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Abstract 
 
        Nowadays, Multi-Robot Systems (MRS) control represents a great challenge in the research community: the 
interest in MRS is justified by the numerous advantages that a group of autonomous robots offers compared to a 
single robot, in particular when complex missions are assigned. However, these systems need a complex control 
architecture and a method of coordination of the autonomous robots. In this paper, a Multi-Agent System (MAS) based 
approach is proposed to solve this problem: the purpose is to realize a decentralized system, where each robot, using 
a Reinforcement Learning (RL) mechanism, autonomously acquires the appropriate behaviour and suitable rules 
through its experience of interaction with the environment and the other robots.  
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1. Introduction 
 

In recent years, several research efforts have been 
directed toward the control of groups of autonomous 
robots. The interest in this field is well justified by the 
several advantages that such systems present compared 
to single autonomous robots and it is well supported by 
the technology improvements that allow the interaction 
and integration among multiple systems [1-2].  

For many complex tasks, a single autonomous 
robot may not be able to achieve the mission alone due 
to its functional limitations: in this case, it is essential 
to work cooperatively with other robots [3-5]. 

The applications of Multi-Robot Systems (MRS) 
involve different fields, e.g. industrial, military and 
service robotics, or research and study of biological 
systems, and they may concern largely different kinds 
of missions, e.g. exploration, box pushing, military 
operation, navigation in unstructured environment, 

traffic control, entertainment, simulations of biological 
systems. When many autonomous robots work together 
at tasks, the system configuration can be classified into 
2 types. The first one is a centralized system where all 
the robots obey to a master [6]. The second is a 
decentralized system where all the robots work 
cooperatively [7]. 

In the centralized system, the master robot is 
required to have many functions, and if it breaks down, 
the whole system becomes incapable to achieve any 
task. On the other hand, in the decentralized system, 
each robot has a function. As many robots work 
cooperatively, it is easier to deal with various tasks. 
Moreover, if one robot breaks down, other robots can 
help or replace it. Thus, the decentralized system is 
more fault-tolerant than the centralized one. 

However, decentralized systems are difficult to 
realize due to interaction among robots. When there is 
no interaction, each robot has to work optimally for its 



 

purpose, so that the total task should be achieved 
optimally, and it works selfishly. On the other hand, 
when using a public resource, conflicts among robots 
might occur. These conflicts may cause collisions and 
deadlock states among robots in a local area. To avoid 
conflicts, the robots should communicate at least 
locally and coordinate among themselves. Robot 
communication is as important as selfishness and, in 
particular, it is fundamental for coordination. 

Flexible and powerful control architectures are de-
sired to provide a structured approach to simplify and 
organize the design, implementation and validation of 
complex control schemes for multi-robot systems. 

In recent years, multi-agent approaches to multi-
robot control design have drawn much attention in the 
robotics community. In an agent-based architecture, 
agents can communicate, coordinate and negotiate to 
meet their goals in a framework suitable for task 
execution. Multi-agent system (MAS) architectures 
support both centralized (agent facilitator model) and 
distributed (agent to agent model) arrangements. 

A typical approach to a MAS is to give a fixed 
behaviour rule set to each agent so that it can behave 
appropriately as soon as the system starts to move. In 
this case, the behaviour rule set has to be designed by a 
human programmer for all the possible situations that 
an agent can encounter during system operation. This 
approach seems effective when these situations are 
easily identified so that the programmer can provide an 
appropriate behaviour rule set. However, since in a 
MAS the number of situations to be considered rapidly 
increases with the number of agents, it is practically 
impossible, for most cases, to provide an appropriate 
behaviour rule set to each agent in advance. This is 
even clearer when agents are physical bodies, as in the 
case of MRS, because it may happen that robots are 
disturbed by sensor noise, unexpected obstacles, or 
accidents in motors or electronic wiring [8].  

Considering it is impossible to give hand-crafted 
behaviour rules for all possible situations that a robot 
will encounter, the latter must develop cooperative 
behaviour autonomously, through its experience of 
interaction with other robots and the environment. That 
is, instead of providing knowledge in advance in top-
down manner, robots should be given adaptation 
functions to unknown environments and learning 
functions to memorize experiences and utilize them 
later, in bottom-up manner. Thus, a methodology is 
needed to design an on-line autonomous behaviour 
acquisition mechanism capable of developing the 
robot’s role in an embedded environment.  

A traditional solution to overcome this difficulty is 
to provide a central controller to arbitrate competitive 
situations between robots or suggest appropriate 
behaviours when unknown situations occur to maintain 
the global stability in a MRS. However, such global 
controller is difficult to design and there are no widely 
applicable methods, though several trials were tested to 
design a central controller for dynamic task allocation. 

This paper introduces a reinforcement learning 
approach to the described problem. A decentralized 
control architecture is developed and applied, whereby 
each robot autonomously develops a cooperative 
behaviour through its experience in a group of robots. 
An innovative MAS-based approach is used to solve 
this problem: some kind of social activity is expected 
to emerge in a group of robots through their interaction 
without the assistance of a central controller [9]. For 
this purpose, each robot is supposed to have a great 
adaptability and autonomy. The starting system is a 
homogeneous MRS because the purpose of the 
controller is to develop specialization in the system 
depending on the situation of each robot where the 
same type of learning function is provided. 

 
 

2. Multi-Robot Systems 
 

The term Multi-Robot System includes different 
typologies of robotic systems: multiple industrial 
manipulators, mobile robots with manipulators on 
board, or a team of autonomous vehicles. The reasons 
to employ MRS are widely different; however, one of 
the main motivations is that they can be used to 
increase the system effectiveness. That is, with respect 
to a single autonomous robot or a team of non-
cooperating robots, a MRS can better perform a 
mission in terms of time and quality, achieve tasks not 
executable by a single robot, or take advantages of 
distributed sensing and actuation.  

MRS can execute very complex missions since 
they can decompose a main task in elementary sub-
tasks easier to understand and control. These sub-tasks 
can be distributed among multiple resources, and the 
overall behaviour of the system results from the 
cooperation of the different units. The word 
“cooperation” underlines the interaction or the 
integration among the robots, that means, they have to 
communicate, exchange information or interact in 
some way to achieve an overall mission.  

As already mentioned, MRS offer numerous 
advantages compared to a traditional robot [10]. The 



 

first one is the presence of autonomous and 
asynchronous robots in the system, that permits 
performing parallel processing: as a result, the time 
required for a mission is largely reduced,  and many 
more tasks can be achieved in a single mission. The 
second advantage is robustness realized by the 
redundant situation where the system has a larger 
number of robots than the required: faults can be faced 
in a flexible manner, because if a robot breaks the 
system can execute the global mission without it. 
Another important characteristic of MRS is scalability, 
both in the static and dynamic sense. That is, a system 
is statically scalable when the control architecture can 
be kept exactly the same whether thousands of robots 
or only few are used, while it is dynamically scalable 
when robots can be added to or removed from the 
system on the fly, without compromising the system’s 
performance. Furthermore, MRS are strongly 
adaptable, since they can be modified according to the 
different circumstances and missions, by forming 
teams of robots that have the necessary abilities. 
Finally, the single robots of a system can be designed 
independently, and the complexity of each robot can be 
reduced to a minimum, which means lower costs, 
simpler design, and faster computation [11]. 

These benefits, however, often come with 
drawbacks such as the increased complexity of 
software for control and coordination of multiple 
robots, the need for inter-robot communication, etc. 

A flexible and powerful control architecture is 
therefore needed to simplify and organize the design, 
implementation and validation of such complex control 
system. The control architecture represents a central 
part in a MRS as it affects the missions success and 
strongly influences the system global performance. 

 
 
3. Multi-Robot Systems Control Methodology 
 

MRS can be seen as a particular instance of MAS 
[12]. A variety of approaches based on multi-agent 
coordination theories have been proposed to coordinate 
groups of robots. However, most of these approaches 
are only suitable for particular domains. 

Generally, the essential component of a MAS is 
the agent having three fundamental capabilities [13]: 
reactivity, i.e. agents can perceive their environment 
and respond with a correct action in a timely fashion; 
autonomy, i.e. agents do not only act in response to 
their environment but can also take actions 
spontaneously without external intervention; social 

communication, i.e. agents are capable of interacting 
with other agents or humans via some communication 
language. Besides these capabilities, learning, mobility 
and coordination are also important for agents.  

MAS are aggregations of these advantaged 
capabilities, have self-restraint, intelligent and target 
driven attributes, and can apperceive and adapt to 
complex dynamic environments by various ways of 
sociality, learning and reasoning.  

The concept of MAS is inspired by the biological 
society and it emphasizes coordination between agents 
having their own autonomy. Coordination can be 
defined as the use of particular mechanisms to manage 
inter-dependencies between collaborative activities of 
agents. In conventional systems, coordination is 
normally conducted by a top-down planning structure. 
However, MAS are capable of scheduling tasks, 
managing decisions, and social communication. These 
3 capabilities are the basis to realize coordination. 

This work’s purpose is to develop a MAS-based 
design of a MRS composed of robots that gradually but 
steadily achieve a way to cooperate with each other to 
play suitable roles through interaction and reach the 
global goal. Each robot gradually attains a diverse 
behaviour and the right role based on its experience: 
this process is called autonomous specialization. 

The present approach to realize autonomous 
specialization is based on Reinforcement Learning 
(RL) [14], achieved through an algorithm to find an 
appropriate set of IF-THEN rules that maximizes 
reward signals acquired through interaction with the 
environment. The IF part of a rule is a condition 
dependent on all sensory information. The THEN part 
is an action to be executed if that condition is met. 
From a theoretical point of view, conventional RL may 
not work effectively for a MRS due to the fact that RL 
has problems acquiring a strategy behaviour set in a 
noisy and dynamic environment. In fact, RL requires 
the assumption that the environment is static, i.e. 
Markovian. Moreover, in a MRS, the state space and 
the action space are generally continuous. To solve 
these difficulties, an instance-based RL is used, called 
Bayesian Reinforcement Learning (BRL), that realizes 
the segmentation of the two spaces simultaneously in 
the process of learning, and Neural Networks (NNs) 
are adopted to predict information on the near future. 

 
3.1. Bayesian Reinforcement Learning 

 
BRL operates on a set, R, of behaviour rules 

generated using a Bayesian discrimination method: at 



 

the beginning, this set is composed of a single 
indefinite rule. A rule Rr ∈  is formally defined as: 

>ΦΣ=< ,,,,,: fauvr  
where v is the state vector associated with the rule, u is 
the rule utility, a is the action related to the rule, f is the 
prior probability of the rule, Σ is the covariance matrix 
of the rule, and Φ is the sample set associated to the 
rule. Each rule can be associated to a cluster in the 
state space where the rule’s action is appropriate. 

During the MRS activity, when a new sensory 
input is received by a robot, its control system must 
verify if there is a rule in R with a similar sensory input 
so as to execute the corresponding action. If such a rule 
does not exist, the system will generate a new rule that 
consists of the current sensory input and the action to 
be executed and will store it in the rule set R. 

In order to compare the sensory input with the 
states associated to the memorized rules and segment 
the state space in clusters, a well known method of 
clustering input data has been adopted: the Bayesian 
discrimination method [15]. During the learning 
procedure, the robot, after the execution of an action, is 
transferred to next state: in specific states, it receives a 
payoff that is used to update the utilities of the rules. 

 
3.1.1. Bayesian discrimination method 

The rules in the rule set compete to trigger an 
action: using the posterior probability, the risk of 
misclassification of the sensory input x of each cluster 
of states, Ci , associated to a rule of the rule set, can be 
compared and the rule characterised by the minimal 
risk can be selected. The posterior probability is 
calculated according to the Bayes’ theorem:  

p(Ci|x) = 
( ) ( )

( )
i iP C p x C
p x

 

Given the probability density of the i-th rule’s 
cluster and the estimated value of fi, the risk of 
misclassification of the sensory input x into other 
clusters can be defined as: 
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The rule with the minimum value of gi is selected 
as winner and denoted as rw. If the value gw of the 

winner risk is larger than a threshold gth , then the 
winner is rejected and the robot performs a random 
action. Otherwise, the robot performs the action 
associated to the winner rule. 

 
3.1.2. Utility adjustment 

All the rules of the set have an utility: the objective 
is to keep only the rules with high utilities, since they 
represent the best behavior for the system. The utilities 
of the rules are always adjusted during the process: in 
fact, they are updated every time an action has been 
executed. The mechanism of utility adjustment is a 
fundamental part of the learning process, and it 
consists of the following four steps. 
1. In specific states (i.e. when a robot collides against 

a wall or when it reaches the goal), the winner rules 
receive a direct payoff P. This payoff can be of two 
types: reward (P > 0) and punishment (P < 0). The 
payoff is transmitted to all the previous winner 
rules with a discount rate γ > 0: 

Puu kk
w

k
w γ+← )()(         k = 0, …, N 

2. The current winner rule wr  hands over a part of its 
utility, Δu, to the previous one )1(

wr : 
uuu ww Δ+← )1()1(  

3. Whenever a definite rule triggers its action, its 
utility is reduced at the rate of cf : 

wfw ucu )1( −=  

4. The utilities of all the rules are reduced according  
to the evaporation rate η < 1 when the robot reaches 
the goal state: 

ww uu η=  
A rule whose utility decreases below a threshold 
umin is removed.  
 

3.2. Prediction of state transition 
 

In a MRS, if a robot selects the same action in the 
same situation, it may generate different results as its 
action’s effectiveness depends on the other robots’ 
actions. If each robot could precisely predict the state 
in the near-future, it wouldn’t have to consider the 
action of the others as dynamic information and the 
environment could be treated as static. With this 
purpose, NNs are provided to each robot to predict the 
other robots’ moves at the next time step in continuous 
space. Each NN is a three-layered, feed-forward, back-
propagation model, and its output signals are used as 
the sensory information of the BRL mechanism. 



 

 
Fig. 1. Robot scheme and sensors location: l1,2,3 = light 

sensor, c0,1 = collision sensors, d = distance sensor. 
 
4. Test Case Setting 
 

The described approach was tested through a 
simulation of a MRS composed of 2 identical robots 
with the mission to reach a given goal, keeping the 
reciprocal distance constant. Each robot has two 
motors to rotate its two wheels to move around on a 
plane. Moreover, it is equipped with its own 
independent controller and several sensors to detect 
information from the environment (Fig. 1). In 
particular, it has two collision sensors, c0,1, and three 
light sensors, l1,2,3 , at its front to perceive when it 
collides against the wall or it reaches the goal. In 
addition, it has a distance sensor, d, on its top to 
perceive the other robot’s position and orientation, that 
represent a fundamental information for motion 
coordination. The distance sensors on the two robots 
are used to assure that the assigned reciprocal distance 
is respected or, otherwise, an action command is given 
to the robot to restore it. In other words, the 2 robots 
have to cooperate with each other to move around, but 
they do not employ a communication function in 
explicit form because they simply perceive each other 
through their distance sensors. Each robot can perceive 
the goal, in the form of a light source, only when it is 
within the range of the light sensors. 

During the simulation, the 2 robots, starting from a 
given position, must reach the goal without hitting  the 
walls. If a robot collides against a wall, it receives a 
punishment, whereas if it reaches the goal, both robots 
receive a reward. In this test, time is expressed through 
a step unit that comprises the process in which a robot 
gets the sensory inputs, decides and executes its action, 
and estimates the action. The experiments were 
conducted by episodes: an episode is updated when the 
robots reach the goal or after 200 steps in case they do 
not reach the goal. At each new episode the robots 

initialize to the given starting position. 
In this problem, the input to a robot that is 

conditioned by the partner robot is given by the angle 
measuring the orientation of the other robot, pθ , as 
perceived through the distance sensor, therefore this is 
the value that the neural networks have to predict. The 
input and output of the prediction paradigm and the 
BRL mechanism are described in the following. 

 
4.1. Prediction paradigm. 

 
The input to the prediction mechanism is the angle 

history for three time steps. If oθ  is the angle of the 
robot and pθ  the angle of the partner, it is: 

{cos( ( 2)),sin( ( 2)),cos( ( 1)),o o ot t tθ θ θ− − −  
sin( ( 1)), cos( ( )), sin( ( )),o o ot t tθ θ θ−  
cos( ( 2)), sin( ( 2)), cos( ( 1)),p p pt t tθ θ θ− − −  
sin( ( 1)), cos( ( )),sin( ( ))}p p pt t tθ θ θ−  
The output is the predicted value of the other 

robot’s orientation, that is: 
{ ' 'cos ( 1),sin ( 1)p pt tθ θ+ + } 
 

4.2. Behaviour Learning Mechanism  
 
The input to the BRL mechanism includes the 

robot current position and orientation, measured by the 
sensors, and the position of the other robot in the next 
future as predicted through NN processing, i.e.: 

' '{cos( ( )), sin( ( )), cos( ( 1)), sin( ( 1)),o o p pt t t tθ θ θ θ+ +

( ), ( )i jd t l t } 
The output is the rotation velocity of the robot’s 

left and right wheels, namely: 
{ rl mm , } 
A reward is given when the robot reaches the goal, 

i.e. when the following condition occurs: 
( )j goall t θ>  

A punishment is given when the robot collides 
against the wall, explicitly when: 

( )i dd t θ>  
 
 
5. Results 

 
During the simulation, the robots gradually learn 

the behaviour to reach the goal. In the earliest episodes, 
they cannot to achieve the mission within 200 steps, 
since the initially generated rules are not good enough. 



 

 
Fig. 2. System’s behaviour during the 200th episode. 
 
Proceeding with the learning process, new rules are 

generated and only the best ones are maintained. From 
the 150th episode on, the robots stably reach the goal in 
200 steps, since they attained the right behaviour. 

Fig. 2 shows the system’s behaviour during the 
200th episode. Depending on its experience, each robot 
gets specific rules and behaviour: in different tests, the 
same robot can take on the role of leader or follower. A 
leader robot changes rules more frequently to approach 
the goal, a follower robot simply moves to adjust the 
head direction. 

 
 

6. Conclusions 

A MAS-based approach using reinforcement 
learning was proposed to realize the acquisition of 
cooperative behaviour in multi-robot systems. The 
simulation showed that, starting from a homogeneous 
system, each robot acquires a different behaviour 
depending on experience and interaction with other 
robots and learns the way to achieve the assigned task. 
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