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Abstract

The problem of visual tracking of multiple objects is
considered in this paper. Special emphasis is devoted
to the case when two or more objects overlap with
respect to the visual system causing occlusion. The
algorithm is based on the Kalman filtering and Bi-
nary Space Partition tree representations of the ob-
jects geometry. The real-time implementation of the
algorithm is experimentally tested for the case of vi-
sual tracking of two objects using two cameras.

1 Introduction

The performance of a robotic system during the exe-
cution of tasks such as grasping, assembling, mating
mechanical parts, etc., can be significantly enhanced
if visual measurements are available. In fact, visual
information can be exploited for planning the end-
effector trajectory and, in some cases, can be directly
used for visual feedback control [1].

A typical problem in robotic vision is the real-time
estimation of the position and orientation of moving
objects of known geometry [2]. To this purpose, the
visual system is in charge to measure some features
of the objects, like the position of suitable points.
Estimation accuracy grows when more cameras are
used to guarantee different objects views and capture
a larger number of feature points.

During motion, some feature points may be occluded
to the visual system by the object itself (self occlu-
sion) or may exit from the visual space, especially
when a fixed-camera system is used. Moreover, dur-
ing the execution of tasks like grasping or assembling,
the feature points of an object may be occluded by
another object (mutual occlusion). It should be no
surprise that coping with occlusions is a critical issue
for real-time visual tracking algorithms.

In this paper, the extended Kalman filter is adopted
to estimate the pose of moving objects using a fixed
stereo camera system. The systematic procedure

presented in [3] is used to compute the pose of the
objects, combined to an efficient method of selection
of the visible feature points [4]. This work is mainly
focused on the selection procedure for multiple ob-
jects, based on Binary Space Partition (BSP) trees
technique for real-time rendering of CAD models [5].
In detail, the prediction of the objects pose provided
by Kalman filters is used to build a BSP tree of the
whole system and to guide a visit of the tree which
allows identifying all the feature points visible at the
next sample time. Differently from other algorithms
(see [6] and references therein), this method allows
recognizing all the points of the objects which are
hidden to the camera or occluded by some other ob-
jects or obstacles of known geometry. Two different
versions of the algorithm are presented: a simpli-
fied version that can be used for the case of objects
with non interposing parts and a general version to
be used for objects with interposing parts, e.g., a
gripper grasping a tool. Complex situations can be
handled in real time thanks to the computational low
cost of BSP tree visit algorithms, whose complexity
grows linearly with the number of feature points.

Particular emphasis is devoted to the presentation of
experimental tests realized on a system of two cam-
eras, for the case of two objects. The results confirm
the effectiveness of the proposed approach.

2 Kalman filter

The position and orientation of a moving object can
be estimated via an extended Kalman filter, using a
system of n video cameras fixed in the workspace.
The pin-hole model is adopted to relate the position
of a point in the 3-D space to the position of the
corresponding projection on the image plane of the
cameras (see [3] for the details).

The position and orientation of the object with re-
spect to a base frame is specified by defining a
frame Oo–xoyozo attached to the object and con-
sidering the coordinate vector of the origin oo =
[ xo yo zo ]T and the rotation matrix Ro(ϕo),



where ϕo = [φo αo ψo ]T is the vector of the Roll,
Pitch and Yaw angles. The components of the vec-
tors oo and ϕo are the six quantities to be estimated.

Assuming that a CAD geometric model of the object
is available, m feature points are considered. It can
be shown (see [3]) that the vectors oo and ϕo can
be computed by solving a system of 2mn nonlinear
equations depending on the measurements of the po-
sition of the m feature points in the image planes of
the n cameras. To derive these equations, the cam-
era calibration parameters are assumed to be known,
e.g., they can be measured via a suitable calibration
procedure.

An implicit solution can be computed using the ex-
tended Kalman filter in discrete time, based on a
suitable model of the object motion. The recursive
form of the equations for the problem at issue is re-
ported in [3].

3 Feature points selection

The accuracy of the estimate provided by the
Kalman filter depends on the number of the available
feature points. Inclusion of extra points improves
the estimation accuracy but increases the computa-
tional cost. It has been shown that a number of
five or six feature points, if properly chosen, may
represent a good trade-off [7]; to this purpose, auto-
matic selection algorithms have been developed [6].
It should be pointed out, however, that the complex-
ity of the selection algorithms grows at factorial rate.
Hence, in case of objects with a large number of fea-
ture points, it is crucial to perform a pre-selection
of the points. In [4], a computationally efficient pre-
selection method is presented, which allows identi-
fying all the points that are visible to the camera
at a given sample time. This method, based on Bi-
nary Space Partition (BSP) trees, exhibits a com-
putational complexity which grows linearly with the
number of object feature points.

The pre-selection algorithm does not guarantee that
all the visible points are “well” localizable, i.e., their
positions can be effectively measured with a given
accuracy. Moreover, the number of the well localiz-
able feature points may be larger than the optimal
number of points ensuring the best pose estimation
accuracy.

To this purpose, a windowing test is adopted first to
select the projections of the feature points that can
be well localized. In particular, only the points that
can be centered into suitable rectangular windows of
the image plane are considered for the next step of
selection, while the points that are out of the field of
view of the camera as well as the points that are too
close each other or to the boundaries of the image

plane, are discarded.

After the pre-selection and the windowing test, an
optimal set of feature points is identified by using
an optimal cost function based on a combination of
suitable quality indexes. These must be able to pro-
vide accuracy, robustness and to minimize the oscil-
lations in the pose estimation variables. To achieve
this goal it is necessary to ensure an optimal spatial
distribution of the projections of the feature points
on the image plane and to avoid chattering events
between different optimal subsets of feature points
chosen during the object motion. Moreover, in or-
der to exploit the potentialities of a multi-camera
system, it is important to achieve an optimal dis-
tribution of the feature points among the different
cameras.

The quality indexes used to evaluate the optimality
of a set Γ of feature points are:
• Spatial distribution index:

Qsi =
1
qi

qi∑

k=1

min
j ∈ {1, . . . , qi}

j 6= k

∥∥pj − pk

∥∥ ,

where qi is a subset of selected points for the
i-th camera, i = 1, 2.

• Angular distribution index:

Qai = 1−
qi∑

k=1

∣∣∣∣
αk

2π
− 1

qi

∣∣∣∣ ,

where qi is a subset of selected points for the i-
th camera, i = 1, 2, αk is the angle between the
vector pk+1−pCi and the vector pk−pCi, being
pCi the central gravity point of the whole sub-
set of feature points. The qi points of the subset
are considered in a counter-clockwise ordered se-
quence with respect to pCi, with pqi+1 = p1.

• Anti-chattering index:

Qh =
{

1 + ε if Γ = Γopt

1 otherwise

where ε is a positive constant and Γopt is the op-
timal set of points at the previous sample time.

• Point distribution indexes:

Qe = 1 +
2
q

(
2
q
− 1

) ∣∣∣q1 − q

2

∣∣∣

Qd =
q1/d1 + q2/d2

q/ min{d1, d2} ,

where qi is the number of points assigned to the
i-th camera, and di is the distance of the i-th
camera form the object, i = 1, 2. The first index
ensures an equal distribution of points among
the cameras; the second index takes into account
the distance of the cameras from the object.
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Figure 1: Functional chart of the estimation proce-
dure. Top: non interposing objects. Bottom: inter-
posing objects.

The above quality indexes represent only some of the
possible choices for the case of two identical fixed
cameras. Other examples are presented, e.g., in [6].

The cost function is chosen as

Q = Qh
QeQd

q

(
q1Qs1Qa1 + q2Qs2Qa2

)

and must be evaluated for all the possible combina-
tions of the visible points on q positions. To deter-
mine the optimal set at each sample time, the ini-
tial optimal combination of points is first evaluated
off-line. Then, only the combinations that modify at
most one point for camera with respect to the current
optimal combination are tested on line, thus achiev-
ing a considerable reduction of processing time.

4 Visual tracking of multiple objects

The visual tracking algorithm for the case of a single
moving object is reported and experimentally tested
in [8]. The estimation procedure assumes that a BSP

tree representation of the object is built off-line from
the CAD model. A Kalman filter is used to esti-
mate the corresponding pose with respect to the base
frame at the next sample time.

This procedure can be extended to the case of mul-
tiple moving objects of known geometry. In fact, the
algorithm can handle in an effective way both self
occlusions and mutual occlusions. To this purpose
two different situations shall be considered: the case
of objects whose parts cannot be interposed, and the
case of objects with interposing parts (e.g., a gripper
grasping an object).

In the first case (see Fig. 1 (top)), it is assumed that a
BSP tree representation of each object is built off-line
from the CAD model. A different Kalman filter is re-
quired for each object to estimate the corresponding
pose with respect to the base frame at the next sam-
ple time. The procedure for feature points selection
has to modified as follows:

• Step 1: For each camera, an ordered sequence
of BSP tree representations is built, according to
the estimated distance of the objects from the
camera, from the farthest to the nearest.

• Step 2: For each camera, a visit algorithm is
applied to each BSP tree of the sequence to find
the set of all the feature points that are vis-
ible from the camera. In particular, for each
BSP tree of the sequence, a current set of visi-
ble points is updated, by discarding the feature
points of the previous objects occluded by the
current object and by adding the visible feature
points of the current object.

• Step 3: For each object, the resulting set of
visible points is input to an algorithm for the
selection of the set Γopt of the optimal feature
points of the object for the n-camera system.

• Step 4: For each camera and each object, the
location of the optimal feature points in the im-
age plane at the next sample time is computed.

• Step 5: For each camera, a dynamic windowing
algorithm is applied to select the parts of the
image plane to be input to the feature extraction
algorithm.

At this point, all the image windows of the optimal
selected points are elaborated using a feature extrac-
tion algorithm. The computed coordinates of the
points in the image plane, for each object, are input
to the corresponding Kalman filter which provides
the estimate of the actual object pose and the pre-
dicted pose at the next sample time used in Steps 1-2.

In the case of multiple objects with interposing parts,
the above procedure may fail because the objects



Figure 2: COMAU Smart3-S robot carrying the
moving object and SONY 8500CE cameras.

Figure 3: Object used in the second experiment.

cannot be correctly ordered with respect to the dis-
tance from the camera. This problem can be over-
come, at the expense of computation time though, by
adopting the solution represented in the functional
chart of Fig. 1 (bottom). As before, a Kalman filter
is used for each object to estimate the correspond-
ing pose with respect to the base frame at the next
sample time. Differently form the previous case, a
unique BSP tree representation of all the objects is
built on line, using the CAD model and the estima-
tion provided by the Kalman filters. Hence, for each
camera, the visit algorithm of the tree is applied once
to find the set of all the visible points. Then, Steps
3, 4, and 5 follow.

Notice that the procedures described above can be
applied also to the case of objects moving among
obstacles of known geometry.

5 Experiments

The experimental set-up is composed by a PC with
Pentium IV 1.7GHz processor equipped with two
MATROX Genesis boards, two SONY 8500CE B/W
cameras, and a COMAU Smart3-S robot. The MA-
TROX boards are used as frame grabbers and for
a partial image processing (e.g., window extraction
from the image). The PC host is also used to real-
ize the whole BSP structures management, the pre-
selection algorithm, window processing, the selection
algorithm and Kalman filtering.
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Figure 4: Trajectory of the moving object. Left:
Position trajectory. Right: Orientation trajectory.

0 10 20 30 40 50
−0.02

−0.01

0

0.01

0.02

time [sec]
[m

]

0 10 20 30 40 50
−10

−5

0

5

10

time [sec]

[d
eg

]

x 

y 

z 

roll 

pitch yaw 

Figure 5: Estimation errors in the first experiment.
Top: Position errors. Bottom: Orientation errors.

The robot is used to move one object in the visual
space of the cameras (see Fig. 2), while the object of
Fig. 3 is placed on a known position of the workspace;
thus the position and the orientation of the moving
object, with respect to the base frame of the robot,
can be computed from joint position measurements
via the direct kinematic equation.

The cameras (disposed as in Fig. 2) have been cali-
brated with respect to the base frame of the robot us-
ing the calibration procedure presented in [9], where
the robot is exploited to place a calibration pattern
in some known pose of the visible space of the cam-
era. The resolution of each camera is 576×763 pixels
and the nominal focal length of the lenses is 16 mm.
The sampling time used for estimation is limited by
the camera frame rate, which is about 26 fps. No
particular illumination equipment has been used.

All the algorithms for BSP structure management,
image processing and pose estimation have been im-
plemented in ANSI C. The features points are the
corners of the object, which can be extracted with
high robustness in various environmental conditions.
The moving object and the fixed object used in
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Figure 6: Visible and selected points for camera 1
(top) and camera 2 (bottom) in the first experiment.

the experiments have 40 and 26 corners respectively,
which are all used as feature points.

To evaluate the capability of the proposed algorithm
in coping with multi-object tracking, two experi-
ments have been realized. In the first experiment,
the case of a single moving object is considered; in
the second experiment, a fixed object is added to
produce mutual occlusion. The time history of the
trajectory used for the moving object is represented
in Fig. 4. The maximum linear velocity and angular
velocity are about 3 cm/s and 3 deg/s respectively.

The time history of the estimation errors for the first
experiment is shown in Fig. 5. As it was expected,
all the errors are of the same order of magnitude,
thanks to the use of two cameras.

In Fig. 6 the output of the selection algorithm, for
the two cameras, is reported. For each of the 40
feature points, two horizontal lines are considered: a
point on the bottom line indicates that the feature
point was classified as visible by the pre-selection
algorithm at a particular sample time; a point on
the top line indicates that the visible feature point
was chosen by the selection algorithm. In Fig. 7 the
total number of the visible, selected and localized
points are shown. Notice that

∑
i qi = 8 feature

points are selected at each sample time, in order to
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Figure 7: Number of visible (blue), selected (green)
and localized (red) points for camera 1 (top) and
camera 2 (bottom) in the first experiment.

guarantee at least five or six measurements in the
case of fault of the extraction algorithm for some of
the points. Remarkably, 4 feature points for camera
are always chosen, due to the symmetric disposition
of the cameras with respect to the object.

In the second experiment, the same trajectory used
in the first experiment is used for the moving ob-
ject, while a fixed object (see Fig. 3) is placed in
the pose (oo = [ 1.102 −0.504 0.794 ]Tm, ϕo =
[−85.7 59.2 48.7 ]Tdeg), which partially and tem-
porarily occludes the moving object.

The time history of the estimation errors, reported
Fig. 8, shows that the tracking accuracy of the sys-
tem remains satisfactory also in the presence of oc-
clusions. The occurrence of occlusions is evidenced
in Fig. 9 where the output of the selection algorithm,
for the two cameras, is reported, as well as in Fig. 10,
where the total number of the visible, selected and lo-
calized points is shown. Notice that the selected fea-
ture points are not always equally distributed among
the two cameras because, when occlusions occur, the
disposition and the number of the points available
for each camera is not always symmetric.

6 Conclusion

The problem of visual tracking of multiple objects
has been considered in this paper. Special attention
has been devoted to the case when two or more ob-
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Figure 8: Estimation errors in the second experi-
ment. Top: Position errors. Bottom: Orientation
errors.

jects overlap with respect to the visual system caus-
ing occlusion. Experiments have been presented for
the case of two cameras and two objects.
Acknowledgments. This work was supported by
MIUR and ASI.
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Figure 9: Visible and selected points for camera 1
(top) and camera 2 (bottom) in the second experi-
ment.
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Figure 10: Number of visible (blue), selected
(green) and localized (red) points for camera 1 (top)
and camera 2 (bottom) in the second experiment.


