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The closed-form dynamic model of a planar multi-link flexible arm is derived
based on a Lagrangian/assumed modes technique. A case study is developed
for a two-link arm.

1. INTRODUCTION

One of the significant trends in today’s robotics design is the adoption of fast, dexterous,
lightweight mechanical structures to replace slow, conventional, massive industrial robot
manipulators. Increasing the typically low payload-to-arm weight ratio is a promising
engineering goal, and may prove very useful in non-standard applications such as space
telerobotics.

In order to fully exploit the potential advantages offered by lightweight robot arms, one must
explicitly consider the effects of the structural link flexibility and properly deal with (active
and/or passive) control of vibrational behaviour. For simulation and control purposes, the
need for an accurate dynamic model of a flexible manipulator is even more relevant than
in the case of a rigid manipulator.

Many techniques exist in the literature for modelling open serial kinematic chains contain-
ing one or more flexible members. Just as in the case of rigid links, Newton-Euler and
Lagrange-Euler formulations are typically adopted on the basis of a suitable kinematic de-
scription of both rigid and deflected motions. The former is recursive in nature and thus
computationally advantageous, but the latter is usually preferred since it yields closed-form
expressions of all dynamic terms [1].

As for the inherently distributed character of the flexible part of the system, finite-dimen-
sional models are often used which approximate the “true” infinite-dimensional models [2].
In any case, link elasticity is usually modelled as a linear effect. The most currently
used approximate descriptions of the deflection are based on assumed modes [3], finite
elements [4], or Ritz-Kantorovich expansions [5], with different implications on the model
complexity.

On one hand, ezplicit models have been derived for one-link flexible arms [3,6,7]. In this
regard, it can be said that the one-link case is now well understood, but its simplicity
prevents from thoroughly understanding the full nonlinear interactions between rigid and
flexible components of arm dynamics.

On the other hand, for automatic generation of models for multi-link arms symbolic ma-
nipulation languages have been employed, e.g. MACSYMA [5,8). Besides, a number of
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numerical software packages are available for simulation purposes, but their intrinsic lim-

|

itation is that the resu ting m 18 only smplicitly specii . *n any case, the control
engineer is offered poor insight into the origin of the single dynamic terms.

The aim of this work is to outline the basic steps for developing dynamic models of multi-
link flexible robot arms. We will limit ourselves to the case of a planar multi-link flexible
arm with no torsional effects. In this framework are also the works reported in [9,10] for a
one-rigid/one-flexible link arm.

In particular, a closed-form symbolic dynamic model is derived for a two-link arm with two
assumed modes of bending deformation for each link, using a Lagrangian technique. Links
are modelled as Euler-Bernoulli beams of uniform density. A payload is added at the tip
of the outer link, while hub inertias are included at the actuated joints. The implications
of using proper mode shapes of deformation with clamped-mass boundary conditions are
discussed. A set of simulation results are provided to validate the overall modelling,.

It is argued that the considered case study is general enough to provide a basis for studjring
more complex structures, since most of the possible dynamic interaction effects are present,

2. KINEMATIC MODELLING

Consider a planar n-link flexible arm with rotary joints subject only to bending defor-
mations in the plane of motion (torsional effects are neglected); Fig. 1 shows a two-linik
example. According to (1], the following coordinate frames are established: the inertial
frame (Xo, ¥5), the rigid body moving frame associated to link i (X;,Y;), and the flexible
body moving frame associated to link 1 ()?.-, f’,) The rigid motion is described by the joint
angles 8;, while y;(z;) denotes the lateral deflection of link i at abscissa z;, 0 < z; < ¢;,
being ¢; the link length.

Fig. 1 — Schematic of a planar two-link flexible arm

Let then ‘pi(z;) = (z; yi(z:))T be the position of a point along the deflected link i
with respect to frame (X.,Y) and p; be the absolute position of the same point in frame
Xu,Ya) Also, riy; = *p;(¢;) indicates the position of the origin of frame (Xit1,Yi)
with respect to frame (X;,Y;), and r; its absolute position in frame (Xo,Yu)
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The joint (rigid) rotation matrix A; and the rotation matrix E; of the (flexible) link at the
end-point are, respectively,

_[cos#; —siné; 1 -u
AI - sina‘ oosﬂi ] ’ El = [y:e lw (1)

where y!, = (8yi/d2;)|s:=t;, and the linear approximation arctany], = y;, valid for small
deflections has been made. This also implies that all second-order terms involving prod-
ucts of deformations are neglected. Therefore, the above absolute position vectors can be
expressed as . )

pi =ri + W.'p;, riz1 =ri+ Wi'rip (2)

where W; is the global transformation matrix from (J?u, 17.;.) to (Xi,Y;:), which obeys to
the recursive equation

W;=W,,EiA;=W,,A;, W,=L (3)

On the basis of the above equations, the kinematics of any point along the arm is fully
characterized. For later use in the arm’s kinetic energy, also the differential kinematics is
needed. In particular, the (scalar) absolute angular velocity of frame (X;,Y;) is

i-1

&= 0;+) Ui )
k=1

=1

where the upper dot denotes time derivative. Moreover, the absolute linear velocity of an
arm point is . .

pi =t + W'pi + Wi'p; (5)
and ‘Fi4y = ‘pi(¢i). Since the links are assumed inextensible (£; = 0), then ipi(zi) =
(0 gi(zi) )T‘ The computation of (5) takes advantage of the recursions

W, = W._,A; + Wil Ay, W, = W.E; + W,E,. (6)
Also, note that
Ai=SAd, Ei=Sil,  S= [‘1"' ‘01]. (7)

3. LAGRANGIAN MODELLING

The dynamic equations of motion of a planar n-link flexible arm can be derived following
the standard Lagrangian approach, i.e. compute the kinetic energy T and the potential
energy U of the system and then form the Lagrangian L = T — U which satisfies the
Euler-Lagrange equations

d dL oL

——— == i =1,...,N

dt9q; Oqi d =1 ®)
where {g;} are a suitable set of generalized coordinates to be determined, and {f;} are
the associated generalized forces acting on the system. The flexibility is thus expressed in
terms of N — n variables.
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The total kinetic energy is given by the sum of the following contributions:

n n
T=ET“+ZT¢.'+T;-- 9)

i=1 i=1

The kinetic energy of the rigid body located at hub i of mass my; and moment of inertia
Jhi is

1
Thi = %m;..-i'?i'.- + -z—.h..-c'r? (10)

with &; as in (4); the kinetic energy pertaining to link i of linear density p; is

&
Ta=j [ ol @opi(aides (11)

and the kinetic energy associated to a payload of mass m, and moment of inertia Jp located
at the end of link n is

1 . . 1 . .
I, = gmprfﬂrm +35Jp(dn + Une)? (12)

Remarkably, the evaluation of the expressions in (10-12) exploits the following relations:
ATA; =E[E; =STS =T; ATA; = S6;; ETE; = (Iy}, + S)g,.

In absence of gravity (horizontal plane motion), the potential energy is given by
U= En: Ui = Z“: % /& EI@i(z:) [%QJ ’ dz; (13)
i=1 i=1 < V0 i
where U; is the elastic energy stored in link i, being EI; its flexural rigidity.
4. ASSUMED MODE SHAPES

Links are modelled as Euler-Bernoulli beams of uniform density, i.e. (dropping link sub-
scripts)

Py(z,t) | Fy(s,t)
EI g4 TP Y 0 (14)
with clamped-mass boundary conditions:
y(0,8)=0, (0,t)=0 (15a)
8y(z,t) _ d? [ 8y(z,1) Py(z,t) _ d?
g (L) e el

(158)
where M, and Jy, are the actual mass and moment of inertia seen at the link end-point.

In force of space and time separability of solutions to (14-15), a finite-dimensional model
(of order m;) of link flexibility is obtained by the assumed modes technique [2], i.e.

w(zat) = Y is(e0)6is(t) (16)

=1
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where §;;(t) are the time-varying variables associated with the mode shapes ¢;; of link i of
the form

ij(2:) = Ch iy sin(Bijzi) + Ca,ij cos(Bijzi) + Csij sinh(Bi;zi) + Cuij cosh(f;;z;)  (17)
with & = w}pi/EL; wij are the natural angular frequencies of the related eigenvalue
problem for link i. The expressions of the coefficients C in (17) for a single link can be

found in [11]. However, it must be pointed out that in the multi-link case My, and Jj, for the
intermediate links are time-varying quantities depending on the actual arm configuration.

5. CLOSED-FORM EQUATIONS OF MOTION

On the basis of the above analysis, the closed-form equations of motion for a planar n-link
flexible arm can be written as

B(q)d + h(q,4) + D(q,9)q + K(q)q = Q(q)u (18)

where q = (81 ...0n611-.-61,m, --- Sn1--Onm, )" is the N-vector of generalized coor-
dinates (N = n + Y. m;), and u is the n-vector of joint (actuator) torques. B is the
positive-definite symmetric inertia matrix, h is the vector of Coriolis and centrifugal forces,
D is an additional structural damping diagonal matrix, K is the stiffness diagonal matrix
(K3 = ... = Ko = 0;Kn41,....Kn > 0), Q is the input weighting matrix of the form
(I OT)T due to the clamped link assumptions.

If a complete ortho-normalization of the mode shapes is performed, convenient simplifica-
tions arise in the diagonal blocks of the inertia matrix relative to the deflections of each
link. Also, the stiffness coefficients take on the values w};m;, being m; the mass of link .

Recall that the components of h can be evaluated through the Christoffel symbols, i.e.
N N
8Bi; 18Bjk\ . .
hy = ij _ 1055 e 19
>3 (-3 )i (19)

In the remainder, the terms in equation (18) are customized to a specific structure, namely
the two-link arm in Fig. 1 with two modes of deflection for each link. The resulting model is
casted in a computationally advantageous form, where a set of constant parameters appear
that c1lepend on the mechanical properties of the arm, The inertia matrix turns out of the
form:

By; = bipx + biiaca + (brists + briate)se Baa = baz; + bazzcz + baastase
Biz = bigy + bizzca + (brasts + bi2ata)se Byy = baa1 + bssacz + basstzs2
Bys = bia1 + biazez + (bzstz + biaadiz)s2 Bis = bysy + baszca + basatszsz
By = buay + buaze + (brastz + braadun)sa Bsg = byey + baszcz + basatasz

Bis = b5y + biszcz + bisatisz
By = big1 + breacz + bieatis2

Bis = bagy + baszca + buastasz
Bys = bysy + baszca + basstsse
By = b Biys = byey + bas2¢z + besstas:
Byz = byay + baszca + (b2sstz + basata)sz

Bss = bss1
Byy = bygy + bagacy + (baastz + baaats)sz Bie = bse1
Bys = basy Bag = boar
Bys = bua

t Due to lack of space, the coefficients’ expressions are not given but can be obtained from the Authors.




198

where 87 = sinoz, Ca = coseg, and

t =tuby +tiabia,  tr =tnby + iy, t3 = ta161; + 132612,
Analogous format results for the nonlinear terms in h computed via (19).
Concerning the boundary conditions (15b), it is obviously My, = m, and Ji; = J, which
implies bss1 = bgey = my and bsgy = 0. On the other hand, the approximate choice
My = mpz +mg +my and Jp; = Jjz + Jpa + Jp + mp€% (J,; is link i inertia reported
at joint i) is made which implies b33; = byg; = m; and by = 0, thus leaving non-zero
time-varying terms in B3, By4, and Bs,.

6. SIMULATION RESULTS

In order to test the dynamic model obtained for the two-link arm, a set of simulations
has been performed. The physical parameters of the arm with uniform mass density are:
£ =€, =050m, m; =my = my = 0.10 kg, my; = 1.0 kg, J,; = J,» = 0.0083 kg-m?,
Jnt = Jaz = 0.10 kg-m?, J, = 0.00050 kg-m?, EI, = EI, = 1.0 N-m?.

The computed natural frequencies are 0.48, 1.8 Hz for link 1, and 2.2, 16 Hz for link 2.
The resulting mode shapes are plotted in Fig. 2, where one can see that, compared to the
clamped-free case, ¢;; does not present the usual node at z9 > 0.

Figs. 3-4 show the dependence of the internal vibrations of the arm on the joint configu-
ration when an initial deformation is forced into the system. In particular, when 6;(0) = 0
the vibrations coupling between the two links is strong; instead, when 8,(0) = 7/2 the
second link is hardly affected by an initial deformation of the first link (note the two orders
of magnitude difference on 65;).

Next, a 2 sec symmetric bang-bang input torque of 0.2 N-m has been applied at both joints.
The induced vibrations are shown in Fig. 5, while the resulting joint and tip motions are
reported in Fig. 6. Finally, Figs. 7-8 give evidence of the improvement in the arm motion
when structural damping is added (D; = 0.1/K;).

7. CONCLUSIONS

This paper has presented the derivation of the closed-form equations of motion for a planar
multi-link flexible arm, following a Lagrangian/assumed modes technique. The model has
been customized for a two-link arm in order to develop a case study where the effects
of rigid and flexible dynamics interaction are evident. Further research will be devoted
to studying the implications of using time-varying boundary conditions and to designing
model-based control algorithms for trajectory tracking.
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- Fig. 2 — Mode shapes for the two links -
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Fig. 3~ Flexible variables due to aa initial deformation of link 2, with 62(0) = 0
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Fig. 4 — Flexible variables due to an

o8 e

initial deformation of link 1, with 65(0) = 7/2
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Fig. 6 — Joint and tip variables due to bang bang input joint torques
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Fig. 8 — Joint and tip variables due to bang-bang input joint torques, with damping



