
 
 

 

  

Abstract—This paper presents a dynamic level control 
algorithm to meet simultaneously multiple desired tasks based 
on allocated priorities for redundant robotic systems. It is 
shown that this algorithm can be treated as a general 
framework to achieve control over the whole body of the robot 
and some of the previously developed results are formalized 
using this approach. Null-space impedance control is proposed 
as one of the main results of using this method and is evaluated 
by means of computer simulation. 

I. INTRODUCTION 
OBOTS are termed kinematically redundant when they 
possess more degrees of freedom than those necessary 

to achieve a desired task. Redundant degrees of freedom can 
be conveniently used to perform some additional tasks 
besides the main task. These additional tasks can be a 
performance objective or for example a given Cartesian 
position of a point on the body of robot. There are plenty of 
papers that deal with how to use redundancy effectively to 
optimize some performance objective besides the main task 
control. This optimization is usually performed in the null- 
space of the main task to ensure its perfect tracking. In order 
to solve the conflict between tasks in the case where several 
objective functions are going to be satisfied simultaneously, 
the so-called task priority strategy developed in [1,2] is 
adopted. The formulation has later been extended in a 
general framework for managing multiple tasks by Siciliano 
and Slotine [3]. 

This formulation uses first-order differential kinematics 
equation and solves redundancy in the Least-Squares (LS) 
sense, based on the assigned priority by resorting to pseudo-
inverse solution. Because of using the pseudo-inverse of the 
projected Jacobians –the Jacobians of the lower-priority 
tasks that are projected into the null-space of the higher-
priority tasks– the formulation may suffer from high norms 
during transition into and out of algorithmic singularities. 
Usually singularity-robust pseudo-inverse that allows 
limiting joint velocities at the expense of small tracking 
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error in lower priority tasks is the first remedy to treat this 
problem. Efficient damping techniques have been suggested 
by Nakamura and Hanafusa [4] and Wampler [5] and also 
by Nenchev et al [6] for the case of multiple priorities. 

Chiaverini [7] proposed the singularity-robust task-
priority resolution without using the projected Jacobian. 
This formulation always involves tracking errors in the 
additional tasks but singularities do not occur as long as the 
Jacobian of each additional task is full rank. The stability of 
this formulation has been shown in [8]. 
De Santis et al [9] apply the concept of Multi Point Control 
and Virtual End-Effectors (VEEs) for Human-Robot 
Interaction (HRI). The VEEs are parts of the manipulator 
structure, whose positions are to be controlled in addition to 
the control of the end-effector of the robot manipulator. 
They proposed a nested closed-loop inverse kinematics 
algorithm, with a priority management strategy in order to 
control robot in a cluttered environment.  
Instead of velocity-based control, acceleration-based control 
computes the desired joint accelerations for given task 
references. Synthesis of joint acceleration in a redundant 
robot usually requires a more involved analysis, but for 
second-order system such as robots this formulation is the 
most natural and offers improved tracking ability due to the 
explicit incorporation of acceleration information.  

 The problem of internal instability at the acceleration 
level was first noticed by Hsu et al [10]. De Luca et al [11] 
presented different methods for solving robot redundancy at 
the acceleration level. A complete theoretical and empirical 
evaluation of different dynamic methods has been 
investigated in [12].  

There are a few papers that use multi-priority control at 
dynamic level. Khatib et al [13,14] proposed the extension 
of the operational space formulation [15] to control the 
behavioral primitives in a humanoid robot at torque level.  

Recently Platt et al [16] proposed multi-priority Cartesian 
impedance control by resorting to acceleration resolution. 

This paper investigates multi-priority control at the 
acceleration level for redundant robotic systems and 
establishes a general framework to achieve dynamic control 
over the whole body of robot. It is shown that by a proper 
choice of the additional tasks it is possible to derive previous 
results in the literature within this framework. Null-space 
impedance control, as a result of task prioritization, together 
with the possible solution to cope with singularities, is 
presented as a main result of this work.  The paper is 
organized as follows. In Section II the multi-priority 
resolution at the velocity level is briefly described. The main 
results, including acceleration level multi-priority control, 
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null-space impedance and singularity treatment are 
presented in Sections III and IV. Section V gives a 
comparison between torque level and acceleration level, 
while some of the main results are verified by simulation in 
Section VI. The conclusion is given in the final section.  

II. MULTI-PRIORITY INVERSE KINEMATICS 
Multi-priority inverse kinematics is a well-established 

framework to manage the tasks in a kinematically redundant 
robotic system. Assume that the task is composed of two 
prioritized tasks. The first-priority task (main task) is 
specified using the first manipulation variable 1

1
mR∈X and 

the second-priority task (sub-task) by the second 
manipulation variable 2

2 .mR∈X The kinematic relationships 
between the joint vector nR∈q and the vectors of task 
variables are expressed by 

( ) , ( 1,2)i i i= =X J q q  (1) 

where ( ) im n
i R ×∈J q is the Jacobian matrix of the i-th task. 

The inverse kinematics solution considering the priority of 
the main task over the sub-task is given by 

† † †
1 1 2 2 1 1 2( ( ) ) ,= + − + η2q J X J X J J q X N  (2) 

where †(.) is the pseudo-inverse of the related matrix, 

2 2 1=J J N is the projected Jacobian, which gives the 
available range for the sub-task to be executed without 
affecting the main task, † †

1 1 1 2 1 2 2( ), ( )= − = −N I J J N N I J J  
andη is an arbitrary vector [2]. A recursive extension of (2) 
was proposed in [3]. 

In multi-priority control, an algorithmic singularity occurs 
whenever the projected Jacobian iJ drops rank. Two generic 
tasks are dependent when 

1 2 2

1
2

2

( ) ( ) ( ),

( ) ( ),

ρ ρ ρ

ρ ρ

+ >

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

J J J
J

J
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where (.)ρ  denotes the rank of a matrix. For more details 
about task independency conditions and algorithmic 
singularities see [17,7,8]. 

Thus it is obvious that singularities may occur from the 
lower-priority tasks. In the case of free task priority 
assignment, dynamic task priority allocation in [6] is crucial 
to the overall performance of the system. For a singularity-
robust task-priority handling, Chiaverini [7] proposed the 
following formulation for a case with two tasks 

† †
1 1 1 2 ,= + 2q J X N J X  (3) 

Comparing with (2), algorithmic singularities are absent, 
but there is typically a greater tracking error for the sub-task 
[8,18]. 

The above formulation has also been successfully applied 
for path planning of a mobile robot in [18]. 

III. MULTI-PRIORITY CONTROL AT THE ACCELERATION 
LEVEL 

A. General Formulation 
The goal of multi-priority control is to derive a control 

torque which will cause the system to track the desired main 
task exactly, while at the same time, system redundancy is 
exploited to realize a number of sub-tasks according to some 
desired priorities.  

Dynamics of a robot manipulator can be written in 
compact form as  

ext( ) ( , ) ( ) ,+ + +τ τM q q C q q q g q =  (4) 
with known notation. In this formulation extτ are the exerted 
external forces on the manipulator, including the forces 
applied on the body of robot. The kinematic relationships 
between the joint variable nR∈q and the task variables at 
the acceleration level are expressed by 

, 1,2,i i i i= + =X J q J q  (5) 
Following the same guideline used in (2) for extracting 
,q the corresponding LS solution for the joint space 

command acceleration cq for a given task space command 
accelerations 1 2,c cX X is obtained by  

1
†

1 1

† †
1 2 2 2 1 1 1 2

( )

[ ( )] ,
c c

c c

= −

+ − − − + η2

q J X J q

N J X J q J J X J q N
 

(6) 

The basic issue in this formulation is the differential order 
at which resolution take place. In the case of two or more 
sub-tasks, cq can be obtained similarly. Further investigation 
enables us to propose the general recursive solution for k 
tasks, as follows: 

†

1

†
1

0

( ) ,

( )

, 1,...,  

i

i ic i i i

i i

i
i j j

i k

−

= − − +

=

= ∏ −

= = =

(i) (i -1) (i -1)
c c c

(0)
c

q q + J X J q J q N

J J N

N I J J

N 0 q 0,

η

 

(7) 

where the matrices iJ are termed projected Jacobians 
because they are obtained from the Jacobian matrix of the i-
th task as projected into the null-space of the higher-priority 
tasks. Notice that the null-space iN can also be written as 

†( ),

,

i Ai Ai

Ai

= −

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

1

i

N I J J
J

J ...
J

 

(8) 

where AiJ  is the augmented Jacobian. 
Equation (7) can be treated as a general framework to 

control the whole behavior of the redundant robotic system 
by multiple priorities and even multi-point control. The 
acceleration level prioritization in contrast to velocity level 
prioritization, gives full trajectory planning with complete 
time information. A nice property of (7) is that, as desired, it 
can be easily used for any kind of force motion control by a 
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proper choice of the operational command acceleration. The 
method also enables us to give priority to one task over 
another even in a non-redundant robotic system. This kind 
of formulation can explain the previously proposed 
acceleration level resolution techniques in the framework of 
task prioritization by a proper choice of sub-tasks.  

Regarding (7), the following remarks must be considered; 
1) Care must be taken about internal instability. By a 

proper choice of the sub-task it is possible to achieve 
control over the internal motion as we will see in this 
section. 

2) The first i-1 tasks influence the performance of task i, 
hence the way of priority allocation will be crucial to 
the performance. 

3) The recursive scheme suffers from high-norm solutions 
in the neighborhood of singularity. This issue is treated 
in the next section. 

Once the command acceleration cq is obtained, a well-
known resolved acceleration control [19] can be used to find 
the driving torques 

( ) ( , ) ( ) .c ext= + + +τ τM q q C q q q g q  (9) 
By the above compensation of Coriolis, centrifugal, 

gravity and external torques, the closed-loop behavior of the 
system is obtained as  

,cq = q  (10) 
Multiplying both sides by 1J and using (6) gives 

1 1 ,cX = X  (11) 
meaning that the main task is correctly executed. 

Multiplying both sides of (10) by 2J and further by †
2 2J J  

and considering the idempotency of †
2 2J J  yields 

†
2 2 [ ] .c = 02 2J J X - X  (12) 

Thus, if the two tasks are not in conflict and 2J  is full 
rank, the sub-task is correctly executed. Equation (12) has 
been obtained under the assumption that the external forces 
applied to the manipulator are entirely compensated. In the 
case where there is no torque sensor to compensate extτ , the 
closed-loop equations for the main task and the sub-task are 
as follows: 

1 1
†

2 2

,

[ ] 0.
c ext

c ext− =

τ

τ

-1
1

-1
2 2 2

X - X = J M

J J X - X J M
 

(13) 

This formulation will be used later in the case of 
impedance control. 

To optimize an objective function ( ),m q assume 

2 1=X N q as a sub-task with the desired trajectory 

2 1( )d mα=X N ∇  and the command acceleration as 

2 2 2( ).c d d= + −X X K X X  Substitution of the above 
command in (6) gives the command joint acceleration as  

1
† †

1 1 1 1 1

1 1 1

( ) [ ( )

( ) ].
c c

m

m

m

α

α α

= − +

+ + − −

q J X J q N N N

N H q KN q N q

∇

∇
 

(14) 

where mH is the Hessian matrix of ( )m q . Using idempotency 
of 1N and †

1 1 1,=N N N (11) can be written as  

1
†

1 1 1 1

1

( ) [ ( )

( )].
c c

m

m

m

α

α α

= − + −

+ + −

q J X J q N N q

H q KN q

∇

∇
 

(15) 

This command acceleration, besides the correct execution 
of the main task will minimize 

1|| ||, ( ).mα+ = −e Ke e N q∇   
The command acceleration in (15) seems very similar to 

Hsu et al [10] redundancy resolution schemes which 
originally proposed the command acceleration  

1

1 1 1 1

†
1 1 1 1

† † †
1

( ) [ ( )]

( ) ( ).
c c m m

m

α α

α

= − + −

− + −

q J X J q N H q + KN q

J J J J J q

∇

∇  

(16) 

In the original paper, this command acceleration was 
obtained through a Lyapunov analysis. To find the relation 
between (15) and (16), after some algebraic manipulation, 
(16) can be rewritten as      

1

1 1

†
1 1

†
1 1 1

( )

[ ( )] ( )
c c

m m mα α α

= −

+ + − − −

q J X J q

N H q KN q N J J q∇ ∇
 

(17) 

Substituting 1 1
†

1 1 = −N N J J gives  

1
†

1 1

1 1 1

( )

[ ( ) ( )],
c c

m m mα α α

= −

+ + − + −

q J X J q

N H q KN q N q∇ ∇
 

(18) 

which is the same as in (15). The above analysis reveals that 
by a clever choice of sub-tasks the previous results in 
acceleration redundancy resolution can be recovered. 

B. Null-Space Impedance Control 
Another interesting choice for sub-task 2X  is 2X = q and 

the command impedance acceleration as 
-1

2 ( ).c d d d d ext+X = q M B q + K q - τ Here d dM ,B and dK are the 
impedance parameters. The command joint acceleration and 
the closed-loop behavior are obtained as follows: 

1
† -1

1 1 1

1 1

-1 -1
1

( ) [ ( )]

,

[ ( ) ] 0,

c c d d d d ext

c

d d d d ext

= − + +

+ − =

τ

τ

q J X J q N q M B q + K q -

X = X

N q M B q + K q M

 

(19) 

where .d −q = q q Actually this choice lets us realize joint 
space impedance despite the impedance of the main task, in 
the null-space of the main task. By a proper choice of null- 
space impedance matrices, it is possible to achieve a 
compliant behavior for the robot's body. This compliant 
behavior is useful in the case were the robot works in a 
cluttered environment and interaction may occur. In the 
simulation provided in this paper, this behavior is shown by 
applying a disturbance to the body of robot and also during 
contact with environment. The desired trajectory in the 
above equation can be chosen as a rest point or as a gradient 
of a given objective function. 

When the torque measurement is not available, the closed-
loop behavior is obtained as  
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1 1

-1
1[ ( ) ] 0.
c ext

d d d ext+ − =

τ

τ

-1
1

-1

X - X = J M

N q M B q + K q M
 

(20) 

Note that by using dynamically consistent generalized 
inverse # -1 -1 1

1 1 1 1( )T T −= J M J J M J in the above formulation and 
choosing d =M M  and also considering # #T

1 1MN = N M  and 
#
1 1( ),= −#

1N I J J following equation for null-space is obtained   

[ ] 0.d d ext+ − =#T
1N Mq B q + K q τ  (21) 

C. Remarks 
  As we have seen in the previous subsections, with the 
proposed formulation of multi-priority control, it is possible 
to achieve control over the whole behavior of the robot and 
stable internal motion just through a wise choice of the sub-
tasks. These sub-tasks can be chosen as the Cartesian 
coordinate of some points on the body of the robot in a 
hierarchical manner or as a kind of performance index. It is 
interesting to mention that, differently from other 
redundancy resolution approaches where the performance 
index is a function of only the configuration; this approach 
lets us to select a dynamic performance index as sub-task. 

Until now we did not make any attempts about the nature 
of the specified tasks. In general, position and orientation 
control needs to be considered separately. While position 
control is rather straightforward, orientation control is more 
complex. Indeed, the task space command acceleration is 
given by  

c
c

c

⎡ ⎤
= ⎢ ⎥

⎣ ⎦ω
p

X  
 

where the task space positional command cp and angular 
command acceleration cω are defined based on the nature of 
operational task and the definition of orientation error [19]. 

IV. SINGULARITY TREATMENT IN MULTI-PRIORITY CONTROL 
Because the acceleration level formulation is based on LS, 

the first remedy to treat singularity is the Damped Least-
Squares (DLS) method. A complete analysis of using DLS 
in second order kinematic control has been performed in 
[20]. Using the DLS method at the acceleration level causes 
oscillatory motion near singularities. Here this problem is 
solved by introduction of yet a lower priority sub-task 

3X = q with desired singularity configuration dsq with the 
same priority as the singular tasks. Thus the command 
acceleration for two tasks is generated as  

1

1

†
1 1

† †
1 2 2 2 1 1 1

2 1

( )

[ ( )]
[ ( )]

c c

c c

ds

λ

λ

= −

+ − − −
+ −

2

q J X J q

N J X J q J J X J q
N Bq + K q - q

 

(22) 

In this formulation 1λ  is damping factor and 2λ  is a 
weighting factor which can be a smooth function of the 
minimum singular value of the related projected Jacobian. In 
this way, inside the region of singularity, damping factors 
increase in proportion to the closeness of singularity. The 

following choice for 1λ [20] and 2λ can be adopted which 
ensures continuity and good shaping of solution. 

2
1 2 2

2 1

0

(1 ( ) ) M

k

σ ε
λ σ λ σ ε

ε
λ λ

≥⎧
⎪= ⎨

− <⎪⎩
=

 

 

where σ  is the singular value of related projected Jacobian, 
ε defines the size of singular region, Mλ suitably shapes the 
solution near the singularity and k is a constant. 

Another method is the use of a singularity-robust 
formulation, which can also be proposed for the acceleration 
level, like for the velocity level, as follows 

1
† †

1 1 1 2 2( ) [ ],c c c= − + −2q J X J q N J X J q  
(23) 

Because the projected Jacobian is not used, the 
algorithmic singularity does not occur, but this formulation 
has typically larger error on the lower-priority sub-tasks in 
comparison with (6). 

V. COMPARISON WITH TORQUE LEVEL MULTI-PRIORITY 
CONTROL 

Khatib et al [13,14] developed a whole-body control 
framework for prioritized multiple task control in humanoid 
robots. Hand location, mass center control and obstacle and 
joint limit avoidance are the common choices for tasks in a 
humanoid robot. They labeled all the behaviors not affecting 
the main task as posture space. This formulation allows for 
posture objectives to be controlled without dynamically 
interfering with the main (operational) task. 

The control law originally proposed in [13], in the 
absence of external torque extτ , in order to obtain a 
decoupled behavior for the operational task tX and the 
posture behavior pX  can be written as 

#

#
| | | | |

,

[ ( )]

[ ( ) ( )]

task posture

T T
task t t tc t t

T T
posture p t p t pc p t p bias p t

= +

= − + +

= − − + +

τ τ τ

τ Λ

τ Λ

J (X J q) J C g

J X J q X J C g

 
(24) 

where pJ and tJ are the Jacobians associated to the 
operational and posture tasks, | ,p t p t=J J N tN being the 
dynamically consistent null-space of task, tcX and pcX are 
the command accelerations for the task and posture spaces 
respectively, |p biasX is the acceleration induced by taskτ  in the 
posture space and -1 1( )T

t t t
−= J M JΛ is the task inertia matrix; 

further, -1 1
| | |( )T

p t p t p t
−=Λ J M J  is the posture related inertia 

matrix and #
tJ is the dynamically consistent generalized 

inverse of .tJ The extension of the above formulation has 
been proposed in [14]. 

In the control law (24), Coriolis and gravitational terms 
are compensated in the operational and posture space. It is 
often more suitable to perform full gravity and Coriolis 
compensation in the joint space, as also highlighted in [12]. 
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In this case further investigation shows that using a 
dynamically consistent generalized inverse in the 
acceleration based controller (6) gives exactly the same 
result as the torque level control.  

VI. COMPUTER SIMULATION 
A three-link planar arm in the horizontal plan as depicted 

in Fig. 1 is considered in the simulation study. When only 
the position of the end-effector is of concern, this system is a 
kinematically redundant manipulator. 
 

 

 
 

Fig 1. Planar redundant arm with the parameters of the three links 
 

The first simulation illustrated in Fig. 2 shows multi-
priority control when the arm has no contact with its 
environment. The main task is the end-effector trajectory 
tracking and the desired sub-task is the configuration  

[ / 2, / 2, / 2]rest π π π= −q  which actually gives a sort of 
manipulability measure. Here the two tasks are always in 
conflict, yet we do not have problems with singularities. 
Usually a singularity may give troubles during transition 
from a nonsingular to a singular configuration because of 
the use of a pseudo-inverse in the solution. 

The initial condition is 0 [ 0.031,0.967,1.934]= −q  and the 
desired trajectory is 

( ) 0.4 0.06
( ) 0.4 0.05

x t t
y t t

= +
= −  

 

 Without any external disturbance and obstacle, we can 
see that null-space control attempts to reach the desired 
configuration in the LS sense. 

 

 
 

Fig 2. Joint position during null-space control 
 

In order to show the null-space impedance control 
behavior, assume that the body of manipulator hits an 
obstacle in the presence of joint torque sensor (Fig. 3). In 
this situation the configuration of the arm changes to comply 
with the external interaction. Here the first-priority task error 
is zero thanks to the use of the torque sensor. Without this 
null-space impedance the command torques increase and the 
arm shows a stiff behavior regarding the obstacle. 
 

 
 

 
 

Fig 3. Joint position and joint torques under null-space impedance control 
during impact with an obstacle 

 
The proportional and derivative gains for the main task 

are chosen as 1 1400 , 40 ,p d =K = I K I while the null–space 

impedance matrices are chosen as , 8 , 16 .d d d= = =M I B I K I  
The obstacle is in the position -0.75 rad, with a stiffness of 
6000Nm/rad. 

In the next simulation illustrated in Fig. 4, the above 
analysis is performed without using torque sensor 
information in the controller. Equation (20) and (21) shows 
that in the absence of torque sensor, by a proper choice of 
impedance matrices and desired rest configuration, a 
satisfactory compliance behavior in the null-space can be 
achieved. Indeed there is an error on the main task during 
interaction which can be tolerated by using high gain for the 
main task control and giving high compliance to the null-
space task through the impedance matrices. 

In the last simulation an external disturbance force 
[20 20]Text N=f is exerted on the body of manipulator for 0.2 

second, in the middle of second link and the behavior of arm 
without using external disturbance information is illustrated 
in Fig. 5. Above simulation shows that null-space 
impedance control, under multi-priority control framework, 
enables us to have more control over the behavior of robot 
during interaction with environment, even in the case of 
unknown disturbance. 
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Fig 4. Arm configuration, joint torques and task errors under null impedance 
control during impact with obstacle without torque sensor 

 

 
 

 
 

Fig 5. Joint torques and task errors under null impedance control during 
disturbance 

VII. CONCLUSION 
A new acceleration level multi-priority control algorithm 

has been presented in this paper. It has been shown how this 
formulation can be treated as a general framework to 

achieve control over the whole body of robot. By a proper 
choice of the sub-tasks it is possible to recover some of the 
previously proposed results for acceleration level resolution. 
Null-space impedance control with possible solution to cope 
with singularities has been proposed as a result of task 
prioritization and the ability of this impedance to control the 
interaction of robot's body has been shown by simulation.   
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