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Abstract—An algorithm for the visual estimation of the coordimte .
pose of a moving object is presented in this paper. The . i \
algorithm exploits the prediction capability of the Extended oo ! ST J
Kalman Filter to realize in real time a dynamic optimal fame ﬁ,
selection of the object image features used for pose estimation. .

The robustness of the system with respect to the measurement ok -
noise and modelling errors is enhanced by using an adaptive (bect !

scheme. Experimental case studies are presented to prove the fiame @0
effectiveness of the proposed approach.
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I. INTRODUCTION

Object
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The real-time estimation of the position and orientation
of a moving target object from image measurements plays
a central role in position-based visual servoing, where
this information is used to perform closed-loop position
control of robots [1], [2]. This problem has been largely |, this work, the visual motion estimation algorithm
investigated in the computer vision literature (see, e.g., [3]presented in [11], [12] has been enhanced by using an
[4]) as well as in the robotics literature (see, e.g., [S], [6])-adaptive formulation of the EKF, to cope with uncertain

To enhance the estimation accuracy in spite of noisgr varying noise statistics. The algorithm is based on
and disturbances, the Extended Kalman Filter (EKF) igne approach proposed in [10] and successfully tested in
a common adopted solution [3]-[6]. If the quality of gifferent applications, e.g., power systems [13], mobile
the camera sensors is good, the illumination of the scengpots [14], visual pose estimation [15]. The adaptive
is stable, and the velocity of the target object is almosfigorithm computes the statistics of both the state noise
constant, then it is reasonable to assume that the statistiggq the observation noise. With respect to the work [10],
of the state noise and of the observation noise are knowRe contribution of this paper mainly concerns with the
a priori and remain constant, as required by the EKF. Oggaptive law for the observation noise statistics, which
the other hand, if one ore more of the above conditions aligss peen suitably designed for a visual motion estimation
not verified, it may be convenient to adopt an Adaptive Exproblem based on the use of a variable set of image
tended Kalman Filter (AEKF). This can be designed usingeatures. This aspect is not considered in previous works on
different approaches, e.g., introducing additional variablegek g applied to visual motion estimation (see, e.g., [15]),
to be estimated by the filter, as the noise statistics [7], usingnere only an adaptive law for the state noise covariance
interacting multiple models [8], adjusting the transitionmatrix is used.
matrix of the filter [9], or updating the covariance matrices The performance of the EKF and of the AEKF are
of the state and observation noise [10]. compared in a number of experimental case studies de-

The EKF is the core of a visual motion estimationyeloped on a test bed consisting of one fixed camera and
scheme presented in our previous works [11], [12]. Thig robot manipulator carrying the target object. The robot
algorithm can be effectively adopted for polyhedral objectsajlows moving the object according to a known position

typical of industrial applications, and is based on theynd orientation trajectory, so that the estimation error can
use of point features (the object corners). To reduce thge evaluated.

processing time and improve the estimation accuracy, a

computationally efficient technique is used for the selection Il. MODELING

of an optimal subset of feature points, among all the visible Consider the pin-hole model of a video camera fixed
points, at each sample time. Moreover, the adoption okith respect to a base coordinate frateryz represented

a Binary Space Partition tree for representing the objedh Fig. 1. LetO.—z.y.2. be a frame attached to the camera
geometry allows recognizing and discarding all the featurécamera frame), with the.-axis aligned to the optical axis
points that are occluded with respect to the camera. and the origin in the optical center. In the following, a

Fig. 1. Pin-hole model of the camera and reference frames.



superscript will be used to denote the reference frame of @rresponding dynamic modelling error can be considered
variable, when different from the base frame. as an input disturbance,. The discrete-time dynamic
The sensor plane is parallel to they.-plane at a model can be written as
distance— f. along thez.-axis, wheref, is the effective
focal length of the camera lens. The image plane is parallel
to the z.y.-plane at a distancg. along thez.-axis. The where the state transition matri& is a constant12 x 12)
intersection of the optical axis with the image plane defineglock diagonal matrix of the form
the principal optic pointO’, which is the origin of the
; ’ . 1 T 1 T
image frameO’'—uwv. - A—dlag{{o 1}""’{0 1”
A point P with coordinatesp = [“z  “y 2] inthe
camera frame is projected onto the point of the image plane The outputs of the Kalman filter are chosen as the
whose coordinates can be computed with the equation Vvectors of the normalized coordinates of the feature

wy = Awp_1 + v, 4

. points in the image plane of the camera
I I @ )
v cz |y’ C?]g _ [ﬂ um} (5a)
The position and orientation of an object franie,— Je fe 4‘3
TolYoZo With respect to the base frame can be expressed ¢l = [% ?ﬂ} . (5b)
e e dk

in terms of the coordinate vector of the origm, =
[xo Yo ZO]T and of the rotation matrixR,(¢,), where In view of (1), the corresponding output model can be

R wo]T is the vector of the Roll, Pitch and Written in the form

Yaw angles. . ' . ¢l = g%(wy) + v (6a)
Considerm feature points of the object. The coordinate ¢V = g (wy) + v (6b)
vector “p; of the feature point?; (j = 1,...,m) can be k=9 Wk k
expressed in the camera frame as wherev}! andvj, are the observation noise vectors for the
¢ _ T _ oy andv components of the normalized image plane, whereas
Py = R (00— 0+ Ro(6,)°P;) ) the vector functiong (w;) and g’ (wy) are defined as
whereo, and R are, respectively, the position vector and . . T
the rotation matrix of the camera frame referred to the base g“(wy) = [ 1 azm} (7a)
. . (& c
frame, wherea$p; is the coordinate vector df; expressed “1 Zm ]k
in the object frame. Notice thatp; is a constant vector " “ ym 1t
that is assumed to be known, since it can be computed 9" (wr) = ey ey . (70)

from a CAD model of the object. Moreover, the quantities i f the f it | . 7
0. and R, are constant, because the camera is assumed [g€ coordinates of the feature poirigs; in equations (7)

be fixed to the workspace, and can be computed througha'crxe computed from the state_vectm;v via equat_i(_)n (2)7;
suitable calibration procedure [16]. The components of the disturbance quantitigs v}

By folding the 3m equations (2) into the equation (1), and ug are qonsid.ered as indeper_wdent, non_—s;ationary,
a system of2m nonlinear equations is achieved TheGaussmn, white noise sequences with the statistical prop-
equations depend on the measurements ofithéeature  €TUES: E'Yk]T: a, Eli] = Z“}i E[”Z]u = ’;Z E[(“;k -
points in the image plane of the camera, while the sk (Z‘Jl_%l) ]U: Ql;‘skl' E[(q’)’;"‘kﬁ('/z _rl')]d': Rk‘sklﬁ
components of the vectors, and ¢, are the unknown S\(Yi — 1)) = 7])] = Ry, where E indicates the

guantities to be estimated. To solve these equations at[anstlcal mean operator applied to the components of a

least tree non-aligned points (six independent equation¥fctor Or matrix, and is the Kroneker symbol. ,
are required. Notice that, since the output model is nonlinear in the

The computation of the solution is nontrivial and for System state, the Extended Kalman Filter must be adopted.

visual tracking applications it has to be repeated at a high The quaﬂogs _Of the EKF with fixed statistical parame-
sampling rate. The Kalman filter provides a computation!€'s aré given by:
ally tractable solution, which can also incorporate and

. . . Wp j = Wi f— K}
exploit redundant measurement information. bk ki1 + KR

u u u
g1 |Sk = 9" (Whp—1) — 7}
d {CZ —g"(wgk—1) — T}

I1l. EXTENDED KALMAN FILTER (8a)
In order to estimate the pose of the object, a discrete-tim@;, ,, = Py, 1 — [K}g K',';] {H’g] Py 1, (8b)
state space model of the object motion has to be considered, k
based on thel@ x 1) state vector wherewy, ;1 is the propagated state vector aRq j_; is
) ] ] ) . ST the (12x12) covariance matrix conditioned on observations
w=[Zo &0 Yo Yo 2o %0 Po Po Vo Vo Vo Vo] () prior to time k, computed as:
For simplicity, the object velocity is assumed to be constant Wi po1 = AWp_1 -1 + @y (9a)

over one sample period. This approximation is reason- T
able in the hypothesis thaf is sufficiently small. The Pirr1=APp 111 A +Q - (9b)



In (8), K}, and K}, are the (2 x m) Kalman matrix gains [10]) that an unbiased estimator fgt andr” can be taken

as
u uT u u)—1 1 N
Ky = Prr1Hy (R +T%) (10a) U= ¥ Zpi“ (14a)
K} =Py HY (R +T))7,  (10b) S
AU 1 — v
being H} and H}, the (n x 12) Jacobian matrices of the ™= > a (14b)
output vector functions i=1
" wherep;* andp;” are scalar quantities equal to the mean
w_ 09" (w)

V= ‘ (11a) values of the components of the vectpisand p}’ respec-
W |y, o, tively. Moreover, an unbiased estimator fot? and o2

, ag® may be obtained as
HY = 98 (w) ‘ , @y MY
W w=w, 1 N N -1
e &“2=N12{p$ = P *~ tr(r;w}
andI'; andT'; defined as m(N —1) =
. (15a)
Z = HZPk,kle;é (12a) 1 N N_1
Y Py, H az) o>l - P S e |
=1
Notice that the implementation of the filter requires a prior (15b)
estimate ofwo,0, Po,0, and of the statistical parameters of\yhere t(.) is the trace of the input matrix.
the state and observation noise. For the state noise statistics, in view of the linear
dynamic state relation at time given by (4), an intuitive
IV. ADAPTIVE EXTENDED KALMAN FILTER approximation for the state noise vector at tifmés
If a high-quality camera sensor is used, the illumination 0r = wi — Awy 1, (16)

of the scene is stable, and the velocity of the tracked

object is nearly constant, then it is possible to use constafifich may be considered independent and identically dis-

statistical parameters with optimal results. On the othe'i”b,Ut6d overN samples. It can be shown that. an unbiased
hand, if these conditions are not satisfied, it may b stimator for the mean valug of the state noise may be

convenient to update in real time the statistical parame?Ptained as L
ters{q,, Q,,r},r}, R}, R;}. This leads to the Adaptive qg=— Z 0, (17)
Extended Kalman Filter (AEKF). N im1

Following the adaptive approach proposed in [10], th§yhjle an unbiased estimator for the covariance mafix
statistical parameters are assumed to be constant/éver g given by

sample times. Moreover, since not all the visual features N

are always available during the motion and their location - 1 ) ~r N-1

into the scene is strongly variable, it may be reasonable @ = ¥ —1 Z {(Qi —dlei-a) -~ AZ} ’

to assume the statistics of the observation noise to be =t (18)
equal for all the measurements of the feature points in thghere A, = AP;; AT - P;,.

scene at timé. Hence the quantitiery;, v}, Ry, R, } are In sum, the equations (13)—(18) provide a heuristic unbi-

replaced by the quantitie s, r{em, 0 Im, 0} * I},  ased estimator for the statistical parameters of a EKF used
wheres,, indicates afu x 1) vector of components equal to for visual motion estimation, on the assumption that the

1 andI,, indicates thes x m) identity matrix. Moreover, |ast N samples are statistically independent and identically
the samples of the observation noise sequengegr))  distributed.

are independent foi = 1,..., N and have a gaussian

distribution with mearnvs,,, (r'z,,) and variancer*2I,, V. ITERATIVE AEKF

(0v%I,,), where the parameters®, r¥, ¢* and ¢¥ are Using the previous results, an iterative limited memory
constant overN sample times. formulation of the AEKF may be designed. The required

In view of the nonlinear relation (6), an intuitive approx- prior knowledge information is represented by an initial
imation of the observation noise sample vectors at time estimate of the quantitiea; o, P10, @o, Qo, 7§, 70, 74

is given by the quantities andagy.
For generality, it is assumed that the observation noise
pi=Cr — 9" (Wi k1) (13a) statistical parameters are constant oYér time samples
pr=Cl—g" (Wi 1) (13b)  Wwhile the state noise statistical parameters are constant over

N, time samples.
which can be considered as independent and identically The first step of the iterative algorithm is the lineariza-
distributed overN samples. It can be shown (see, e.g.tion of the output Kalman model about the last predicted



value of the statewy ;_;, according to (11), and the

computation of the matriceB;, andT'}, in (12).

Starting from the timeN,, the second step is the
evaluation of the current noise vector and the computation
of the estimated observation noise statistics as follows

P =Ck — 9" (Wr k1) (192)
pr =G — 9" (Wi k1) (19b)
au au L —u
Pe = Th_1t F(P;ﬁ —Pk-n,) (19¢)
AU AU 1 —U —=U
Tp="7r_1+ F(Pk — Ph_n,) (19d)
1
~u2 _ oAu 2 U A 2
Op” =01+ N, — 1) {HPk Foml|
— ok n, — Freml*+
1 U U NT -1 u u
+ EHP/C —pi_n P+ Ttr( k-n, — L))
(19¢)
1
~AV2 _ Av 2 v 2
O =0p_1" + (N, —1) {”Pk Frtm||
—llob_n, — PR *+
N, —1

2+

1 U U
+ EHPk — Pi—nN,

T

Ty, —rz>}.

(19f)
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Fig. 2. Block scheme of the visual motion estimation algorithm.

The sixth and last step consists in the evaluation of the
predicted state for the next sample time

(23a)
(23b)

W1k = Awy p + qy,
Pii1p=AP; AT +Q,.

Notice that the update of the noise statistics starts from
time [V, for the observation noise and from tim&, for the
state noise. Before such times, those quantities are constant
and equal to the initial values.

VI. VISUAL MOTION ESTIMATION ALGORITHM

The accuracy of the estimate provided by the Kalman
filter depends on the number of the available feature points.
Inclusion of extra points may improve the estimation
accuracy but increases the computational cost. It has been

The third step consists in the evaluation of the Kalmarshown that a number of feature points between four and

gains

K! =Py, H(TY +61%1,)" "
K = Pk,k—leT( v 46020,

while the fourth step is the state correction on the basis

the current measurements

U
Wik = Wy k-1 + K},

A

u _ au
Kj] [p i _W’”]
pk Tklm

u

Py, =Prr1— K, K, ’“}P.,_.
k,k k,k—1 [ k k] [HZ k,k—1

(20a)
(20b)

(21a)

(21b)

six, if properly chosen, may represent a good trade-off [6].
Automatic selection algorithms have been developed to
find the optimal feature points (see e.g., [17], [18]). In the
following, an efficient selection technique proposed in [11]
is adopted, which exploits the prediction of the object pose
dLrovided by the Kalman filter to perform a pre-selection of
the points that are visible to the camera at the next sample
time. A detailed presentation of the algorithm, which is
based on the Binary Space Partitioning (BSP) tree structure
to represent the object geometry, can be found in [11], [12].

The algorithm may be represented as the closed-loop-
like scheme of Fig. 2. It can be seen that the prediction
of object pose at next sample timevf,, ;) provided

Starting from the timeV,,, the fifth step is the evaluation by the Kalman filter is fed back to the pre-selection
of the current state noise vector and the computation of trlgorithm which, on the basis of a BSP representation of

estimated state noise statistics as follows

0 = Wi — Awy, ;1
A= APy AT — Py,

R R 1

qy = qp_1 T E(Qk —0k-n,)

Q,=Q 1+ qu_ 1 {(Qk —ai)(e, —a)"

- (Qlc—Nq - fIk)(Qk—Nq - flk)T

1
+ F(Qk —or-n,)(er — Qk—Nq)T
q
N, 1
Ayg) .
+ N, k)}

u
(Ak_n, —

(22a)
(22b)

(22¢)

(22d)

the object, is capable to find and locate all the feature
points which are expected to be visible from the camera.
Then, an optimal selection algorithm is used to choose
an optimal subset of feature points and compute the size
and location of the corresponding windows on the image
plane to be grabbed for image processing. Finally, the
feature extraction algorithm provides the effective position
of the feature points to be input to the Kalman filter which
computes the actual object posag, j.

The above algorithm allows the nice features of Kalman
filtering to be fully exploited. In fact, the AEKF provides
robustness with respect to visual measurement noise and
changing in the lighting conditions. Moreover, the closed
loop structure allows achieving robustness with respect to
the loss of feature points caused by occlusion or exit from
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Fig. 4. Time history of the object trajectoiiyajPO . Position (a), RPY
angles (b), linear velocity (c), time derivative of RPY angles (d).

Fig. 3. COMAU Smart3-S robot carrying the moving object and SONY

8500CE cameras. " . . .
ronmental conditions. The feature extraction algorithm is

based on Canny’s method for edge detection [19] and on

the visible space of the camera. Finally, the use of pointa simple custom implementation of a corner detector. The
type features combined with the optimal selection and winebject used in the experiment hd8 corners, which are
dowing algorithms allows minimizing the computationalall candidate for feature extraction. Fig. 3 shows the stereo
time required for image processing. vision system and the robot carrying the object. Notice that
only the left camera is used in the experiments.

For both EKF and AEKF, the initial value of the matrix

The effectiveness and the performance of the proposeﬂL0 has been chosen as the null matrix: moreover, the
visual motion estimation algorithm have been experimenmitial value of the state vectow; o has been set null for
tally tested using a single-camera visual system. the velocity components, while the pose components has

The experimental set-up is composed by a PC witheen roughly estimated through direct measurements.
Pentium IV 1.7GHz processor equipped with a MATROX  The covariance matrik) has been chosen as a diagonal
Genesis board, a SONY 8500CE B/W camera, and gatrix, both in the non-adaptive and in the adaptive case;
COMAU Smart3-S robot. The MATROX board is used asmoreover, to prevent some typical implementation prob-

frame grabber and for a partial image processing (e.9., Wilems of Kalman filters, some of the modifications used
dows extraction from the image). The PC host is also useg} [10] have been adopted.
to realize the whole BSP structure management, the pre- The values of the statistical parameters used for the EKF

selection algorithm, the selection algorithm, the dynamigyre set as initial values for the AEKF; they are:
windowing and the Kalman filtering. Some steps of image

processing have been parallelized on the MATROX board o =75 =0,
and on the PC, so as to reduce computational time. 542 =607 = 9.0,
The robot is used to move an object in the visual space of 4, =0,
the camera; thus the object position and orientation with . ) _
respect to the base frame of the robot can be computed Qy = diag {0,5.0,5,0,5,0,20,0,20,0,20} - 10°.
from joint position measurements via the direct kinematicThe physical dimensions are: pixel and pixekspectively,
equation. In order to test the accuracy of the estimatiofor the mean and variances of the observation noise; mm,
provided by the Kalman filter, the camera was calibratednm/s, rad and rad/s for the components of the mean of
with respect to the base frame of the robot using a suitablée state noise; mfm (mm/s¥, rad® and (rad/s) for the
calibration procedure presented in [16], where the robot isorresponding covariances.
exploited to place a calibration pattern in some known pose The initial values of the observation noise covariances
of the visible space of the camera. have been evaluated during the camera calibration proce-
The camera resolution i§76 x 763 pixels and the dure while the initial values of the state noise covariances
nominal focal length of the lenses 1§ mm. The camera have been set on the basis of the velocity range of the
is disposed at a distance of abdi30 cm from the object. object trajectories. These values have been further tuned
The sampling time used for estimation is limited by theon the basis of a set of experiments carried out using the
camera frame rate, which is abd2g fps. A simple neon EKF, to achieve satisfactory tracking performance.
illumination has been used, in order to test the robustness of Notice that all the elements of the covariance mafix
the setup in the case of noisy visual measurements. In faaiprresponding to the position components of the state have
during the object motion, the local illumination conditionsbeen considered initially zero for the AEKF and constantly
of the windows of the image plane selected for featureero for the EKF. Moreover, the valu€g, = N, = 30
extraction are quite variable due to reflections or shadowsave been chosen.
The image features are the corners of the object, which The case study is aimed at comparing the performance
can be extracted with high robustness in various envief the EKF to that of the AEKF considering different object

VII. EXPERIMENTS
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trajectory TrajPO . AEKF: position (a) and orientation (c) errors; EKF: .
position (b) and orientation (d) errors. 0 5 10 15
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trajectories It should be remarked that the adoption of thBg. 7. Time history of the observation noise variance for the trajectory
: H ~u2 ~Av2

AEKEF in lieu of the EKF causes only a modest increase of 370+ 7** @7 ().

the computational cost that, in terms of overall processor

time, is about 16 percent. This result is in accordance t

those reported in [10] and [15] &stimation errors are shown in Fig. 5. It can be seen that

. . : _ . he initial values of the errors are the same in the case of
Three different object trajectories are considered, bot e EKF and the AEKF. In particular, there is an initial
for the EKF and the AEKF: offset for the x-component of the position error, due to
« TrajP: the object position varies according to the timethe initial misalignment between the real initial position
history reported on the left of Fig. 4 while the objectang the initial value of the Kalman filter. This error is
orientation is left constant. The norm of the maximuminjtially recovered by the Kalman filter during the first
linear velocity is about 0 cm/s. 5 s, in the absence of motion. During the motion, the
« TrajO: the object position is left constant while position errors keep limited for all the components, but is
the object orientation varies according to the timenigher for thez-component. In fact, the-axis is aligned
history reported on the right of Fig. 4. The norm oftg the optical axis of the camera, thus the evaluation of the
the maximum velocity for the RPY angles is about,-component of the object position, for a single-camera

20 degfs. . - _ . _ system, is more sensitive to measurements and modelling
« TrajPO: the object position and orientation varie errors with respect to the position components lying on the
according to the time history of Fig. 4. image plane [6]. In general, the picks on the errors happen

Notice the trajectoryTrajPO is the composition of when the velocity is higher, due to the modelling error for
TrajP and TrajO, but the resulting trajectories of the the EKF. These errors are partially recovered by the AEKF,
feature points on the image plane are different in thén reason of the adaptive law of the state noise covariance
three cases. Hence the considered trajectories represennatrix Q.
significant test base to make a comparison. The time histories of some of the statistical parameters

The results of the experiments are summarized in Tablewhich are updated on-line in the AEKF are also reported.
where the mean value and the standard deviation of tHa particular, the time histories of the elements of the
norm of the position erroe» and orientation erroep are  (diagonal) covariance matrix of the state noise are shown
reported, together with the relative improvement achieveth Fig. 6 while the time history of the observation noise
using the AEKF with respect to the EKF. It can be seerfor the v and v components are shown in Fig. 7. It
that the use of the AEKF allows a general improvements afan be observed that all the updated parameters keep
the tracking performance, especially for the mean value arinited values; moreover, it can be recognized that there
the standard deviation of the orientation error componentgxists a correlation between the values of the elements

For the trajectoryTrajPO, the time history of the of the @ matrix and the object trajectory. In particular,
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f K trv h b d. Th | ith tal validation of an adaptive extended Kalman filter for the localization
Of Known geometry has been proposed. € algortinm. ¢ 5 mobile robot,”IEEE Transactions on Robotics and Automation

fully exploits the prediction capability of the Extended vol. 15, pp. 219-229, 1999.
Kalman Filter for the pre-selection of the object featuredl5] M. Ficocelli and F. Janabi-Sharifi, "Adaptive filtering for pose

tob tracted f the i An adapti . fth estimation in visual servoing,Proceedings of the 2001 IEEE/RSJ
0 D€ extracted from the iImage. An adaptive Version ol th€ yiernational Conference on Intelligent Robots and Systd&fasii, HI,

EKF has been designed, which is capable of automatically pp. 19-24, 2001.
tuning the statistics of the observation noise and of the stat&] J. Weng, P. Cohen, and M. Herniou, “Camera calibration with

. Th . tal It inal . Idistortion models and accuracy evaluatiof?EE Transactions on
noise. € experimental results on a single-camera Vvisual p,iem Analysis and Machine Intelligena®|. 14, pp. 965-980, 1992.

system confirm the effectiveness of the AEKF. In fact[17] J.T. Feddema, C.S.G. Lee, and O.R. Mitchell, “Weighted selection
the effects on the estimation error of the modelling error ©f image features for resolved rate visual feedback conti&EE

. . Transactions on Robotics and Automatieol. 7, pp. 31-47, 1991.
and of the measurement noise are reduced with respect[lg

‘ . %] F. Janabi-Sharifi and W.J. Wilson, “Automatic selection of image
the non-adaptive formulation, at the expense of a small features for visual servoingEEE Transactions on Robotics and

increase of computational load. Further experiments aimed Automation vol. 13, pp. 890-903, 1997.

. . 19] J. Canny, “A computational approach to edge detectidBEEE
at evaluatmg the effects on the traCkmg error of the Updatje Transactions on Pattern Analysis and Machine Intelligenea. 8,

laws for the matrix@QQ and R separately can be found pp. 679-698, 1986.
in [20]_ [20] V. Lippiello, B. Siciliano and L. Villani, “Adaptive Extended
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