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Abstract

The problem of real-time pose estimation of moving
objects using a stereo video camera system is consid-
ered in this paper. A computationally efficient algo-
rithm is proposed based on Kalman filtering of the
position measurements of suitable feature points se-
lected on the target objects. The efficiency of the al-
gorithm is improved by adopting a new pre-selection
technique of the feature points, based on Binary Space
Partition (BSP) trees, which takes advantage of the
Kalman filter prediction capability. Computer simu-
lations are presented.

1 Introduction

The effectiveness and autonomy of a robotic system
operating in unstructured environments can be en-
hanced if a vision system based on one or more cam-
eras is used to achieve direct measurements of the
state of the environment and of the task in progress.
Visual measurements can be directly used to perform
closed-loop position control of the robot end-effector,
usually denoted visual servoing control.

One fundamental issue of position-based visual ser-
voing is the real-time estimation of the pose, i.e., the
position and orientation trajectory, of known target
objects [1]. Typically, a visual system based on one
or more cameras is used to measure the position of
suitable feature points selected on the target objects.

In order to improve estimation accuracy in spite
of noise and disturbances affecting visual measure-
ments, the extended Kalman filter represents an ef-
fective solution [1, 2]. In fact, Kalman filter offers
many advantages over other methods employed to
solve the photogrammetric equations, e.g., temporal
filtering, recursive implementation, ability to change
the measurement set during the operation. More-
over, its prediction capability allows setting up a dy-
namic windowing technique of the image plane of

the cameras which may sensibly reduce image pro-
cessing time. Thanks to these features, Kalman filter
is adopted also for tracking objects with complex ge-
ometry and many internal degrees of freedom [3, 4].

It should be pointed out, however, that Kalman fil-
ter usually requires high computation time which in-
creases with the number of feature points. The use
of algorithms for real-time selection of an optimal
subset of points is useful to reduce the computation
burden but may be inadequate in case of target ob-
jects with a large number of feature points [5].

In this paper, the extended Kalman filter is adopted
to estimate the pose of moving objects using a stereo
camera system. The systematic procedure presented
in [6] is used to compute the objects pose, combined
with an efficient method of pre-selection of the visi-
ble feature points [7]. This work is mainly focused on
the pre-selection algorithm, based on Binary Space
Partition (BSP) trees for real-time rendering of CAD
models of moving objects [8]. In detail, the predic-
tion of the objects pose provided by the Kalman fil-
ter is used to guide a visit of the BSP tree which
allows identifying all the feature points visible at the
next sample time. Then a dynamic windowing algo-
rithm and an optimal point selection algorithm are
used to find the image plane windows to be pro-
cessed. The proposed method can be applied also
to the case of objects and obstacles with interpos-
ing parts; differently from other algorithms (see [5]
and references therein), it allows recognizing all the
points of the objects which are hidden to the cam-
era or occluded by some other objects or obstacles of
known geometry. Complex situations can be handled
in real-time thanks to the computational low cost of
BSP tree visit algorithms, whose complexity grows
linearly with the number of feature points.

The effectiveness of the proposed approach is tested
in a simulation case study. Ongoing experiments
have shown the practical feasibility of the method.
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Figure 1: Camera and object frames.

2 Extended Kalman filter

Consider a system of n fixed video cameras. A frame
Oci–xciycizci attached to the i-th camera (camera
frame), with the zci-axis aligned to the optical axis
and the origin in the optical center, is considered
for each camera (see Fig. 1). The sensor plane is
parallel to the xciyci-plane at a distance −f ci

e along
the zci-axis, where f ci

e is the effective focal length of
the camera lens. The image plane is parallel to the
xciyci-plane at a distance f ci

e along the zci-axis. The
intersection of the optical axis with the image plane
defines the principal optic point O′ci, which is the ori-
gin of the image frame O′

ci–ucivci whose axes uci and
vci are parallel to the axes xci and yci respectively.

Without loss of generality, the case of a single moving
target object is considered. The position and orien-
tation of a frame attached to the object Oo–xoyozo

with respect to a base coordinate frame O–xyz can
be expressed in terms of the coordinate vector of the
origin oo = [ xo yo zo ]T and of the rotation ma-
trix Ro(φo), where φo = [ϕo ϑo ψo ]T is the vec-
tor of the Roll, Pitch and Yaw angles. The compo-
nents of the vectors oo and φo are the six unknown
quantities to be estimated.

Consider m feature points of the object. The coor-
dinate vector pj = [ xci

j yci
j zci

j ]T of the feature
point Pj (j = 1, . . . , m) in the i-th camera frame
(i = 1, . . . , n) can be computed as

pci
j = RT

ci(oo − oci + Ro(φo)p
o
j), (1)

where po
j is the coordinate vector of Pj expressed in

the object frame, oci and Rci are respectively the
position vector and the rotation matrix of the i-th
camera frame referred to the base frame. All those
quantities are constant and are assumed to be known.

The point Pj is projected onto the point of the image

plane of coordinates
[
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j

]
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which can be expressed in terms of number of pixels
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being [ rci
0 cci

0 ]T the coordinates of the point O′
ci,

whereas sci
u (sci

v ) is the row (column) scaling factor.

By folding the mn equations (1) into (2) and (3), a
system of 2mn nonlinear equations is achieved, which
depend on the measurements of the position of the m
feature points in the image plane of the n cameras,
whereas the six components of the vectors oo and φo

are the unknown variables.

An implicit solution to the system can be com-
puted using the extended Kalman filter in dis-
crete time, based on a suitable model of the ob-
ject motion. A simplified kinematic model can
be written in terms of the state vector w =
[ xo ẋo yo ẏo zo żo φo φ̇o αo α̇o ψo ψ̇o ]T in the form

wk = Awk−1 + γk (4)

where A is a (12× 12) block diagonal matrix

A = diag
{[

1 T
0 1

]
, · · · ,

[
1 T
0 1

]}

and γk is the modelling error. The model (4) has
been derived in the reasonable hypothesis that the
velocity is constant over one sample period T , for
small T . The output of the Kalman filter is the vec-
tor of the normalized coordinates of the m points
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In view of (2), the corresponding output model can
be written in the form

ζk = g(wk) + νk (5)

where νk is the measurement noise, and g(wk) can
be computed from the state vector wk via (1).

Since the output model is nonlinear, it is required
to linearize the output equations about the current
state estimate. This leads to the so-called extended
Kalman filter, whose equations are not reported here
for brevity and can be found in [6]. Notice that,
in the case of multiple target objects, an extended
Kalman filter for each object has to be considered.



3 Feature points selection

The accuracy of the estimate provided by the
Kalman filter depends on the number of the available
feature points. Inclusion of extra points improves the
estimation accuracy but increases the computational
cost. It has been shown that a number of five or six
feature points, if properly chosen, may represent a
good trade-off [2]; to this purpose, automatic selec-
tion algorithms have been developed [5]. It should be
pointed out, however, that the complexity of the se-
lection algorithms grows at factorial rate. Hence, in
case of objects with a large number of feature points,
it is crucial to perform a pre-selection of the points.
In this paper a computationally efficient pre-selection
method is proposed, which allows identifying all the
points that are visible to the camera at a given sam-
ple time. The method, based on Binary Space Parti-
tion (BSP) trees, exhibits a computational complex-
ity which grows linearly.

3.1 BSP tree geometric modelling

A BSP tree is a data structure representing a re-
cursive and hierarchical partition of a n-dimensional
space into convex subspaces. It can be effectively
adopted to represent the 3D CAD geometry of a set
of objects as reported in [9].

To build the tree, each object has to be modelled
as a set of planar polygons. Each polygon is char-
acterized by a set of feature points (the vertices of
the polygon) and by the vector normal to the plane
leaving from the object. For each node of the tree, a
partition plane is chosen, characterized by a vector
normal to the plane; the node is defined as the set
containing the partition plane and all the polygons
on it. The choice of the partition planes depends on
how the tree will be used. For the purpose of remov-
ing the hidden surfaces, it is appropriate to choose
the partition plane from the input set of polygons.

The node is the root of the front subtree, correspond-
ing to the subset of all the polygons lying entirely to
the front side of the partition plane (i.e., the side
containing the normal vector), and of the back sub-
tree, corresponding to the subset of all the polygons
lying entirely to the back side of the partition plane.

The construction procedure can be applied recur-
sively to the two subsets by choosing, for each node,
a new partition plane. If a polygon happens to span
the partition plane, it can be split into two or more
pieces and the resulting parts are added to the cor-
responding subsets. The construction ends when all
the polygons and their parts are placed in a node of
the tree.

As an example, consider the object and the BSP tree
represented in Fig. 2. A partition plane is repre-
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Figure 2: Object and BSP tree.

sented by the vector π = [ a b c d ]T of the co-
efficients of the equation of the plane with respect
to a base reference frame, ax + by + cz + d = 0,
where n = [ a b c ]T is the unit vector normal to
the plane. The root of the tree contains the polygon
number 10, which is on the first partition plane; the
front subtree is empty while the back subtree con-
tains all the remaining polygons. The partition plane
of the back subtree contains the polygon number 1;
the front subtree is empty while the back subtree con-
tains the polygons from number 2 to number 9. The
construction ends when all the polygons are added
to the nodes of the tree. Remarkably, the partition
plane containing the polygon number 2 cuts polygons
number 5 and 7 (notice that polygons number 9 and
10, which also span the partition plane, were already
added to previous nodes of the tree), hence they have
been split into two pieces each (see polygons number
5f, 5b, 7f, 7b).



3.2 Pre-selection algorithm

Once that a BSP tree representation of an object is
available, it is possible to select the feature points of
the object that can be visible from a given camera
position and orientation by implementing a suitable
visit algorithm of the tree. The algorithm can be
applied recursively to all the nodes of the tree, start-
ing from the root node, by updating a current set of
visible feature points as follows.

For the current node, classify the camera position
with respect to the current partition plane: Front
side, Back side, On the plane. Hence:

• Front: Visit the back subtree; process the node;
visit the front subtree.

• Back: Visit the front subtree; process the node;
visit the back subtree.

• On: Visit the front subtree; visit the back sub-
tree.

When the algorithm processes a node, the current
set of visible feature points is updated by discarding
the points of the set that are hidden by the polygons
of the current node and by adding the points of the
polygons of the current node. If a polygon is hidden
to the camera (i.e., the angle between the polygon
normal vector and the camera z-axis is not in the in-
terval ]−π/2, π/2[), the corresponding feature points
are not added to the set.

At the end of the visit, the current set will contain all
the feature points visible from the camera, while all
the hidden feature points will be discarded. Notice
that the visit algorithm updates the set by ordering
the polygons with respect to the camera from the
background to the foreground.

With reference to the BSP tree of Fig. 2, assuming
that the camera is placed as the observer of the im-
age, the sequence of the processed nodes is: 10, 8,
7b, 4, 5b, 3, 2, 7f, 6, 5f, 9, 1, where the polygons
number 10, 8, 7b, 3, 7f result to be hidden.

The technique described above can be exploited to
set up a real-time pre-selection algorithm of the fea-
ture points to be localized on the cameras image
planes, using the prediction of the estimated pose
of the target objects provided by the Kalman filter.

4 Estimation procedure

Two different situations must be considered: the case
of objects whose parts cannot be interposed, and the
case of objects with interposing parts (e.g., a gripper
grasping an object).

In the first case (see Fig. 3 (top)), it is assumed that
a BSP tree representation of each object is built off-
line from the CAD model. A Kalman filter is used for
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Figure 3: Functional chart of the estimation proce-
dure. Top: non interposing objects. Bottom: inter-
posing objects.

each object to estimate the corresponding pose with
respect to the base frame at the next sample time.
The feature points selection and windows placing op-
eration, for each camera, can be detailed as follows.

• Step 1: An ordered sequence of BSP tree rep-
resentations is built, according to the estimated
distance of the objects from the camera, from
the farthest to the nearest.

• Step 2: The visit algorithm described in the
previous Section is applied to each BSP tree of
the sequence to find the set of all the feature
points that are visible from the camera. For
each item of the ordered sequence, a current set
of visible points is updated, by discarding the



feature points of the previous objects occluded
by the current object and by adding the visible
feature points of the current object.

• Step 3: The resulting set of visible points is
input to an algorithm for the selection of the
optimal feature points.

• Step 4: The location of the optimal feature
points in the image plane at the next sample
time is computed.

• Step 5: A dynamic windowing algorithm is ap-
plied to select the parts of the image plane to be
input to the feature extraction algorithm.

In the case of multiple target objects with interpos-
ing parts, this procedure may fail because the ob-
jects cannot be correctly ordered with respect to the
distance from the camera. This problem can be over-
come at expense of the computation time by adopt-
ing the solution represented in the functional chart
of Fig. 3 (bottom). As before, a Kalman filter is
used for each object to estimate the corresponding
pose with respect to the base frame at the next sam-
ple time. Differently form the previous case, a unique
BSP tree representation of all the objects is built on-
line, using the CAD model and the estimation pro-
vided by the Kalman filters. Hence, for each camera,
the visit algorithm of the tree is applied once to find
the set of all the visible points. Then, Steps 3, 4, and
5 are applied.

Notice that the procedures described above can be
extended to the case of objects moving among obsta-
cles of known geometry; in case of moving obstacles,
the corresponding motion variables can be estimated
using Kalman filters.

5 Simulation

The effectiveness of the estimation algorithm has
been tested in simulation case studies for a stereo
vision system composed by three cameras with a 50
Hz sampling rate. The cameras are fixed in the
workspace and their position and orientation with
respect to the base frame is reported in Fig. 4. The
effective focal length of the three cameras is 16 mm,
and the pixel dimensions are 8.3 × 8.3 µm. To re-
produce the geometric distortion effects of real cam-
eras, a polinomial model including radial distortion,
decentering distortion and thin prism distortion has
been adopted [10]. The numerical values of the dis-
tortion parameters have been chosen so as to achieve
errors up to 1.4% of the sensor half dimension. The
same model has been considered in the estimation
algorithm, and the corresponding parameters have
been chosen so as to achieve errors ranging from 1%
up to 56%, reproducing a typical situation of partial
distortion compensation. Errors up to 3.8% have
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Figure 5: Sequence of projections of the target ob-
ject on the image plane of camera 1.

been introduced in the parameters of the geometric
model of the stereo vision system in order to reflect
a typical situation of imperfect system calibration.

A target object characterized by 16 feature points,
corresponding to the object corners, is considered
(see Fig. 2). The selection procedure is used to find
five optimal feature points at each sample time.

The object moves according to a sinusoidal trajec-
tory of 8 s duration and amplitude 200 mm, 150 mm,
100 mm respectively for the x, y and z component of
the position, and 30 deg, 25 deg, 45 deg respectively
for the Roll, Pitch and Yaw angles. White indepen-
dent Gaussian noise is added to the true projections
on the cameras image plane of the feature points. In
order to simulate spatial sampling and quantization
errors, the variance of the noise has been chosen as
d2/12 where d = 8.3 µm is the pixel dimension. In
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Figure 7: Sequence of projections of two target ob-
jects on the image plane of camera 1.

Fig. 5 a sequence of 12 different projections of the
target object on the image plane of camera 1 is re-
ported, as reconstructed by the proposed algorithm.
It can be seen that the pre-selection algorithm allows
for correct prediction of the positions of the feature
points (object corners) that are visible from the cam-
era at the next sample time. The corresponding time
histories of the components of the position and ori-
entation estimation error are reported in Fig. 6.

In order to test the effectiveness of the proposed ap-
proach in the case of multiple target objects, a sec-
ond object moving according to a sinusoidal trajec-
tory has been added to the previous one. The time
histories of the tracking errors are not reported for
brevity. In Fig. 7 the projections of the two target
objects on the image plane of camera 1 are repre-
sented, as reconstructed using the Kalman filter esti-
mates and the pre-selection algorithm. It can be seen
that the visible feature points are correctly identified
also when the objects are superimposed.

6 Conclusion

The estimation of the pose of moving objects from
visual measurements was considered in this paper.
The extended Kalman filter was used to recursively
compute an estimate of the motion variables from
the measurements of the position of suitable feature
points of the objects. The efficiency of the algo-
rithm was improved by adopting a technique of pre-
selection of the visible feature points at each sam-
ple time based on a BSP tree representation of the
objects geometry. The proposed algorithm can be
applied also to the case of target objects and obsta-
cles with interposing parts. Ongoing experiments on
a visual system of two cameras are satisfactory and
will be reported in a future paper.
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