.

A point P with coordinates cp =
[

cx cy cz
]T

in
the camera frame is projected onto the point of
the image plane of coordinates

[

u

v

]

=
fe

cz

[

cx
cy

]

, (1)

that can be expressed in terms of number of pixels
as

[

α

β

]

=

[

α0

β0

]

+

[

su 0
0 sv

] [

u

v

]

(2)

being
[

α0 β0

]T
the coordinates of the point O′

c,
whereas su and sv are the row and column scaling
factors, respectively.

The position and orientation of a frame Oo–xoyozo

attached to the target object with respect to the
base frame can be expressed in terms of the vector

of the origin oo =
[

xo yo zo

]T
and of the rotation

matrix Ro(φo), where φo =
[

ϕo ϑo ψo

]T
is the

vector of the Roll, Pitch and Yaw angles.

Consider m feature points of the object. The
coordinate vector cpj of the feature point Pj

(j = 1, . . . ,m) can be expressed as
cpj = RT

c

(

oo − oc + Ro(φo)
opj

)

(3)

where oc and Rc are, respectively, the position
vector and the rotation matrix of the camera
frame with respect to the base frame, whereas
opj is the coordinate vector of Pj expressed in
the object frame. Notice that opj is a constant
vector that is assumed to be known, since it can
be computed from a CAD model of the object.
Moreover, the quantities oc and Rc are constant,
because the camera is assumed to be fixed to
the workspace, and can be computed through a
suitable calibration procedure.

By folding the 3m equations (3) into (1) and (2), a
system of 2m nonlinear equations is achieved. The
equations depend on the measurements of the m
feature points in the image plane of the camera,
while the six components of the vectors oo and
φo are the unknown quantities to be estimated.
To achieve a solution at least three non-aligned
points (six independent equations) are required.

The computation of the solution is nontrivial.
The Kalman filter provides a computationally
tractable solution, which can also incorporate and
exploit redundant measurement information.

3. EXTENDED KALMAN FILTER

In order to estimate the pose of the object, a
discrete-time state space model of the object mo-
tion has to be considered. The state vector of the
model is chosen as the (12 × 1) vector

w =
[

xo ẋo yo ẏo zo żo ϕo ϕ̇o ϑo ϑ̇o ψo ψ̇o

]T

. (4)

For simplicity, the object velocity is assumed to
be constant over one sample period T . The corre-
sponding dynamic modelling error can be consid-
ered as an input disturbance γk. The discrete-time
dynamic model can be written as

wk = Awk−1 + γk (5)

where the state transition matrix A is a constant
(12 × 12) block diagonal matrix of the form

A = diag

{[

1 T

0 1

]

, . . . ,

[

1 T

0 1

]}

.

The outputs of the Kalman filter are chosen as
the vectors of the normalized coordinates of the m
feature points in the image plane of the camera

ζu
k =

[u1

fe

· · ·
um

fe

]T

k
(6a)



ζv
k =

[v1

fe

· · ·
vm

fe

]T

k

. (6b)

In view of (1), the corresponding output model
can be written in the form

ζu
k = gu(wk) + νu

k (7a)

ζv
k = gv(wk) + νv

k (7b)

where νu
k and νv

k are the observation noise vectors
for the u and v components of the normalized
image plane, and gu(wk), gv(wk) are defined as

gu(wk) =

[

cx1

cz1
· · ·

cxm

czm

]T

k

(8a)

gv(wk) =

[

cy1
cz1

· · ·
cym

czm

]T

k

. (8b)

The coordinates of the feature points cpj in (8)
are computed from the state vector wk via (3).

The components of γk, νu
k and νv

k are considered
as independent, non-stationary, Gaussian, white
noise sequences with the statistical properties

E[γk] = qk,E[νu
k ] = ru

k ,E[νv
k] = rv

k (9a)

E[(γk − qk)(γl − ql)
T] = Qkδkl (9b)

E[(νu
k − ru

k)(νu
l − ru

l )] = Ru
kδkl (9c)

E[(νv
k − rv

k)(νv
l − rv

l )] = Rv
kδkl (9d)

where E[·] indicates the statistical mean operator
and δ is the Kroneker symbol.

Since the output model is nonlinear in the sys-
tem state, the so-called Extended Kalman Filter
(EKF) must be adopted. An iterative formulation
of the EKF for the state vector of the system
defined by (5) and (7) may be found in (Lippiello
and Villani, 2003).

4. ADAPTIVE EXTENDED KALMAN
FILTER

If a high-quality camera sensor is used, the illu-
mination of the scene is stable, and the velocity
of the tracked object is nearly constant, then it
is possible to use constant statistical parameters
with optimal results. On the other hand, if these
conditions are not satisfied, it may be convenient
to update in real time the statistical parameters
{qk,Qk, r

u
k , r

v
k,R

u
k ,R

v
k}. This leads to the Adap-

tive Extended Kalman Filter (AEKF) presented
in (Lippiello et al., 2004).

The basic hypothesis for this approach is the
constant value of the statistical parameters over
N sample times (Myers and Tapley, 1976).

Since not all the visual features are always avail-
able during the motion and their location into the
scene is strongly variable, it may be reasonable to
assume the statistics of the observation noise to
be equal for all the measurements of the feature

points in the scene at time k. Hence the quantities
{ru

k , r
v
k,R

u
k ,R

v
k} are replaced by the quantities

{ru
k ım, r

v
kım, σ

u
k

2Im, σ
v
k
2Im}, where ım indicates

an (m×1) vector of components equal to 1 and Im

indicates the (m×m) identity matrix. Moreover,
the samples of the observation noise sequences νu

i

(νv
i ) are independent for i = 1, . . . , N and have a

gaussian distribution with mean ruım (rvım) and
variance σu2Im (σv2Im), where ru, rv, σu and σv

are constant over N sample times.

In view of the nonlinear relation (7), an intuitive
approximation of the observation noise sample
vectors at time k is given by the quantities

ρu
k = ζu

k − gu(wk,k−1) (10a)

ρv
k = ζv

k − gv(wk,k−1) (10b)

which can be considered as independent and iden-
tically distributed over N samples. It can be
shown (Myers and Tapley, 1976) that an unbiased
estimator for ru and rv can be taken as

r̂u =
1

N

N
∑

i=1

ρu
i , r̂v =

1

N

N
∑

i=1

ρ v
i , (11)

where ρu
i and ρ v

i are scalar quantities equal to
the mean values of the components of the vectors
ρu

i and ρv
i respectively. Moreover, an unbiased

estimator for σu2 and σv2 may be obtained as

σ̂u2 =
1

m(N − 1)

N
∑

i=1

{

‖ρu
i − r̂uım‖2 +

−
N − 1

N
tr(Γu

i )

}

(12a)

σ̂v2 =
1

m(N − 1)

N
∑

i=1

{

‖ρv
i − r̂vım‖2 +

−
N − 1

N
tr(Γv

i )

}

(12b)

where tr(·) denotes the trace of a matrix.

In view of the linear dynamic state relation at time
k given by (5), an intuitive approximation for the
state noise vector at time k is

̺k = wk − Awk,k−1, (13)

which may be considered independent and identi-
cally distributed over N samples. It can be shown
that an unbiased estimator for the mean value q

of the state noise may be obtained as

q̂ =
1

N

N
∑

i=1

̺i, (14)

while an unbiased estimator for the covariance
matrix Q is given by

Q̂ =
1

N − 1

N
∑

i=1

{

(̺i − q̂)(̺i − q̂)T −
N − 1

N
∆i

}

,

(15)
where ∆i = AP i,i−1A

T − P i,i.



In sum, the equations (10)–(15) provide a heuris-
tic unbiased estimator for the statistical param-
eters of an EKF used for visual motion estima-
tion, on the assumption that the last N samples
are statistically independent and identically dis-
tributed. The above algorithm can be formulated
in an iterative limited memory format, as reported
in (Lippiello et al., 2004).

5. VISUAL ESTIMATION ALGORITHM

The accuracy of the estimate provided by the
Kalman filter depends on the number of the avail-
able feature points. Inclusion of extra points may
improve the estimation accuracy but increases the
computational cost. It has been shown that a
number of feature points between four and six,
if properly chosen, may represent a good trade-off
(Wang and Wilson, 1992). Automatic selection al-
gorithms have been developed to find the optimal
feature points, see e.g., (Janabi-Sharifi and Wil-
son, 1997). An efficient selection technique pre-
sented in (Lippiello and Villani, 2003) is adopted
here, which exploits the prediction of the object
pose provided by the Kalman filter to perform a
pre-selection of the points that are visible at the
next sample time.

6. EXPERIMENTS

The experimental set-up (see Fig. 2) is composed
by a PC equipped with a MATROX Genesis
board, a SONY 8500CE B/W camera, and a CO-
MAU Smart 3S robot. The MATROX board is
used as frame grabber and for a partial image pro-
cessing (e.g., windows extraction from the image).

The robot is used to move an object in the visual
space of the camera; thus the object position
and orientation with respect to the base frame
of the robot can be computed from joint position
measurements via the direct kinematic equation.
To test the accuracy of the estimation provided
by the Kalman filter, the camera was calibrated
with respect to the base frame of the robot.

The camera resolution is 576 × 763 pixels and
the nominal focal length of the lenses is 16 mm.
The camera is disposed at a distance of about
130 cm from the object. The sampling time used
for estimation is limited by the camera frame rate,
which is about 26 fps. A simple neon illumination
has been used; hence, during the object motion,
the local illumination conditions of the windows
of the image plane selected for feature extraction
are quite variable due to reflections or shadows.

The image features are the corners of the object.
The object used in the experiment has 40 corners,
which are all candidate for feature extraction.

Two different case studies are considered. The
first one is aimed at comparing the performance
of the EKF to that of the AEKF considering

Fig. 2. Experimental setup

different object trajectories. The second one is
aimed at evaluating the effects of the update laws
for the matrix Q and R separately. Notice that the
adoption of the AEKF in lieu of the EKF causes
only a modest increase of the computational cost
that, in terms of overall processor time, is about
16 percent.

For both EKF and AEKF, the initial value of
the matrix P 1,0 has been chosen as the null
matrix; moreover, the initial value of the state
vector w1,0 have been set null for the velocity
components, while the pose components has been
roughly estimated through direct measurements.
A diagonal covariance matrix Q has been chosen
both in the non-adaptive and in the adaptive case.

The values of the statistical parameters used for
the EKF are set as initial values for the AEKF;
they are: r̂u

0
= r̂v

0
= 0, σ̂u2

0
= σ̂v2

0
= 9.0, q̂

0
= 0,

and Q̂
0

= diag {0, 5, 0, 5, 0, 5, 0, 20, 0, 20, 0, 20} ·
10−6. The physical dimensions are: pixel and
pixel2, respectively, for the mean and variances
of the observation noise; mm, mm/s, rad and
rad/s for the components of the mean of the state
noise; mm2, (mm/s)2, rad2 and (rad/s)2 for the
corresponding covariances.

The initial values of the observation noise covari-
ances have been evaluated during the camera cal-
ibration procedure while the initial values of the
state noise covariances have been set on the basis
of the velocity range of the object trajectories.
These values have been further tuned on the basis
of a set of experiments carried out using the EKF,
to achieve satisfactory tracking performance.

Notice that all the elements of the covariance ma-
trix Q̂

0
corresponding to the position components

of the state have been considered initially zero
for the AEKF and constantly zero for the EKF.
Fynally, Nq = Nr = 30.

6.1 First case study: EKF vs. AEKF

Three different object trajectories are considered.

• TrajP: the object position varies according
to the time history reported on the left of
Fig. 3 while the object orientation is left
constant. The norm of the maximum linear
velocity is about 10 cm/s.
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Fig. 3. Trajectory TrajPO. Position vector (a),
RPY angles (b), linear velocity (c), time
derivative of RPY angles (d).
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Fig. 4. Estimation errors for TrajPO. AEKF:
position (a) and orientation (c) errors; EKF:
position (b) and orientation (d) errors

• TrajO: the object position is left constant
while the object orientation varies according
to the time history reported on the right of
Fig. 3. The norm of the maximum velocity
for the RPY angles is about 20 deg/s.

• TrajPO: the object position and orientation
vary according to the time history of Fig. 3.

Notice the trajectory TrajPO is the composition
of TrajP and TrajO, but the resulting trajecto-
ries of the feature points on the image plane are
different in the three cases. Hence they represent
a significant test base to make a comparison.

The results of the experiments are summarized in
Table I, where the mean value and the standard
deviation of the norm of the position error eP

and orientation error eO are reported, both in the
case of EKF and AEKF. It can be seen that the
use of the AEKF allows a general improvement
of the tracking performance, especially for the
orientation error components.

Table 1. Comparison of the estimation
errors in the first case study.

EKF AEKF

Mean StD Mean StD

TrajP eP [mm] 13.71 11.16 12.59 10.89
eO [deg] 3.50 3.20 2.29 1.58

TrajO eP [mm] 11.23 8.66 9.15 6.13
eO [deg] 5.95 5.26 4.78 3.33

TrajPO eP [mm] 13.58 8.70 11.92 8.06
eO [deg] 7.19 6.86 3.65 3.43
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Fig. 5. Elements of the state noise covariance
matrix for TrajPO in the first case study.
Position (a), orientation (b), linear velocity
(c), rotational velocity (d).
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Fig. 6. Observation noise variance for TrajPO in
the first case study. σ̂u2 (a), σ̂v2 (b)

For the trajectory TrajPO, the time history of
the estimation errors are shown in Fig. 4. It can
be seen that the initial values of the errors are
the same in the case of the EKF and the AEKF.
In particular, there is an initial offset for the x-
component of the position error, due to the initial
misalignment between the real initial position and
the initial value of the Kalman filter. This error
is initially recovered by the Kalman filter during
the first 5 s, in the absence of motion. During the
motion, the position errors keep limited for all the
components, but is higher for the x-component.
In fact, the x-axis is aligned to the optical axis
of the camera, and thus the evaluation of the x-
component of the object position, for a single-
camera system, is more sensitive to measurements
and modelling errors with respect to the position
components lying on the image plane (Wang and
Wilson, 1992). In general, the peaks on the errors
happen when the velocity is higher, due to the
modelling error for the EKF. These errors are
partially recovered by the AEKF, in view of the
adaptive law of the covariance matrix Q.

The time histories of some of the statistical pa-
rameters which are updated on-line in the AEKF
are also reported. In particular, the time histories
of the elements of the (diagonal) covariance ma-
trix of the state noise are shown in Fig. 5, while
the time history of the observation noise for the
u and v components are shown in Fig. 6. It can
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Fig. 7. Elements of the state noise covariance
matrix for the AEKF-Q in the second case
study. Position (a), orientation (b), linear
velocity (c), rotational velocity (d).
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Fig. 8. Observation noise variance for the AEKF-
R in the second case study. σ̂u2 (a), σ̂v2 (b).

be observed that all the updated parameters keep
limited values; moreover, it can be recognized that
there exists a correlation between the values of the
elements of the Q matrix and the object trajec-
tory. In particular, the pick values of the elements
of Q corresponding to the position and orientation
components can be related to the pick values
of the linear and angular velocity of the object.
Analogously, the pick values of the elements of Q

corresponding to the linear and angular velocity
can be related to the object accelerations.

6.2 Second case study: Updating Q and/or R

In this case study, only the trajectory TrajPO

has been used. The EKF has been compared to
two partial adaptive versions of the EKF: the
AEKF-Q, where only matrix Q is updated, and
AEKF-R, where only matrix R is updated.

The results are summarized in Table II in terms
of the mean value and the standard deviation of
the norm of the position error eP and orientation
error eO (the values for the EKF and AEKF are
the same reported in Table I for the trajectory
TrajPO). It can be seen that, using the AEKF-Q,
good results can be achieved with respect to
the EKF, but worse than the complete AEKF,
especially for the orientation error. On the other
hand, the AEKF-R allows improving all the errors
except the standard deviation of the mean value of
the position error. This means that the main role
to guarantee good tracking performance is played

by the matrix Q; however, a further improvement
can be achieved if both Q and R are updated.

Table 2. Comparison of the estimation
errors in the second case study.

Mean StD

EKF eP [mm] 13.58 8.70

eO [deg] 7.19 6.86
AEKF-Q eP [mm] 11.94 8.42

eO [deg] 6.00 4.29
AEKF-R eP [mm] 12.01 9.64

eO [deg] 5.82 5.56

AEKF eP [mm] 11.92 8.06
eO [deg] 3.65 3.43

The time histories of the elements of the (di-
agonal) covariance matrix of the state noise for
AEKF-Q are shown in Fig. 7 while the time
history of the observation noise for AEKF-R are
shown in Fig. 8.

7. CONCLUSION

In this paper an experimental study on a full
adaptive EKF for visual motion estimation is
presented. The experimental results confirm the
effectiveness of the full AEKF. In fact, the effects
on the estimation error of the modelling error and
of the measurement noise are reduced with respect
to the non-adaptive formulation, at the expense of
a small increase of computational load.

REFERENCES

Ficocelli, M., and F. Janabi-Sharifi (2001). Adap-
tive filtering for pose estimation in visual
servoin. 2001 IEEE/RSJ Int. Conf. on Int.
Robots and Systems, Maui, HI, 19–24.

Janabi-Sharifi, F., and W.J. Wilson (1997). Au-
tomatic selection of image features for vi-
sual servoing. IEEE Trans. on Robot. and Au-
tomat., 13, 890–903.

Jetto, L., S. Longhi and G. Venturini (1999).
Development and experimental validation of
an adaptive extended Kalman filter for the
localization of a mobile robot. IEEE Trans.
on Robot. and Automat., 15, 219–229.

Lippiello, V., and L. Villani (2003). Managing
redundant visual measurements for accurate
pose tracking. Robotica, 21, 511-519.

Lippiello, V., B. Siciliano and L. Villani (2004).
Visual motion estimation of 3D objects: An
adaptive extended Kalman filter approach.
2004 IEEE/RSJ Int. Conf. on Int. Robots and
Systems, Sendai, Japan, 957–962.

Myers, K.A., and B.D. Tapley (1976). Adaptive
sequential estimation with unknown noise
statistics. IEEE Trans. on Automat. Contr.,
21, 520–523.

Wang, J., and W.J. Wilson (1992). 3D rela-
tive position and orientation estimation using
Kalman filter for robot control. 1992 IEEE
Int. Conf. on Robot. and Automat., Nice,
France, 2638–2645.


