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Introduction

The adoption of lightweight materials in the construction
of mechanical manipulators has lately received a great
deal of attention in the robotics research community. In
spite of the potential advantages of lighter designs, e.g.
higher payload to structure weight ratio and faster mo-
tion, vibration induced by the structural flexibility is a
major drawback.

The need for accurate dynamic models of flexible ma-
nipulators becomes crucial not only for simulation pur-
poses but also for trajectory control with active vibration
suppression. The energy-based Lagrangian approach pro-
vides a natural framework for deriving the equations of
motion of mechanical systems undergoing structural de-
formations [1]. One critical point in modelling flexibil-
ity is the method used to obtain a finite-dimensional ap-
proximation to the distributed parameter model. In par-

ticular, attention is focused here to the assumed modes
method [2].

This work analyzes some important issues that arise in
conjunction with the choice of different boundary condi-
tions for the deformation modes. The implications on the
design of inversion-based controllers for flexible manip-
ulators [3,4] are studied with reference to clamped and
pinned boundary conditions [5].

Dynamic Modelling

Consider a robotic manipulator composed of a serial chain
of links, some of which are flexible. The Lagrangian tech-
nique can be used to derive the dynamic model, through
the computation of global kinetic and potential energy of
the system [1]. Due to link flexibility, the dynamic model
is indeed of distributed nature. Links are modelled as
Euler-Bernoulli beams satisfying proper boundary condi-
tions for the actuated joint and the link tip.

In order to obtain a finite-dimensional model for control
and simulation purposes, a set of generalized coordinates
is to be chosen. Let # denote the n x 1 vector of joint
coordinates, and § the m x 1 vector of link coordinates as-
sociated with an assumed modes description of link deflec-
tions. For simplicity, we suppose to include only bending
deformations limited, for each link, to the plane of rigid
motion [2].

The closed-form equations of motion of the manipulator
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can be written in the general form
(B”(e,s) B,,(e,a)) (e) N (h,(a,a,é,s))
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where B;; are blocks of the (n 4+ m) x (n + m) positive
definite symmetric inertia matrix, partitioned according
to the joint and link coordinates. Similarly, h; contain
Coriolis and centrifugal forces, which can be derived via
Christoffel symbols, i.e. via differentiation of the inertia
matrix, and g; denote gravitational forces. The posi-
tive definite —typically diagonal— matrices K and D de-
scribe modal stiffness and damping of flexible links, re-
spectively. Matrix Q;, weighting the n x 1 vector of joint
input torques u in the lower equations, takes on different

forms depending on the chosen boundary conditions for
link deformation at the actuated side.

From eq. (1), flexible accelerations can be extracted as
§ = B3 (Qsu — (hs + g5 + K6 + D8) — BR6)  (2)
which, substituted into the upper part of (1), gives

(Bes — Bos Bss Bys)é + ho + go

: 3)
— BysBj; (ks + 95 + K6 + D6) = Fu,
where F = I — B”Bgleg is a n X n full rank matrix.
Notice that equations (3) describe the dynamics of the
equivalent rigid system Bggf + hy + g¢ = u evaluated for
é = 0, modified by the effects of link flexibility.

For each link, bending deformation is usually described
in terms of two alternative frames; namely, the clamped
frame, aligned with the direction of the undeformed link
at the joint location, and the pinned frame, pointing at
the instantaneous center of mass of the deformed link.
Accordingly, the joint and link coordinates attain differ-
ent meanings and terms in the dynamic equations (1) as-
sume different expressions; however, it is always possible
to transform one set of coordinates into the other, e.g.
0p = 0. + Té. [5]. In particular, Qs = 0 in the clamped
case. FEigenfrequencies of the system are the same in
both representations, but simplifications may occur in the
model; for instance, for a single flexible link, the inertia
matrix turns out to be diagonal in the pinned case, when
using eigenfunctions as assumed modes of deformation.
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Inversion Control

Trajectory tracking in nonlinear systems is usually achie-
ved by input-output inversion control techniques [3,4].
Under the assumption of stability of the resulting closed-
loop system, ezact reproduction of smooth desired output
trajectories is guaranteed.

In what follows, only the case of joint output trajectory
is considered and the effects of clamped vs. pinned repre-
sentation on the synthesis of the control law are assessed.
Let then a denote the desired joint acceleration. Setting

6 = a in (3) and solving for u yields the feedback law
u=F-1 ((B"—-B“B;;B;I:,)a-]-h'+g'—3u Ba_al na), (4)

where ns = hs; + g5 + Ké6 + Dé. In the pinned case, a
computationally efficient expression for F~! is [6]

F~' =TI+ Bys(Bss — Qs Bes)~'Qs. (5)

The control (4) transforms the closed-loop system into the
input-output linearized form

b=a
6 = —(I + QsF~*Bys)(B;;  (Bpsa + ns))
+ B QsF 'y,

(6a)
(6b)

where 4, = By ga+ hg + go would be the computed torque
control for the equivalent rigid system.

At this point, one can recognize that in the clamped case
eq. (4) becomes

ue = (Bo,o, — Bo.s.B; 5. Bi.s,)a + he, + g,
~ Bo,s.Bj 5.5, »

(4)

where subscript ¢ denotes clamped quantities, and eq. (6)
remarkably simplifies to

é¢=a

(6a")
(6b%)

8 = —B; 3 (By 4,6+ 1ns,).

Notice that the joint variables which track now the desired
trajectory are indeed the clamped ones. The feasibility of
this control approach is based on the stability of (6b’).
For, it is sufficient that the associated zero-dynamics [3]
is asymptotically stable. This dynamics is obtained by
forcing to zero the output 8, of the nonlinear system. Ac-
cordingly, one has

8c = —B;} (hs, + s, + Kb + Dé.). (7

In the absence of gravity terms (gs, = 0), it can be shown
via a Lyapunov argument that §. = §. = 0 is an asymp-
totically stable equilibrium of (7). In fact, defining the
candidate 1 1

V=3 2

6TK6. + =6X By 5,6, (8)

leads to
1
2
= —67 (hs, + Dée) + %5336,s,5c ©)
= -6TDé. <0,

V = 6TKé. + 6T Bs 5,6 + =6T Bs.5.6.

using (7) and the skew symmetry of matrix Bs.s,—2Ss.5.,
with S; 5.6, = hs, [7]. Asymptotic stability then follows
from LaSalle’s theorem.

Similar arguments can be used in the pinned case, al-
though the developments are much more involved and
omitted here for brevity.

Since closed-loop stability is verified in both cases, the
design of a trajectory controller is completed by specifying
a= adel + KD(B.del = 3) + KP(Bdu = 8)’ (10)
where Kp > 0, Kp > 0 allow pole placement in the open
left-hand complex half plane for the linear system (6a).

The above design allows reproduction of trajectories de-
fined at the joint level in flexible manipulators. The choice
of an output at the link level —ultimately the tip point—
is a challenging topic that deserves further investigation.
The single-link case with clamped coordinates has been
studied in [4].
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