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Abstract. The problem of force/position reg

with an elastically compliani surface is

was recently proposed which consisis of a

tion on the force loop,

ulation of robot manipulators in contact

considered in this work. A control scheme

PD action on the position loop, a PI ac-
together with gravity compensation and desired contact force

feedforward. In this work local asymplotic stability is proved in the case of imperfect

gravily compensation.

The original controller is then made adaptive with respect {0 a

suttable set of parameters in the gravity term. Numerical case studies are developed

Jor a three-joint industrial manipulator.
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1. INTRODUCTION

When the end-effector of a robot manipulator is
constrained by the environment, a pure motion
controller usually gives degraded performance and
can even cause instability.

Several schemes were devised which achieve con-
trol of both end-effector position and contact force
by embedding force measurements in the con-
troller. The most widely adopted strategy is hy-
brid control (Raibert and Craig, 1981) in which
either a position or a force is controlled along each
task space direction; stability of hybrid control
was addressed by Wen and Murphy (1991).

A conceptually different strategy is the parallel
control (Chiaverini and Sciaviceo, 1988) which of-
fers good robustness to inaccurate contact mod-
elling. A force/position parallel controller was re-
cently proposed by Chiaverini and Siciliano (1991)
which is based on simple position PD control +
gravity compensation + desired force feedforward
+ force PI control. Both local asymptotic and
éxponential stability have been shown using the
Lyapunov direct method (Chiaverini ef al., 1992).

In this work, the assumption of perfect gravity
Compensation is relaxed. First, it is shown that
the closed-loop system still asymptotically con-
verges, though to a different equilibrium state.
en, by expressing the gravity term in a lin-
€ar form with respect to a vector of parameters, a
Suitable parameter adaptation law is incorporated
tnto the PID force/position regulator. Conditions
are derived on the feedback gains.
Sifnulation results are presented for the indus-
trial robot COMAU SMART 6.10R confirming the
g0od performance of the proposed controller with
8ravity parameter adaptation over the nonadap-
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tive controller.
2. PID FORCE/POSITION REGULATOR

The dynamic model of a robot manipulator con-
strained by the environment can be effectively
written in the operational space in the form

B(z)z + C(z,z)z + g(x) = u - f, (1)

where z is the (m x 1) vector of end-effector lo-
cation, B is the (m x m) symmetric and positive
definite inertia matrix, Cz is the (m x 1) vec-
tor of Coriolis and centrifugal generalized forces,
g is the (m x 1) vector of gravitational generalized
forces, u is the (m x 1) vector of driving general-
ized forces, and £ is the (m x 1) vector of contact
generalized forces exerted by the manipulator on
the environment; all operational space quantities
are expressed in a common reference frame.

In the present work, the attention is restricted to
the case of non-redundant non-singular manipuia-
tors with m = n = 3, i.e. only translational mo-
tion and force components are considered. Then,
@ denotes the end-effector position.

The case of an environment constituted by a rigid,
frictionless and elastically compliant plane is an-
alyzed. The model of the contact force takes on
the simple form

f = K(z — =), 2

where & is the position of the contact point, x4 is
a point of the plane at rest, and K is the (3 x 3)
constant symmetric stiffness matriz that can be

expressed as
K = knnT (3)

where & > 0 is the stiffness coefficient and n is the
unit vector orthogonal to the contact plane,



Consider the set points ¢4 and f; (along n). The
control law (Chiaverini and Siciliano, 1991)

t

©= kpAz—kpd:+g(:c)+fd+kpAf+kI] Afde
0

(4

where Az = 24 — x is the position error, Af =
fi — f is the force error, and kp,kp,kp,k; > 0
are suitable feedback gains, guarantees both local
asymptotic and exponential stability (Chiaverini
et al,, 1992) around the equilibrium point

Boo = -l-nnT(fd + kag) + (I — 'n.nT):cd (5)

%
fo = knnT(zo - 20) = fu. (6)

The construction of the equilibrium point in a two-
dimensional case is illustrated in Fig. 1.

3. IMPERFECT GRAVITY COMPENSATION

In the following the requirement for perfect grav-
ity compensation is relaxed. It will be shown
that the system remains asymptotically stable,
but around a different equilibrium peoint. Fo over-
come this drawback, an adaptive version of the
controller will be proposed in the next section.
To begin, a helpful property of the gravity term is
that g has bounded partial derivatives, i.e.

8g(=)
2] <5 @
for some § > 0. This also implies that
llg(z1) — g(z2)I| < 8|1 — .||. (8)

Consider the control law

t
w = kpAz-kpi+i(e)+ furbedf+hi [ Afds
o

9
where g denotes the best available estimate of t(hz
gravity term g. A property similar to (7) holds
for g with 5 for 6.

The end-effector equilibrium position for the sys-
tem (1) under the control (9) is found to satisfy

. %nnT(fd + kzo)+ (10)
(I -0 (za - 1= (0(Bw) - §(Eer)
o = knnT(Ze, — zo) = fa. (11)

Therefore, in the case of imperfect gravity com-
pensation, the force set point is still attained
while a different end-effector equilibrium position
is reached. In fact, the components of x along
the constrained direction (n) coincide, while the
imperfect gravity compensation affects the com-
ponents of = along the unconstrained directions.

Define the error

R 1o 1,
€= Az + Ed - E’(g(zw) - g(:l!m)), (12)

with
d= kTPnnT (fa+k(zo—za)+ E%(Q(am)‘ﬁ(ioz))))
13
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and
(19
Further define

(15)

Differentiating (15) with respect to time yields

§=nTe. (16)

The augmented system described by (1,14,16) yy.
der the control (9) can be written in the form

Z=Fi+p (17)
where 2 = (2T &T )7,
—B_I(C + kDI)
F= | (18)
oT
B~ YkpI + kpknnT) kikB-ln
o 0
nT 0

with k% = 1+ kp, and
(B-l(a(z) —#(F) - 9(=) + 9(Z0)) )
n= 0 :

0

(19)

Notice that Z = 0 is a solution of (17). Then, the
following result can be stated.

Theorem 1. There exists a choice of feedback

gains kp, kp, kr, k; that makes the origin of the

state space for the system (17-19) locally asymp-

totically stable,

Sketch of proof. Consider the Lyapunov func-
tion candidate

V() = %ETPE, (20)

where

B -pB 0
P=| -—pB (kp-f-pkp)f-l- k},.knnT krkn
oT kErknT pkrk
(21)
with p > 0. Computing the time derivative of V
along the trajectories of the system (17-19) gives

V(3)= #"(PF+ %P) 243TPu. ()

It can be shown that there exists a choice of kp,

kp, kr, kr and p that makes V positive defi-

nite and V negative semidefinite in the region

{Zz:|le]) < &}, i.e.
kp > p(u + kc®) (23)

§+86

4p(kp — p(Am + kc D))

pkE > ki, (25)

wher Aps is the maximum eigenvalue of B and k¢
is so that ||C)} < k¢|iz|l. Local asymptotic sta-

kp>(6+?s‘)(1+




¥ pility around % = 0 follows from LaSalle invariant
st theorem. -

compared to the stability analysis for the con-
trol (4) presented in (Chiaverini et al., 1992),
, more restrictive condition has to be satisfied
jor kp; this is reasonable since now the effect of
imperfect gravity compensation has to be properly
counteracted by kp.

4. GRAVITY PARAMETER ADAPTATION

A well-known property of robot dynamics is that
the vector g in (1) can be written in the form

g(z) = G()0, (26)

where G is a (3 xp) matrix, and 8 is a (px 1) vector
of manipulator and load constant parameters.

The control law (9) can then be rewritten as

t

w=kpAz—kpi+G6+ fd+kpAf+k;fA_fda-
0

(27)

where 8 is the vector of estimated parameters. De-
fine z = (2T T )T with

e=mm—w=4z+id (28)
kp

d= kaJ—nnT(.fd + k(mo - zd)) (29)

1 ! 1
5= EnT (foAfdar = Ed) . (30)

With these positions, the equations of the closed-
loop system become

z=Fz+ 1] (31)
with F as in (18}, and
-B-1G(z)8
p= 0 (32)
0

Parameter estimate vector is updated according to

I
i
E where § = 6—8 is the parameter error vector. The
|
. the law

6= -%GT (a, ~5(az + -:—;j:Afda)) (33)

r. with 8,1 > 0. The following result can be stated:
i Tl}eorem 2. There exists a choice of feedback
ains kp,kp,kp,ky and § that makes the origin
of the state space for the system (31,18,32,33)
asymptgtical!y stable and the parameter estimate

vector 8 bounded. s

Sketch of Proof. Consider the Lyapunov fune-
tion candidate

W(z,0) = %zTQz + %u‘é’rﬁ, (34)

Where

l B

. Q=[ -sB (35)
—-ymTB

-8B —vBn
(kp + Bkp)I + kipknnT (krk + vkp)n
(krk + vkp)nT Bkik + y(kp + kipk)

with 4 > 0. Computing the time derivative of W
along the trajectories of system (31,18,32) gives

W(z,8) = 27 (QF + %Q) ) (36)

e ) b
— (T - BeT — ysnT)GO + 18 0.

—6=0=-2G"(&~fe—ysm)  (31)

allows to cancel the terms in (36) depending on 6.
It is crucial to remark that, in view of (28,30), the

choice
_ Bkik
=
makes the update law (37) equal to (33). It can be
shown that there exists a choice of kp, kp, ke, ky,
and B, with 7 as in (38), that makes W positive

definite and W negative semidefinite in the region
{z:)le(0)]l £¥1 < o0, [5(0)] < ¥, < o0}, ie.

(38)

Wokyk
ke (W
k>0 (ke(+ ) 4 )
Anr(krk)?
(1 2
kp > B(28M s — kp) (40)
kp + kipk > %A—M (41)
2
BER > ky (1 + iﬂ) : (42)
P

The negative semidefiniteness of W implies that
@ is bounded and then & is also bounded. Local
asymptotic stability around z = 0 follows from

LaSalle invariant set theorem. .

Notice that the constant 8 is not used in the con-
trol law (27) but affects the dynamics of the adap-
tation mechanism in (33). The other constant ¥
is keenly used to render the adaptation law (37)
a function of physically measurable quantities al-
ready used in the control law (27), i.e. position,
velocity and force measurements.

5. CASE STUDY

The proposed controllers were tested in a case
study on the first three joints of the industrial
robot COMAU SMART 6.10R . A payload of 10 kg
mass concentrated at 0.2 m from the arm tip was
added; this mass was assumed to be the only rel-
evant parameter @ in (26).

A step motion from z = (1.100 0 0)T [m] to
the set point x4 = (1.120 0 0)F [m] was com-
manded to the manipulator’s tip. The set point
J4 = 0 was assigned for the tip force. The ge-
ometry of the contact plane is characterized by
n=(1 0 0)T andzo = (1115 0 0)T [m];
the stiffness coefficient is k = 105 [Nm~1],



Four sets of simulations were carried out at a sam-
pling time of 2 ms with the following controllers:

a. control law (4) without force action (kr =
kr = 0);

b. control law (4) with force action;

¢. control law (9) with non-compensated load
mass;

d. control law (27) with initially non-compens-
ated load mass and adaptive law (33).

The PD position feedback gains for all cases were
set to kp = 10° [Nm~1), kp = 10* [Nsm~?] so
as to guarantee a well-damped behaviour for the
unconstrained motion of the manipulator.

The PI force feedback gains for cases b,c,d were
setto kp =9, kr = 24 [s=1] 50 as to achieve a satis-
factory behaviour during the constrained motjon.,
With the above values, it was possible to satisfy
the design conditions on the feedback gains for the
various controllers.

The numerical results for the above four cases are
illustrated in Fig. 2 in terms of the time history
of the # and 2 components of position, the con-
tact force (purely along x), and the estimated load
mass which is significant only for case d.

The z-position and the force reveal that, with-
out force feedback (case a), finite steady-state er-
rors occur both for z-position and force; instead,
with force feedback (cases b,c,d), the Z-position
and force behaviour is essentially the same for all
controllers and null steady-state errors are guar-
anteed. On the other hand, the z-position be-
haviour differs for each controller. It is driven
to zero at steady-state in all cases except c; in
fact, in this case, the imperfect gravity compen-
sation affects the vertical component of the tip
position. Remarkably, the adaptation mechanism
(case d) works satisfactorily to recover the initially
non-compensated load mass, and the performance
favourably compares with that of the controller
with perfect compensation (case b).
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