
Visual Motion Estimation of 3D Objects: An
Adaptive Extended Kalman Filter Approach

Vincenzo Lippiello, Bruno Siciliano, Luigi Villani
Dipartimento di Informatica e Sistemistica
Universit̀a degli Studi di Napoli Federico II

via Claudio 21, 80125 Napoli, Italy
{vincenzo.lippiello,siciliano,lvillani }@unina.it

Abstract— An algorithm for the visual estimation of the
pose of a moving object is presented in this paper. The
algorithm exploits the prediction capability of the Extended
Kalman Filter to realize in real time a dynamic optimal
selection of the object image features used for pose estimation.
The robustness of the system with respect to the measurement
noise and modelling errors is enhanced by using an adaptive
scheme. Experimental case studies are presented to prove the
effectiveness of the proposed approach.

I. I NTRODUCTION

The real-time estimation of the position and orientation
of a moving target object from image measurements plays
a central role in position-based visual servoing, where
this information is used to perform closed-loop position
control of robots [1], [2]. This problem has been largely
investigated in the computer vision literature (see, e.g., [3],
[4]) as well as in the robotics literature (see, e.g., [5], [6]).

To enhance the estimation accuracy in spite of noise
and disturbances, the Extended Kalman Filter (EKF) is
a common adopted solution [3]–[6]. If the quality of
the camera sensors is good, the illumination of the scene
is stable, and the velocity of the target object is almost
constant, then it is reasonable to assume that the statistics
of the state noise and of the observation noise are known
a priori and remain constant, as required by the EKF. On
the other hand, if one ore more of the above conditions are
not verified, it may be convenient to adopt an Adaptive Ex-
tended Kalman Filter (AEKF). This can be designed using
different approaches, e.g., introducing additional variables
to be estimated by the filter, as the noise statistics [7], using
interacting multiple models [8], adjusting the transition
matrix of the filter [9], or updating the covariance matrices
of the state and observation noise [10].

The EKF is the core of a visual motion estimation
scheme presented in our previous works [11], [12]. This
algorithm can be effectively adopted for polyhedral objects,
typical of industrial applications, and is based on the
use of point features (the object corners). To reduce the
processing time and improve the estimation accuracy, a
computationally efficient technique is used for the selection
of an optimal subset of feature points, among all the visible
points, at each sample time. Moreover, the adoption of
a Binary Space Partition tree for representing the object
geometry allows recognizing and discarding all the feature
points that are occluded with respect to the camera.
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Fig. 1. Pin-hole model of the camera and reference frames.

In this work, the visual motion estimation algorithm
presented in [11], [12] has been enhanced by using an
adaptive formulation of the EKF, to cope with uncertain
or varying noise statistics. The algorithm is based on
the approach proposed in [10] and successfully tested in
different applications, e.g., power systems [13], mobile
robots [14], visual pose estimation [15]. The adaptive
algorithm computes the statistics of both the state noise
and the observation noise. With respect to the work [10],
the contribution of this paper mainly concerns with the
adaptive law for the observation noise statistics, which
has been suitably designed for a visual motion estimation
problem based on the use of a variable set of image
features. This aspect is not considered in previous works on
AEKF applied to visual motion estimation (see, e.g., [15]),
where only an adaptive law for the state noise covariance
matrix is used.

The performance of the EKF and of the AEKF are
compared in a number of experimental case studies de-
veloped on a test bed consisting of one fixed camera and
a robot manipulator carrying the target object. The robot
allows moving the object according to a known position
and orientation trajectory, so that the estimation error can
be evaluated.

II. M ODELING

Consider the pin-hole model of a video camera fixed
with respect to a base coordinate frameO–xyz represented
in Fig. 1. LetOc–xcyczc be a frame attached to the camera
(camera frame), with thezc-axis aligned to the optical axis
and the origin in the optical center. In the following, a



superscript will be used to denote the reference frame of a
variable, when different from the base frame.

The sensor plane is parallel to thexcyc-plane at a
distance−fe along thezc-axis, wherefe is the effective
focal length of the camera lens. The image plane is parallel
to the xcyc-plane at a distancefe along thezc-axis. The
intersection of the optical axis with the image plane defines
the principal optic pointO′, which is the origin of the
image frameO′–uv.

A point P with coordinatescp =
[
cx cy cz

]T
in the

camera frame is projected onto the point of the image plane
whose coordinates can be computed with the equation

[
u
v

]
=

fe

cz

[
cx
cy

]
. (1)

The position and orientation of an object frameOo–
xoyozo with respect to the base frame can be expressed
in terms of the coordinate vector of the originoo =[
xo yo zo

]T
and of the rotation matrixRo(φo), where

φo =
[
ϕo ϑo ψo

]T
is the vector of the Roll, Pitch and

Yaw angles.
Considerm feature points of the object. The coordinate

vector cpj of the feature pointPj (j = 1, . . . , m) can be
expressed in the camera frame as

cpj = RT
c

(
oo − oc + Ro(φo)

opj

)
(2)

whereoc andRc are, respectively, the position vector and
the rotation matrix of the camera frame referred to the base
frame, whereasopj is the coordinate vector ofPj expressed
in the object frame. Notice thatopj is a constant vector
that is assumed to be known, since it can be computed
from a CAD model of the object. Moreover, the quantities
oc andRc are constant, because the camera is assumed to
be fixed to the workspace, and can be computed through a
suitable calibration procedure [16].

By folding the 3m equations (2) into the equation (1),
a system of2m nonlinear equations is achieved. The
equations depend on the measurements of them feature
points in the image plane of the camera, while the six
components of the vectorsoo and φo are the unknown
quantities to be estimated. To solve these equations at
least tree non-aligned points (six independent equations)
are required.

The computation of the solution is nontrivial and for
visual tracking applications it has to be repeated at a high
sampling rate. The Kalman filter provides a computation-
ally tractable solution, which can also incorporate and
exploit redundant measurement information.

III. E XTENDED KALMAN FILTER

In order to estimate the pose of the object, a discrete-time
state space model of the object motion has to be considered,
based on the (12× 1) state vector

w=
[
xo ẋo yo ẏo zo żo ϕo ϕ̇o ϑo ϑ̇o ψo ψ̇o

]T
. (3)

For simplicity, the object velocity is assumed to be constant
over one sample periodT . This approximation is reason-
able in the hypothesis thatT is sufficiently small. The

corresponding dynamic modelling error can be considered
as an input disturbanceγk. The discrete-time dynamic
model can be written as

wk = Awk−1 + γk (4)

where the state transition matrixA is a constant (12× 12)
block diagonal matrix of the form

A = diag
{[

1 T
0 1

]
, . . . ,

[
1 T
0 1

]}
.

The outputs of the Kalman filter are chosen as the
vectors of the normalized coordinates of them feature
points in the image plane of the camera

ζu
k =

[u1

fe
· · · um

fe

]T

k
(5a)

ζv
k =

[v1

fe
· · · vm

fe

]T

k
. (5b)

In view of (1), the corresponding output model can be
written in the form

ζu
k = gu(wk) + νu

k (6a)

ζv
k = gv(wk) + νv

k (6b)

whereνu
k andνv

k are the observation noise vectors for theu
andv components of the normalized image plane, whereas
the vector functionsgu(wk) andgv(wk) are defined as

gu(wk) =
[

cx1

cz1
· · ·

cxm

czm

]T

k

(7a)

gv(wk) =
[

cy1

cz1
· · ·

cym

czm

]T

k

. (7b)

The coordinates of the feature pointscpj in equations (7)
are computed from the state vectorwk via equation (2).

The components of the disturbance quantitiesγk, νu
k

and νv
k are considered as independent, non-stationary,

Gaussian, white noise sequences with the statistical prop-
erties: E[γk] = qk, E[νu

k ] = ru
k , E[νv

k] = rv
k, E[(wk −

qk)(wl−ql)T] = Qkδkl, E[(νu
k−ru

k)(νu
l −ru

l )] = Ru
kδkl,

E[(νv
k − rv

k)(νv
l − rv

l )] = Rv
kδkl, where E[·] indicates the

statistical mean operator applied to the components of a
vector or matrix, andδ is the Kroneker symbol.

Notice that, since the output model is nonlinear in the
system state, the Extended Kalman Filter must be adopted.

The equations of the EKF with fixed statistical parame-
ters are given by:

wk,k = wk,k−1 +
[
Ku

k Kv
k

] [
ζu

k − gu(wk,k−1)− ru
k

ζv
k − gv(wk,k−1)− rv

k

]

(8a)

P k,k = P k,k−1 −
[
Ku

k Kv
k

] [
Hu

k

Hv
k

]
P k,k−1, (8b)

wherewk,k−1 is the propagated state vector andP k,k−1 is
the (12×12) covariance matrix conditioned on observations
prior to timek, computed as:

wk,k−1 = Awk−1,k−1 + qk−1 (9a)

P k,k−1 = AP k−1,k−1A
T + Qk−1. (9b)



In (8), Ku
k andKv

k are the (12×m) Kalman matrix gains

Ku
k = P k,k−1H

u
k
T(Ru

k + Γu
k)−1 (10a)

Kv
k = P k,k−1H

v
k
T(Rv

k + Γv
k)−1, (10b)

beingHu
k andHv

k the (m× 12) Jacobian matrices of the
output vector functions

Hu
k =

∂gu(w)
∂w

∣∣∣∣
w=wk,k−1

(11a)

Hv
k =

∂gv(w)
∂w

∣∣∣∣
w=wk,k−1

, (11b)

andΓu
k andΓv

k defined as

Γu
k = Hu

kP k,k−1H
u
k
T (12a)

Γv
k = Hv

kP k,k−1H
v
k
T. (12b)

Notice that the implementation of the filter requires a prior
estimate ofw0,0, P 0,0, and of the statistical parameters of
the state and observation noise.

IV. A DAPTIVE EXTENDED KALMAN FILTER

If a high-quality camera sensor is used, the illumination
of the scene is stable, and the velocity of the tracked
object is nearly constant, then it is possible to use constant
statistical parameters with optimal results. On the other
hand, if these conditions are not satisfied, it may be
convenient to update in real time the statistical parame-
ters{qk,Qk, ru

k , rv
k, Ru

k ,Rv
k}. This leads to the Adaptive

Extended Kalman Filter (AEKF).
Following the adaptive approach proposed in [10], the

statistical parameters are assumed to be constant overN
sample times. Moreover, since not all the visual features
are always available during the motion and their location
into the scene is strongly variable, it may be reasonable
to assume the statistics of the observation noise to be
equal for all the measurements of the feature points in the
scene at timek. Hence the quantities{ru

k , rv
k, Ru

k ,Rv
k} are

replaced by the quantities{ru
k ım, rv

kım, σu
k

2Im, σv
k
2Im},

whereım indicates a (m×1) vector of components equal to
1 andIm indicates the (m×m) identity matrix. Moreover,
the samples of the observation noise sequencesνu

i (νv
i )

are independent fori = 1, . . . , N and have a gaussian
distribution with meanruım (rvım) and varianceσu2Im

(σv2Im), where the parametersru, rv, σu and σv are
constant overN sample times.

In view of the nonlinear relation (6), an intuitive approx-
imation of the observation noise sample vectors at timek
is given by the quantities

ρu
k = ζu

k − gu(wk,k−1) (13a)

ρv
k = ζv

k − gv(wk,k−1) (13b)

which can be considered as independent and identically
distributed overN samples. It can be shown (see, e.g.,

[10]) that an unbiased estimator forru andrv can be taken
as

r̂u =
1
N

N∑

i=1

ρu
i (14a)

r̂v =
1
N

N∑

i=1

ρ v
i , (14b)

whereρu
i and ρ v

i are scalar quantities equal to the mean
values of the components of the vectorsρu

i andρv
i respec-

tively. Moreover, an unbiased estimator forσu2 and σv2

may be obtained as

σ̂u2=
1

m(N − 1)

N∑

i=1

{
‖ρu

i − r̂uım‖2−N − 1
N

tr(Γu
i )

}

(15a)

σ̂v2=
1

m(N − 1)

N∑

i=1

{
‖ρv

i − r̂vım‖2−N − 1
N

tr(Γv
i )

}
.

(15b)

where tr(·) is the trace of the input matrix.
For the state noise statistics, in view of the linear

dynamic state relation at timek given by (4), an intuitive
approximation for the state noise vector at timek is

%k = wk −Awk,k−1, (16)

which may be considered independent and identically dis-
tributed overN samples. It can be shown that an unbiased
estimator for the mean valueq of the state noise may be
obtained as

q̂ =
1
N

N∑

i=1

%i, (17)

while an unbiased estimator for the covariance matrixQ
is given by

Q̂ =
1

N − 1

N∑

i=1

{
(%i − q̂)(%i − q̂)T − N − 1

N
∆i

}
,

(18)
where∆i = AP i,i−1A

T − P i,i.
In sum, the equations (13)–(18) provide a heuristic unbi-

ased estimator for the statistical parameters of a EKF used
for visual motion estimation, on the assumption that the
lastN samples are statistically independent and identically
distributed.

V. I TERATIVE AEKF

Using the previous results, an iterative limited memory
formulation of the AEKF may be designed. The required
prior knowledge information is represented by an initial
estimate of the quantitiesw1,0, P 1,0, q̂0, Q̂0, r̂u

0 , r̂v
0 , σ̂u

0

and σ̂v
0 .

For generality, it is assumed that the observation noise
statistical parameters are constant overNr time samples
while the state noise statistical parameters are constant over
Nq time samples.

The first step of the iterative algorithm is the lineariza-
tion of the output Kalman model about the last predicted



value of the statewk,k−1, according to (11), and the
computation of the matricesΓu

k andΓv
k in (12).

Starting from the timeNr, the second step is the
evaluation of the current noise vector and the computation
of the estimated observation noise statistics as follows

ρu
k = ζu

k − gu(wk,k−1) (19a)

ρv
k = ζv

k − gv(wk,k−1) (19b)

r̂u
k = r̂u

k−1 +
1

Nr
(ρu

k − ρu
k−Nr

) (19c)

r̂v
k = r̂v

k−1 +
1

Nr
(ρv

k − ρv
k−Nr

) (19d)

σ̂u
k

2 = σ̂u
k−1

2 +
1

m(Nr − 1)

{
‖ρu

k − r̂u
k ım‖2

− ‖ρu
k−Nr

− r̂u
k ım‖2+

+
1

Nr
‖ρu

k − ρu
k−Nr

‖2 +
Nr − 1

Nr
tr(Γu

k−Nr
− Γu

k)
}

(19e)

σ̂v
k
2 = σ̂v

k−1
2 +

1
m(Nr − 1)

{
‖ρv

k − r̂v
kım‖2

− ‖ρv
k−Nr

− r̂v
kım‖2+

+
1

Nr
‖ρv

k − ρv
k−Nr

‖2 +
Nr − 1

Nr
tr(Γv

k−Nr
− Γv

k)
}

.

(19f)

The third step consists in the evaluation of the Kalman
gains

Ku
k = P k,k−1H

u
k
T(Γu

k + σ̂u
k

2Im)−1 (20a)

Kv
k = P k,k−1H

v
k
T(Γv

k + σ̂v
k
2Im)−1, (20b)

while the fourth step is the state correction on the basis of
the current measurements

wk,k = wk,k−1 +
[
Ku

k Kv
k

] [
ρu

k − r̂u
k ım

ρv
k − r̂v

kım

]
(21a)

P k,k = P k,k−1 −
[
Ku

k Kv
k

] [
Hu

k

Hv
k

]
P k,k−1. (21b)

Starting from the timeNq, the fifth step is the evaluation
of the current state noise vector and the computation of the
estimated state noise statistics as follows

%k = wk,k −Awk,k−1 (22a)

∆k = AP k,k−1A
T − P k,k (22b)

q̂k = q̂k−1 +
1

Nq
(%k − %k−Nq

) (22c)

Q̂k = Q̂k−1 +
1

Nq − 1

{
(%k − q̂k)(%k − q̂k)T

− (%k−Nq
− q̂k)(%k−Nq

− q̂k)T

+
1

Nq
(%k − %k−Nq

)(%k − %k−Nq
)T

+
Nq − 1

Nq
(∆u

k−Nq
−∆k)

}
. (22d)
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Fig. 2. Block scheme of the visual motion estimation algorithm.

The sixth and last step consists in the evaluation of the
predicted state for the next sample time

wk+1,k = Awk,k + q̂k (23a)

P k+1,k = AP k,kAT + Q̂k. (23b)

Notice that the update of the noise statistics starts from
timeNr for the observation noise and from timeNq for the
state noise. Before such times, those quantities are constant
and equal to the initial values.

VI. V ISUAL MOTION ESTIMATION ALGORITHM

The accuracy of the estimate provided by the Kalman
filter depends on the number of the available feature points.
Inclusion of extra points may improve the estimation
accuracy but increases the computational cost. It has been
shown that a number of feature points between four and
six, if properly chosen, may represent a good trade-off [6].
Automatic selection algorithms have been developed to
find the optimal feature points (see e.g., [17], [18]). In the
following, an efficient selection technique proposed in [11]
is adopted, which exploits the prediction of the object pose
provided by the Kalman filter to perform a pre-selection of
the points that are visible to the camera at the next sample
time. A detailed presentation of the algorithm, which is
based on the Binary Space Partitioning (BSP) tree structure
to represent the object geometry, can be found in [11], [12].

The algorithm may be represented as the closed-loop-
like scheme of Fig. 2. It can be seen that the prediction
of object pose at next sample time (wk+1,k) provided
by the Kalman filter is fed back to the pre-selection
algorithm which, on the basis of a BSP representation of
the object, is capable to find and locate all the feature
points which are expected to be visible from the camera.
Then, an optimal selection algorithm is used to choose
an optimal subset of feature points and compute the size
and location of the corresponding windows on the image
plane to be grabbed for image processing. Finally, the
feature extraction algorithm provides the effective position
of the feature points to be input to the Kalman filter which
computes the actual object posewk,k.

The above algorithm allows the nice features of Kalman
filtering to be fully exploited. In fact, the AEKF provides
robustness with respect to visual measurement noise and
changing in the lighting conditions. Moreover, the closed
loop structure allows achieving robustness with respect to
the loss of feature points caused by occlusion or exit from



Fig. 3. COMAU Smart3-S robot carrying the moving object and SONY
8500CE cameras.

the visible space of the camera. Finally, the use of point-
type features combined with the optimal selection and win-
dowing algorithms allows minimizing the computational
time required for image processing.

VII. E XPERIMENTS

The effectiveness and the performance of the proposed
visual motion estimation algorithm have been experimen-
tally tested using a single-camera visual system.

The experimental set-up is composed by a PC with
Pentium IV 1.7GHz processor equipped with a MATROX
Genesis board, a SONY 8500CE B/W camera, and a
COMAU Smart3-S robot. The MATROX board is used as
frame grabber and for a partial image processing (e.g., win-
dows extraction from the image). The PC host is also used
to realize the whole BSP structure management, the pre-
selection algorithm, the selection algorithm, the dynamic
windowing and the Kalman filtering. Some steps of image
processing have been parallelized on the MATROX board
and on the PC, so as to reduce computational time.

The robot is used to move an object in the visual space of
the camera; thus the object position and orientation with
respect to the base frame of the robot can be computed
from joint position measurements via the direct kinematic
equation. In order to test the accuracy of the estimation
provided by the Kalman filter, the camera was calibrated
with respect to the base frame of the robot using a suitable
calibration procedure presented in [16], where the robot is
exploited to place a calibration pattern in some known pose
of the visible space of the camera.

The camera resolution is576 × 763 pixels and the
nominal focal length of the lenses is16 mm. The camera
is disposed at a distance of about130 cm from the object.
The sampling time used for estimation is limited by the
camera frame rate, which is about26 fps. A simple neon
illumination has been used, in order to test the robustness of
the setup in the case of noisy visual measurements. In fact,
during the object motion, the local illumination conditions
of the windows of the image plane selected for feature
extraction are quite variable due to reflections or shadows.

The image features are the corners of the object, which
can be extracted with high robustness in various envi-
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Fig. 4. Time history of the object trajectoryTrajPO . Position (a), RPY
angles (b), linear velocity (c), time derivative of RPY angles (d).

ronmental conditions. The feature extraction algorithm is
based on Canny’s method for edge detection [19] and on
a simple custom implementation of a corner detector. The
object used in the experiment has40 corners, which are
all candidate for feature extraction. Fig. 3 shows the stereo
vision system and the robot carrying the object. Notice that
only the left camera is used in the experiments.

For both EKF and AEKF, the initial value of the matrix
P 1,0 has been chosen as the null matrix; moreover, the
initial value of the state vectorw1,0 has been set null for
the velocity components, while the pose components has
been roughly estimated through direct measurements.

The covariance matrixQ has been chosen as a diagonal
matrix, both in the non-adaptive and in the adaptive case;
moreover, to prevent some typical implementation prob-
lems of Kalman filters, some of the modifications used
in [10] have been adopted.

The values of the statistical parameters used for the EKF
are set as initial values for the AEKF; they are:

r̂u
0 = r̂v

0 = 0,

σ̂u2
0 = σ̂v2

0 = 9.0,

q̂0 = 0,

Q̂0 = diag {0, 5, 0, 5, 0, 5, 0, 20, 0, 20, 0, 20} · 10−6.

The physical dimensions are: pixel and pixel2, respectively,
for the mean and variances of the observation noise; mm,
mm/s, rad and rad/s for the components of the mean of
the state noise; mm2, (mm/s)2, rad2 and (rad/s)2 for the
corresponding covariances.

The initial values of the observation noise covariances
have been evaluated during the camera calibration proce-
dure while the initial values of the state noise covariances
have been set on the basis of the velocity range of the
object trajectories. These values have been further tuned
on the basis of a set of experiments carried out using the
EKF, to achieve satisfactory tracking performance.

Notice that all the elements of the covariance matrixQ̂0

corresponding to the position components of the state have
been considered initially zero for the AEKF and constantly
zero for the EKF. Moreover, the valuesNq = Nr = 30
have been chosen.

The case study is aimed at comparing the performance
of the EKF to that of the AEKF considering different object



Mean StD Mean StD Mean StD

e P [mm] 13.71 11.16 12.59 10.89 8.2% 2.4%
e O [deg] 3.50 3.20 2.29 1.58 34.6% 50.6%
e P [mm] 11.23 8.66 9.15 6.13 18.5% 29.2%
e O [deg] 5.95 5.26 4.78 3.33 19.7% 36.7%
e P [mm] 13.58 8.70 11.92 8.06 12.2% 7.4%
e O [deg] 7.19 6.86 3.65 3.43 49.2% 50.0%

TrajPO

Improvement

TrajP

TrajO

EKF AEKF

TABLE I

COMPARISON OF THE ESTIMATION ERRORS FOREKF AND AEKF.
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Fig. 5. Time history of the estimation errors with AEKF and EKF for the
trajectoryTrajPO . AEKF: position (a) and orientation (c) errors; EKF:
position (b) and orientation (d) errors.

trajectories. It should be remarked that the adoption of the
AEKF in lieu of the EKF causes only a modest increase of
the computational cost that, in terms of overall processor
time, is about 16 percent. This result is in accordance to
those reported in [10] and [15].

Three different object trajectories are considered, both
for the EKF and the AEKF:

• TrajP: the object position varies according to the time
history reported on the left of Fig. 4 while the object
orientation is left constant. The norm of the maximum
linear velocity is about10 cm/s.

• TrajO: the object position is left constant while
the object orientation varies according to the time
history reported on the right of Fig. 4. The norm of
the maximum velocity for the RPY angles is about
20 deg/s.

• TrajPO: the object position and orientation varie
according to the time history of Fig. 4.

Notice the trajectoryTrajPO is the composition of
TrajP and TrajO , but the resulting trajectories of the
feature points on the image plane are different in the
three cases. Hence the considered trajectories represent a
significant test base to make a comparison.

The results of the experiments are summarized in Table I
where the mean value and the standard deviation of the
norm of the position erroreP and orientation erroreO are
reported, together with the relative improvement achieved
using the AEKF with respect to the EKF. It can be seen
that the use of the AEKF allows a general improvements of
the tracking performance, especially for the mean value and
the standard deviation of the orientation error components.

For the trajectoryTrajPO , the time history of the
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Fig. 6. Time history of the elements of the state noise covariance matrix
for the trajectoryTrajPO . Position (a), orientation (b), linear velocity (c),
rotational velocity (d) components.
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Fig. 7. Time history of the observation noise variance for the trajectory
TrajPO . σ̂u2 (a), σ̂v2 (b).

estimation errors are shown in Fig. 5. It can be seen that
the initial values of the errors are the same in the case of
the EKF and the AEKF. In particular, there is an initial
offset for thex-component of the position error, due to
the initial misalignment between the real initial position
and the initial value of the Kalman filter. This error is
initially recovered by the Kalman filter during the first
5 s, in the absence of motion. During the motion, the
position errors keep limited for all the components, but is
higher for thex-component. In fact, thex-axis is aligned
to the optical axis of the camera, thus the evaluation of the
x-component of the object position, for a single-camera
system, is more sensitive to measurements and modelling
errors with respect to the position components lying on the
image plane [6]. In general, the picks on the errors happen
when the velocity is higher, due to the modelling error for
the EKF. These errors are partially recovered by the AEKF,
in reason of the adaptive law of the state noise covariance
matrix Q.

The time histories of some of the statistical parameters
which are updated on-line in the AEKF are also reported.
In particular, the time histories of the elements of the
(diagonal) covariance matrix of the state noise are shown
in Fig. 6 while the time history of the observation noise
for the u and v components are shown in Fig. 7. It
can be observed that all the updated parameters keep
limited values; moreover, it can be recognized that there
exists a correlation between the values of the elements
of the Q matrix and the object trajectory. In particular,



the pick values of the elements ofQ corresponding to
the position and orientation components can be related to
the pick values of the linear and angular velocity of the
object. Analogously, the pick values of the elements ofQ
corresponding to the linear and angular velocity can be
related to the object accelerations.

VIII. C ONCLUSION

In this paper an algorithm for the visual motion estima-
tion of the position and orientation of a moving object
of known geometry has been proposed. The algorithm
fully exploits the prediction capability of the Extended
Kalman Filter for the pre-selection of the object features
to be extracted from the image. An adaptive version of the
EKF has been designed, which is capable of automatically
tuning the statistics of the observation noise and of the state
noise. The experimental results on a single-camera visual
system confirm the effectiveness of the AEKF. In fact,
the effects on the estimation error of the modelling error
and of the measurement noise are reduced with respect to
the non-adaptive formulation, at the expense of a small
increase of computational load. Further experiments aimed
at evaluating the effects on the tracking error of the update
laws for the matrixQ and R separately can be found
in [20].
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