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Abstract

This paper 1s asmed. at analyzing the smportance of com-
pensation of the manipulator nonlinear dynamics in con-
trol of industrial-type robots. A dynamic analysis 13 car-
ried out for a typical robot with high gear ratios which re-
veals that the effect of the nonlinear terms on the load at

the actuators is not negligible with respect to the rotor in-.

ertia. The design of independent linear joint controllers 1s
discussed, and the addition of an integral term in the ve-
locity servo loop 1s shown to outperform the conventional
Proportional+Derivative (PD) controller. Then, various
model-based control algorithms are introduced which re-
quire an sncreasing complexsty of compensation of the es-
" timates of the dynamic terms.

both in the joint space and in the task space.

1. .Introduction

In robotics a paradigm is commonly accepted that, when

"high gear ratios are present at the robot joints, the non-
linear coupling dynamic terms can be neglected, leading
to decentralized linear controllers. ‘Hence, independent
joint controllers, -e.g. Proportional4+Derivative (PD), are
designed for a constant joint inertia. In fact, it is argued
that the actuator inertia, reported at the joint, dominates
over the configuration-dependent inertial terms. More-
over, since industrial robot operational speeds are usually
quite low, Coriolis/centrifugal terms are also not compen-
sated. :

Earlier works directed to 1mprove mdustnal robot
performance proposed to add an adaptive feedforward
controller to the pure PD feedback [1], or to replace the
PD controller with a lag-lead .compensator [2]. Later,
the importance of dynamic compensation was experimen-

The above controllers are’
tested in discrete time by means of a number of ezamples:

maximum inertia at each joint. An alternative design is
proposed in this paper for the joint control'servos, namely
an integral action is introduced in the velocity loop which
% aimed at recovering the steady-state error induced by
gravity as well as at counteracting disturbances originated
from coupling with other joints and parametric variations.

Successively, in order to improve robot tracking accu-
racy, several model-based control algorithms are designed
according to progressive levels of dynamic feedback feed-
forward compensation: gravity; gravity and diagonal in-
ertia; gravity and full inertia; gravity, inertia, and COI‘IO-
lis/centrifugal terms (i.e. computed torque).

The performance of a discrete-time implementation
of all the above controllers is tested, in simulation, for two

.trajectories in the joint space and one trajectory in the

task- space. “These reveal that the controller with the in-
tegral action in the velocity servo loop outperforms the

conventional PD controllér. Moreover, the results.confirm

that also for industrial manipulators a (partial) compensa-
tion of the dynamic terms leads to reduced tracking errors.

2. Dynamic Anaiysis

_ There are several methods to derive a dynamic model of a

"mechanical manipulator: Newton-Euler,

tally demonstrated not only for direct-driven ‘#anipu--
lators [3,4], but recently also for gear-driven manipula- -

tors [5].
In order to better understa.nd the potential of using
model-based control algorithms, the nonlinear and cou-
~ pling characteristics for a typical industrial manipulator
with high gear ratios, the Manutec r3 robot [6], are an-
alyzed in this work. In particular, an evaluation of the

d’Alembert, and
Lagrange [7]. The Lagrange method is used most fre-
quently because it leads to a set of equations whose terms
are easily interpreted in terms of physical quantities. The
resulting model can be written in the well-known form

M(q)q + C(q,-(l)t'l +g(q) =+(q)

where q is the n x 1 vector of joint variables, M is the
n X n symmetric positive definite inertia matrix, Cq is
the n X 1 vector of Coriolis/centrifugal torques’,'g is the
n X 1 vector of gravitational torques, and r is the n X 1
vector of joint actuator torques.

In practice, the model should also a.ccount for the vis- -
cous and static friction torques; these have to be exper-
imentally determined, indeéd. Furthermore, it has been
implicitly assumed that the electrical time constant associ-

‘ated with the manipulator drive system is small compared

dynamic terms over ‘the manipulator workspace is pro-

vided when the joint configuration varies; this includes
the determinant of the inertia matrix and the norm of the
gravitational vector.

Conventional independent Jomt PD linear controllers.

are designed, and the feedback gains are tuned for the

to the mechanical time constant, and then the system is
accurately represented by a second-order model. ‘

 In designing joint control servos for industrial ma-
nipulators, one should consider the equation of motion at

each joint. This can be extracted from the above model

as

(Joi+ PP JRi)d +tmi+Tas =6  i=1,..n
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where Jr; is the moment of inertia of the arm at joint,
Jg,; is the moment of inertia of the actuator rotor, p; is the
gear ratio, 7y, ; is the 1nertla torque due to the interaction

with other joints, 7, ; is the torque due to nonlinear terms -

(gravity and Conolls/centrlfugal), and 7; is the effective
torque at the joint.

Because of typical high gear ratios of industrial
robots, it is tacitly assumed that the constant rotor in-
ertia dominates over the arm inertia that varies with the
Jjoints. Moreover, since the robot usually operates at rela-
tively low speeds, the effect of Conohs/ centrifugal terms is

neglected. These affirmations lead to the design of linear’

independent joint controllers of PD type, eventually w1th
gravity compensation.

In order to verify the correctness of the above approx-
imations, an analysis is carried out in the following which
is aimed at studying the variability of inertia and gravity
as a function of the arm configuration. We have concen-
trated our investigation on the Manutec r3 (Fig. 1), a
gear-driven industrial robot with a PUMA-like kinematic
structure. Onmnly the first three joints are considered as
they provide the significant part of the manipulator dy-
namics. The dynamic model ‘and all relevant data are
taken from [6]. ‘

We have chosen to stildy the determinant of the in-~

ertia matrix and the norm of the gravity vector; it can be
seen that those quantities are a function of only g2 and gs,

'in force of the particular kinematic structure. The results

reported in Figs. 2 and 3 reveal wide variations of these

indices over ‘the joint ranges. This does not allow to ignore

a priori the potential offered by controllers which account

~ for the dynamic model of the robot, as it is done instead

in the common industrial practice.. These conclusions, in-

deed, are in a.greement with those derived for the PUMA
“robot reported in [5].

_ 3. Cohtrol Design
As the basic step for designing a robot control system,

simple independent PD joint controllers with feedforward
velocity term have been considered first, i.e.

.r=Kp(é+XKpe) (a)

where e is the error between the desired and the actual
joint pogition (e = q4 — q), and the positive diagonal
feedback matrices, Kp and Kp, determine the dynamic
“system response.

On the basis of the considerations in the preceeding

section, dynamic compensation is introduced in the fol-

lowing with the purpose of obtaining higher performance.
' This compensation relies on accurate estimates of the
terms in the dynamic model, and can be performed either
feedforward or feedback: The former is computationally
advantageous (off-line), since the dynamic terms are eval-

uated for the desired joint trajectory qq. The latter is

carried out on<line with the updates of the dynamic terms
for the actual joint trajectory q, and then is apparently
-more robust to disturbances and parametric variations.
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Different levels of complexity are considered:

PD with feedback compensation of gravitational torques
r=Kp(é+Kpe)+gla) (b)

PD with feedback compensation of gravﬂ;atxona.l torques
and diagonal mertla

r= M(q) [('id +Kp(é+ er)] +g(q) ()

where {q is the desired feedforward acceleration, and M
denotes the diagonal matrix that can be extracted from

M.

PD with feedback compensa.tlon of grav1tat10nal torques

and full inertia

r=M(q)[ds + Kp(é + Kpe)] +g(a) (d)
PD with feedback compensation of g'ra.vitational torques,

Coriolis/centrifugal torques, and full mertla, ie. a true
computed torque control,

r = M(q)[d4 + Kp (& + Kpe)] +g(a) + C(q, 4)q  (e)

In case of feedforward compensation, the last three con-
trollers are modified into: : .

r=M(qd)[d+ Kp(é+Kpe)] +gla)) ()

r=M(q)[da+ Kp(é + Kpe)] +g(as)  (g)
r = M(q4)[§a+Kp(é+Kpe)|+g(qa)+C(qq, da)da (h)

In practical design of industrial servo control-systems for

D.C. drives, it is customary to introduce an integral ac-

tion in the velocity loop in order to recover steady-state
errors. and. reject constant disturbance torques. Thus, it
seems interesting to us to follow this approach for robot
control system design and compare its performance with
conventional PD servo loop.

Specifically, the control torque (a) is modified into

= Kp(é+ Kpg)' -+‘K;‘/.(é + Kpe)dt (a")

Ana.légously to the compensations proposed above, we can
derive the following controllers

r=Kp(é+ er) + K:/(é + Kpe)dt +g(q) (b')

T= ﬁ(q) [(‘id + Kp (_é.+ er') +K1/(é + er)dt]

| +s(Q) (')
r = M(q)|da+Kp (& + Kre) + K; / e+ Kpe)dt]
' +g(q) (')



7= M(q) [G4+ Kp(é+Kpe) + KI/(é +Kpe)dt]
+g(@ +Cled)d = ()

r= ﬁ(qd)[qd +Kp(ée+Kpe)+ K,/(é + Kpe)dt]

+g(aq) ()

7=M(qq)[da + Kp(é + Kpe) + K;/(é + Kpe)dt]

- +8(ad) (g

= M(q4)[da + Kp (& + Kpe) + K; / (& + Kpe)dt]
(h")

+g(a4) + C(qq, 4a)4a

4. Case Studies

In order to investigate the performance of all the con-
trollers presented in the above section, a number of case
studies were developed and are described in the following.

The software package SIMNON was used to simulate
the controlled Manutec r3 manipulator. The controllers

were implemented in discrete time by utilizing the bilinear -

transformation from s-domain to z-domain, ie. 8 = % :;i

where the sampling period T is chosen as 2 ms. The ve-
locity profile for the tested trajectories is

o+
A
o

f’—)"i“(],—-cos;”tﬁt) 0<

v‘ _ Ymax %L s t < -2—%[
2‘“5‘* ( ~ cos t T(t— —&)) 2 <t<ty
U t>t; |

where t; = 3d/2vpyax, being d the total displacement.

This smooth profile was chosen in order to have initial
and final zero accelerations and a cruise time (at maxi-
mum velocity) of a third of the total traveling time.

The linear controllers (a) and (a’) were tuned for an
ideal, purely inertial system with decoupled joints, ab-
sence of gravity, and inertia equal to the maximum value
of the total Jomt inertia: These are' J; = 79 kgm?,
Jo = 119 kgm?, and J5 = 22 kgm?; incidentally, we
‘remark that Js is a constant. The dynamic requirements
for the servo loop at each joint were to have a bandwidth
of 20 rad/s and an overshoot of 6%, for both controllers.
The designs resulted into the followmg feedback gams

kps =14.38,kp,: = 26.20J;. :

kpi = 11.40, kps = 22.85J;, kr; = 130.6J;
for controllers (a) and (a'), respectively. As mentioned

above, these controllers were then transformed into their

equivalent discrete-time forms.
For the controllers (b) and (b'), the linear part of the

design is the same as for (a) and (a’). For the remaining |
controllers, the values of J; are imposed to be 1, since

compensation of the joint inertia-occurs.

Two trajectories were assigned in the joint space by
moving one joint at time, with the purpose of analys-

ing the dynamic interaction between the joints. Also, the

moving joint is required to reach its velocity limit.

In the first trajectory, g1 4 goes from -2.8 rad to 2.8 rad
with a maximum velocity of 3 rad/s, while g4 is kept
at 0.78 rad and ¢34 at O rad. This trajectory allows to
evaluate the effects of Qoriolis/centrifugal torques on the
joints 2 and 3. In Fig. 4a are reported the joint tracking
errors when the controllers (a-h) were applied. The re-
sults show that: For joint 1, a sole compensation of the
self-inertia, controllers (c,f), drastically reduces the error.

"For joints 2 and 3, a bias on the error occurs if gravity is

not compensated and this results into a steady-state er-
ror, controller (a); the performance of controllers (b,c,f)
are equivalent since the two joints have maximum self-
inertias; a compensation of off-diagonal terms of inertia
matrix, controllers (d,g), reduces the errors while com-
pensation of also velocity dependent terms practically an-
nuls the errors, controllers (e,h). Notice that, for this case
study, as well as in the following ones, no appreciable dif-
ference can be observed between.corresponding feedback
and feedforward compensations. On the other hand, when
controllers (a'~h’') were applied, the same kind of consid-
erations as above can be made (Fig. 4b). It can be recog-
nized that the addition of an integral term in the velocity

- loop not only eliminates steady-state errors induced by

gravity, controller (a’), but has also a remarkable effect on
the reduction of tracking errors due to non-perfect com-'.

" pensation which play the role of disturbances. These ad-

vantages are obtained, however, at the expenses of shghtly
higher settling timés. _

In the second trajectory, g24 goes from O rad to 1.5 rad
with a maximum velocity of 1.5 rad/s, while g1 4 is kept at.
0 rad and ¢s; at O rad. This trajectory allows to evaluate
the effects induced on joint 3 by the motion of joint 2. In
Figs. 5a and 5b are reported only the tracking errors for
joints 2 and 3, since joint 1 is not affected by this type
of motion. Similar global conclusions can be drawn as
for the previous case study. In particular, in force of the
particular given trajectory, the Coriolis/centrifugal terms
on joint 3 are not relevant and then compensation of full
inertia and gravity is sufficient to obtain best tracking
accuracy, controllers {(d,g,d’,g’).

The last case study was worked out in the task space,

.80 that all the three joints are interested by the motion.

The end-effector (EE) trajectory is a straight line from
(0.3, -0.5, 1.0).m to (0.3, 0.5, 1.0) m with a maximum
velocity of 0.9 m/s. The inverse kinematic functions were
computed in order to obtain reference joint trajectories.
It could be seen that the assigned trajectory results into
a large displacement for joint 1 which reaches its veloc-

- ity limit, Figs. 6a and 6b show the norm of EE track-

ing errors, respectively with the two classes of controllers:

{a-h) and (a’~h’). The behavior of the tested controllers
confirms most of the results derived above. Nevertheless,
an interesting point to outline is that compensation of
inertia — either diagonal, controllers (c,f), or full, con-
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trollers (d,g) — reduces the tracking error during the ac-
celeration/deceleration phases, but increases it with re-
spect to the non-compensating controller (b) during the
cruise period. This effect is somewhat mitigated with
the introduction of the integral action, controllers (c',f')
and (d',g'). c o

Conclusions

This work‘waé aimed at investigating the performance of

_ industrial robot controllers with compensation of nonlin-

ear dynamic terms. Different levels of both feedback and
feedforward compensation were considered ranging from
simple gravity compensation to full computed torque. For
the design of the linear part of the controllers, besides the
conventional PD feedback action, an integral term was in-
troduced in the velocity loop, as done in industrial practice
- for servo drive systems. The dynamic analysis of inertia
and gravity, together with the simulation results, for a
typical gear-driven industrial robot clearly demonstrated
the potential of model-based control algorithms for im-
proving robot tracking performance. The effects of each
type ’o‘f compensation were extensively studied in a num-
ber of case studies. The results showed that the addition
of the integral action eliminates steady-state errors, evern

without gravity compensation, and proves advantageous -

for reducing tracking errors by about 50%, compared. with
standard PD controllers. -~~~ ' :
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