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Abstract— Motion estimation is an open research field in
control and robotic applications. Sensor fusion algorithms are
generally used to achieve an accurate estimation of the vehicle
motion by combining heterogeneous sensors measurements with
different statistical characteristics. In this paper, a new method
that combines measurements provided by an inertial sensor
and a vision system is presented. Compared to classical model-
based techniques, the method relies on a Pareto optimization
that trades off the statistical properties of the measurements.
The proposed technique is evaluated with simulations in terms
of computational requirements and estimation accuracy with

respect to a classical Kalman filter approach. It is shown that
the proposed method gives an improved estimation accuracy at
the cost of a slightly increased computational complexity.

I. INTRODUCTION

Localization is an essential feature in robotic applications,

such as surveillance and monitoring. When a robot moves in

unknown environments information about its current position

is needed. The use of filters combining different sensor data,

which are generally provided at different sampling rates, is

highly appealing to make an accurate localization.

Different methods have been proposed to combine het-

erogeneous data sources such as Global Positioning System

(GPS), Inertial Measurement Unit (IMU), odometry sensors,

and local radio technologies [1], [2]. Nevertheless, this

remains an open research field in robotics and especially in

Micro Aerial Vehicles (MAVs) applications, where low cost

IMUs have to be combined with camera(s) information, as

well as with GPS data. However, due to the integration error,

position and velocity can be estimated for no more than few

seconds by using only IMU data. On the other hand, vision

systems provide positional information with no drift with

respect to fixed observed environments. The main drawback

of this sensors is the huge amount of data to be elaborated,

that generates time delay in the estimation update and low

measurement rate compared to IMU sensors.

Unequal sampling times of the measurement devices rises

significant challenges. A solution consists in adopting multi-
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rate filters [3]. Further, the delay that characterizes visual

measurements can be addressed by adopting techniques

based on Kalman filters or its variants [4], [5]. However, the

delay compensation is often achieved by a state augmentation

depending on the given delay [6]. In [7] the general Kalman

filter formulation is extended by considering both the relative

measurements update and the correlation between two con-

secutive displacements, while a solution to choose the initial

state covariance matrix is addressed in [8]. The solution

proposed in [3] has been employed in [9] by compensating

the delay due to the wireless data communication and image

processing to stabilize a MAV with a standard PID controller.

The use of mono-camera systems in an unknown environ-

ment allows the direct estimation of the vehicle egomotion

up to a scale factor. By combining inertial and visual data,

the global scale factor can be estimated achieving an absolute

egomotion estimation. The solutions proposed in [10], [11],

[12] combine inertial measurements and consecutive feature

matchings obtaining a full-scale closed-form solution.

Optimal sensor-fusion techniques based on second-order

moment minimization [13], [14] and Pareto Optimiza-

tion [15] attempt to couple heterogeneous sensors such as

Ultra-Wideband radio measurements with speed and absolute

orientation information. Other works rely on the use of

complementary filters and non-linear estimators as in [16],

[17]. In these latter cases, the vehicle position, velocity and

attitude estimation is obtained with a non-linear dynamic

system.

In this paper a new optimal sensor-fusion algorithm based

on Pareto optimization techniques is proposed to combine

IMU and camera visual measurements to estimate a vehicle

motion. The advantages of the proposed method are the

no-prior assumption about robot motion model and that

the multi-rate sensor fusion. A comparison of the proposed

technique with a Kalman filter approach shows an improved

estimation at the price of a limited increased computational

complexity.

II. PROBLEM FORMULATION

The position estimation of a flying vehicle equipped with

an IMU and a differential visual system is the main goal of

this paper. Without loss of generality, the world reference

frame is assumed coincident with the first IMU pose, and

the orientation of the camera with respect to the IMU is

supposed to be known. The differential vision system pro-

vides the position displacement with respect to the previous

vehicle position, i.e. differential positional measurement is

available, with a sampling rate TV . On the other hand, the
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IMU provides the linear acceleration and attitude with a

sampling time Ti ≤ TV . The latter can be recovered by

fusing the accelerometer and rate gyro measurements in

a standard complementary attitude filter [18], by using a

gradient descent method [19]. The orientation of the vehicle

is represented with the Tait-Bryan angles of roll, pitch, and

yaw φφφ = (ϕ, θ, ψ), which yields to the rotation matrix

R(φφφ) ∈ SO(3), i.e.

R(φφφ) =



cϕcθ cϕsθsψ − sϕcψ sϕsψ + cϕsθcψ
sϕcθ sϕsθsψ + cϕcψ sϕsθcψ − cϕsψ
−sθ cθsψ cθcψ


 ,

where sx = sin(x) and cx = cos(x). Moreover, the

measurement of the Euler angles

φ̃φφ =
(
ϕ̃, θ̃, ψ̃

)
(1)

can be modeled as

ϕ̃ = ϕ+ ωϕ

θ̃ = θ + ωθ

ψ̃ = ψ + ωψ,

(2)

where ωϕ, ωθ, and ωψ represent angle Gaussian white noises

with zero mean and variance σ2
φ, σ2

θ , and σ2
ψ , respectively.

Finally, the linear acceleration of the vehicle ã with

respect to the fixed frame is given by

ã = R(φ̃φφ)ãI = R(φ̃φφ) (aI + ωai)− g, (3)

where aI = [ aI,x aI,y aI,z ]T is the acceleration pro-

vided by the IMU and expressed in the current robot frame,

ωaI = [ ωaI ,x ωaI ,y ωaI ,z ]T is a Gaussian white noise

with known variance σ2
aI

= [ σ2
aI ,x

σ2
aI ,y

σ2
aI ,z ]T and

g = [ 0 0 9.81 ]T is the gravity vector that can be

subtracted from the inertial measurement given that the

absolute orientation is known.

The visual measurement δ̃pV = δp + ωV represents

the robot displacement performed during the last sam-

pling period TV , expressed in the current frame, where

δp is the effective unknown displacement and ωV =
[ ωV,x ωV,y ωV,z ]T is white noise with known vari-

ance σ2
V = [ σ2

V,x σ2
V,y σ2

V,z ]T and bias bV =
[ bVx bVy bVz ]T. Known visual odometry techniques

(e.g. see [20] and [21]) can be considered to compute δ̃pV .

With the proposed approach, the estimation of the vehicle

displacement δ̂p = [ δ̂x δ̂y δ̂z ]T, between the sampling

times k−1 and k, is evaluated by a convex combination of the

visual measurement and the inertial displacement estimation:

δ̂x(k) = (1− βx,k)δ̃xV (k) + βx,kδ̂xa(k) (4)

δ̂y(k) = (1− βy,k)δ̃yV (k) + βy,kδ̂ya(k) (5)

δ̂z(k) = (1− βz,k)δ̃zV (k) + βz,k δ̂za(k). (6)

The term δ̂pa = [ δ̂xa δ̂ya δ̂za ]T is the estimation of

the position displacement obtained from the inertial data.The

weight factors βx,k, βy,k, and βz,k are the unknown parame-

ters that have to be (optimally) chosen at each sampling time

by a Pareto optimization, as described in the following.
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Fig. 1. Working schema of the proposed Pareto optimization algorithm

Accordingly, the absolute position estimation of the vehi-

cle at the time instant k can be computed as

p̂(k) = p̂(k −N) + δ̂p(k), (7)

where N = 1 in case of synchronous measurements.

Without loss of generality, only the estimation of the

x component will be described. Analogous results can be

achieved for the y and z motion components.

Figure 1 shows the working principle of the sensor fu-

sion algorithm valid both in synchronous and asynchronous

measurements cases. The difference between the two cases

relies on the correction on inertial position estimation that,

as it will shown in next subsections, in the synchronous case

is done at every step time, while in the asynchronous case

only where there is visual measurement availability.

A. Synchronous measurements

Consider the case of synchronous measurements, T =
TV = Ti. Then the IMU measurements are used at the same

frequency of the vision system. By starting from the inertial

measurements, we obtain the estimation of the positional

displacement by a forward Euler integration

v̂x (k) = v̂x (k − 1) + T ãx (k) (8)

δ̂xa (k) = T v̂x (k) . (9)

By plugging (8) into (9) and approximating v̂x(k − 1) ∼=
δ̂x(k − 1)/T , the estimation of the position displacement

obtained by the inertial measurement is

δ̂xa (k) = δ̂x (k − 1) + T 2ãx (k) . (10)

Thus, the estimated position depends on the estimated posi-

tion at time k − 1 and on the acceleration measurement.

B. Asynchronous measurements

In the asynchronous case, the vision system provides the

vehicle pose estimation at lower frequency with respect to

the inertial system, TV = NTi, with N ∈ N being the scale

factor relating the IMU and vision frequencies. By exploiting

classical Taylor expansion the position at time k can be

written as a function of the acceleration ax at time k − 1:

x(k) = x(k − 1) + Tiδvx (k − 1) +
T 2
i

2
ax(k − 1), (11)

where δvx represents the velocity at instant time k − 1.
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Thus, the absolute position estimation obtained by the

inertial sensor at time instant k can be expressed as a function

of the optimal position estimation at time k −N as

x̂a(k) = x̂(k −N) + Ti

k−1∑

j=k−N

δ̂vx (j) +
T 2
i

2

k−1∑

j=k−N

ax(j),

(12)

where the velocity estimation is achieved with the Euler

integration δ̂vx (j) = δ̂vx(j − 1) + Tiãx(j − 1). Hence, the

differential displacement from inertial measurement between

two consecutive optimization time instants is obtained by

subtracting x̂a(k −N) to (12):

δ̂xa(k) =δ̂x(k −N) + Ti

k−1∑

j=k−N

δ̂vx (j) +
T 2
i

2

k−1∑

j=k−N

ax(j)

− Ti

k−N−1∑

j=k−2N

δ̂vx (j)−
T 2
i

2

k−N−1∑

j=k−2N

ax(j),

(13)

The state estimation δ̂x(k) will be performed as soon the

visual measurement is available, according to (4).

The differential position estimation provided by the vision

system is assumed coincident with the measurement itself

δ̃xV (k) = δ̂xV (k) = δxV (k) + ωxV (k), (14)

where δxV (k) is the ground-truth position displacement.

C. Pareto optimization problem

The estimator (4) can be modeled as follows

δ̂x(k) = δx(k) + ωx(k), (15)

where ωx(k) is the error position, which is estimated as

described in equation (3). The estimator bias is denoted by

P1 = E{ωx(k)}, (16)

and the estimation variance is defined by

P2 = E{(δ̂x(k)− E{δ̂x(k)})2}, (17)

where E{·} is the expected value of a random variable.

Then we can pose a Pareto optimization problem as

min
βx,k

(1− ρx,k)P2 + ρx,kP
2
1

s.t. βx,k ∈ (−1, 1);
(18)

with this choice, the bias and the variance of the estimation

error will be minimized simultaneously. The Pareto weight-

ing factor ρx,k has to be chosen at each step so to trade-off

the high variance and bias of sensors. The constraint on βx,k
is required because the bias may become unstable with time

when the statistical modeling of the bias is computed, as we

show later. The solution of the optimization problem requires

first the evaluation of the quantities P1 and P2, that will be

discussed in the following sections.

III. ERROR ESTIMATION BIAS AND VARIANCE

In this section an analytical recursive expression for

Eqs. (16) and (17) is provided. The computation of the bias

and of the variance will be differentiated according to the

types of signals to be fused and the sensor timing condition,

i.e. synchronous/asynchronous cases.

A. Synchronous measurements

By considering (4) and (15), the error ωx(k) becomes

ωx(k) =(1− βx,k)ωV (k) + βx,k

(
δ̂xa(k)− δxa(k)

)

=(1− βx,k)ωV (k) + βx,k(ωx(k − 1)

+ T 2ωax(k − 1)).

(19)

Consequently, (16) can be rewritten as

P1 =E{ωx(k)} = (1− βx,k)E{ωVx(k)}

+ βx,kE{ωx(k − 1))}+ βx,kT
2
E{ωax(k − 1)},

(20)

where

E{ωax(k)} = aI,x(k)cϕcθe
−σ2ϕ

2 e
−σ2

θ
2 + aI,y(k)

(cϕsθsψe
−σ2ϕ

2 e
−σ2

θ
2 e

−σ2
ψ

2 − sϕcψe
−σ2ϕ

2 e
−σ2

ψ
2 ) + aI,z(k)

(sϕsψe
−σ2ϕ

2 e
−σ2

ψ
2 + cϕsθcψe

−σ2ϕ
2 e

−σ2
θ

2 e
−σ2

ψ
2 )− aI,x(k)cϕcθ

− aI,y(k)(cϕsθsψ − sϕcψ)− aI,z(k)(sϕsψ + cϕsθcψ).

The term E{ωax(k)} is derived as in [13], [15]

E{ã(k) cos(ϕ̃(k))} = a(k) cos(ϕ(k))e
−σ2ϕ

2

E{ã(k) sin(ϕ̃(k))} = a(k) sin(ϕ(k))e
−σ2ϕ

2 ,

where φ̃(k) has been considered Gaussian and statistically

independent in its own components and with respect to the

acceleration measurements aI (see Appendix A).

In the proposed formulation the bias on the single accel-

eration measurement has been neglected for simplicity. In

fact, since it is generally constant, it can be estimated and

subtracted from the measurement itself [10]. An alternative

approach can be to keep the bias in the measurement and

consider it as a penalty in P1 for the acceleration pose

estimation, thus obtaining a formulation similar to the one

presented above.

Notice that (20) is a discrete-time recursive expression,

where the value of velocity bias at time k is related to that

one at time k−1 trough βx,k coefficient. This can be directly

interpreted as a discrete time differential equation. To avoid

a blow up of the bias, all the eigenvalues should be in the

circle of radius 1. Hence, it is necessary that |βx,k| ∈ (0, 1)
and thus βx,k ∈ (−1, 1), as required in (18).

By substituting (20) in (17), P2 can be rewritten as

P2 =E{(δ̂x(k)− E{δ̂x(k)})2} = E {((1− βx,k)vVx(k)

+ βx,kvx(k − 1) + βx,kvax(k − 1))2},
(21)
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where

vVx (k) , ωVx (k)− E{ωVx (k)}

vx (k) , ωx (k)− E{ωx (k)}

vax (k) , ωax (k)− E{ωax (k)}

vvx (k) , ωvx (k)− E{ωvx (k)},

(22)

with σ2
Vx

, σ2
x, σ2

ax
and σ2

vx
the corresponding variances.

Since vVx , vx, vax and vvx are statistically independent

and E{vax} = E{vx} = 0, (21) yields

P2 =(1 − βx,k)
2σ2
Vx
(k) + β2

x,kσ
2
x(k − 1)

+ β2
x,kT

4σ2
ax
(k − 1),

(23)

where

σ2
ax

(k) =E{(ωax (k)− E{ωax (k)})
2} = E{ω2

ax
(k)+

E
2{ωax (k)} − 2ωax (k)E{ωax (k)}}

=E{ω2
ax

(k)} − E
2{ωax}.

The second order moment E{ω2
ax
(k)} could be characterized

using the following properties [13], [15]:

E{ã2(k) cos2(ϕ̃(k))} = σ2
a

(
1

2
+

1

2
c2ϕe

−2σ2

ϕ

)

E{ã2(k) sin2(ϕ̃(k))} = σ2
a

(
1

2
−

1

2
c2ϕe

−2σ2

ϕ

)
,

where σ2
a is the acceleration variance (see Section A).

B. Asynchronous measurements

By considering equation (4), (13), and (15) the quantity

ωx(k) can be expressed as follows

ωx(k) = (1− βx,k)ωV (k) + βx,kωxa(k), (24)

where ωxa(k) represents the position differential error of the

inertial measurements in (13). Hence, (16) can be written as

P1 = E{ωx(k)} =

(1− βx,k)E{ωV (k)} + βx,kE{ωx (k −N)}

+ βx,kTi




k−1∑

j=k−N

E{ωvx (j)}+

k−N−1∑

j=k−2N

E{ωvx (j)}




+ βx,k
T 2
i

2




k−1∑

j=k−N

E{ωax (j)}+

k−N−1∑

j=k−2N

E{ωax (j)}


 ,

(25)

where the evaluation of E{ωvx(j)} is presented in Ap-

pendix A, while E{ωax(k)} can be computed in a similar

way as in the previous subsection. Notice that (25) is similar

to (20), and thus the same constraint βx,k ∈ (−1, 1) is

required.

Finally, P2 can be derived from (22) by substituting the

expression of the error bias (25) in (17), that leads to the

7 8 9 10

x 10
−8

6.5

7

7.5
x 10

−8

P2

P
1

2

Fig. 2. Pareto tradeoff curve. Each point on the curve is computed
considering a different value of ρx,k

following expression for the error variance

P2 =E{(δ̂x(k)− E{δ̂x(k)})2}

=E {((1− βx,k)vV (k) + βx,kvx(k −N)+

+βx,k

k−1∑

j=k−N

(
Tivvx(j) +

T 2
i

2
vax(j)

)
+

−βx,k

k−N−1∑

j=k−2N

(
Tivvx(j) +

T 2
i

2
vax(j)

)


2



.

(26)

Since vVx , vx, vax and vvx are statistically independent

and E{vax} = E{vx} = 0, (26) yields

P2 = σ2
x(k) = (1− βx,k)

2σ2
V (k) + β2

x,kσ
2
x(k −N)

+ β2
x,k




k−1∑

j=k−N

T 2
i σ

2
vx
(j) +

k−1∑

j=k−N

T 4
i

4
σ2
ax
(j)


+

− β2
x,k



k−N−1∑

j=k−2N

T 2
i σ

2
vx
(j) +

k−N−1∑

j=k−2N

T 4
i

4
σ2
ax
(j)


 .

(27)

IV. SOLUTION OF THE PARETO OPTIMIZATION PROBLEM

The optimization problem (18) is convex and can been

proven by taking the derivative of the objective function

respect to βx,k. Thus the optimal value of βx,k for a fixed

ρx,k is β∗

x,k = max (−1,min (ξ, 1)), with

ξ =
2(1− ρx,k)σ

2
Vx
(k + 1)− 2ρx,kγx,kE{ωVx(k + 1)}

2(1− ρx,k)ηx,k + 2ρx,kγ2x,k
.

The best value of ρx,k is found through a Pareto trade-off

curve as in Fig. 2, and by selecting the knee-point on this

curve [23]. Thus, the optimal value ρ∗x,k is chosen such that

P1 and P2 computed in β∗

x,k(ρ
∗

x,k) give P2 ≃ P 2
1 , that is

given by the solution of the following optimization problem

ρ∗x,k = argmin
ρx,k

(
P2

(
β∗

x,k (ρx,k)
)
− P 2

1

(
β∗

x,k (ρx,k)
))
.

(28)

Being this problem non-linear, a numerical procedures based

on the discrimination of ρx,k can be employed [23].

Notice that the analytical expressions of ηx,k and γx,k are

different for the synchronous and the asynchronous sensor

fusion cases. In the case of synchronous measurements, the
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expressions of these parameters depend on the estimation of

the state bias and variance at the current step time, i.e.

ηx,k =σ2
Vx
(k) + σ2

x(k − 1) + T 4σ2
ax
(k − 1),

γx,k =− E{ωVx(k)}+ E{ωx(k − 1)}+ T 2
E{ωax(k − 1)}.

The solution for the asynchronous case depends on the state

bias and variance at current step time, i.e.

ηx,k =σ2
Vx
(k) + σ2

x(k − 1)

+ T 2
i




k−1∑

j=k−N

σ2
vv
(j)−

k−N−1∑

j=k−2N

σ2
vv
(j)




+
T 4
i

4




k−1∑

j=k−N

σ2
ax
(j)−

k−N−1∑

j=k−2N

σ2
ax
(j)


 ,

γx,k =− E{ωVx(k)}+ E{ωx(k − 1)}+

+ T 2
i




k−1∑

j=k−N

E{ωvx (j)}+
k−N−1∑

j=k−2N

E{ωvx (j)}




+
T 4
i

4




k−1∑

j=k−N

E{ωax (j)} −

k−N−1∑

j=k−2N

E{ωax (j)}


 .

Remark 1: The solution to the optimization problem (18)

is equivalent to an optimization respect to both βx,k and ρx,k
parameters. In fact, by imposing the first-order optimality

condition with respect to ρx,k, we obtain P2 ≃ P 2
1 .

Then, by imposing the first-order optimality condition with

respect to βx,k, we obtain

(1− ρx,k)
∂P2

∂βx,k
+ 2ρx,kP1

∂P1

∂βx,k
= 0

which should be solved numerically by choosing βx,k de-

pending on ρx,k such the first enounced condition P2 ≃ P 2
1

is verified. The Pareto term is derived from the classical game

theory where the goal of two players is to choose a given

strategy such to maximize (minimize) their utility, in the

presented problem represented by P2 and P 2
1 respectively.

V. SIMULATIONS

The proposed method has been tested on simulated

trajectories both for the synchronous and the asynchronous

case. The considered path is a 3D circle generated according

to different time law profiles emulating different operating

conditions (see Fig. 3).

A. System Characterization

The variance of the vision measurement to model a

variable distance d with respect to the observed target is

σ2
V (k) = σ2

Vmin +
σ2
Vmax − σ2

Vmin

dmax − dmin

(d(k) − dmin),

where dmin and dmax represent the minimum and the maxi-

mum distance, respectively.

The trajectory estimation error of the proposed optimiza-

tion technique has been compared with the case when only

vision data are employed. In both the synchronous and the
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Fig. 3. Trajectory paths in the synchronous (left) and asynchronous
(right) case: ground truth (blu), vision based estimation (green), and Pareto
estimation (red). Synchronous case: T = 0.1 s, σ2ax = σ2ay = σ2az =

0.22 m2/s4, σV (d) ∈ [1, 4] mm; pitch rotation θ = π/6. Asynchronous

case: Ti = 0.01s, TV = 0.1s, σ2ax = σ2ay = σ2az = 0.32 m2/s4,

σV (d) ∈ [0.1, 0.4] mm; roll, pitch and yaw rotation φ = −π/4, θ =
π/8, ψ = −π/6. Both cases: E{ωVx} = 0.3 mm, σ2

φ
= 0.022, σ2

θ
=

0.032, σ2
ψ

= 0.012 rad/s2 .
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Fig. 4. Time history of the norm of the trajectory estimation error with
respect to the ground truth by using only vision data (blue dashed line) and
with the Pareto optimization (red continuous line).

asynchronous cases, the estimation error benefits from the

proposed approach, as shown in Fig. 4. Tables I and II show

the robustness of this method in different working conditions,

by considering different time laws.

TABLE I

AVERAGE ERROR NORM IN THE SYNCHRONOUS CASE

Case Trapez. Velocity Cubic Poly 5thorder Poly

Vision error [m] 0.0676 0.0671 0.0665
Estimation error [m] 0.0568 0.0586 0.0549

TABLE II

AVERAGE ERROR NORM IN THE ASYNCHRONOUS CASE

Case Trapez. Velocity Cubic Poly 5thorder Poly

Vision error [m] 0.0770 0.0769 0.0760
Estimation error [m] 0.0574 0.0544 0.0497

B. System Performances

The proposed method has been compared to a Stochastic

Cloning Kalman filtering (SC-KF) [7] using possible IMU

noise values. A second-order dynamic model has been used,

where the state is increased by the old visual system position,

so as to consider differential visual position measurements.

Differently from the proposed approach, Kalman filtering

techniques rely on the state and measurement covariance
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matrices, which are typically constant in classic Kalman-

filter implementations. The proposed approach, instead, takes

into account the variance and the bias on the system state at

each instant of time, thus producing a significant benefit.

To compare the two different approaches, the same time-

varying law estimated variance, as employed in the proposed

method, is used in the SC-KF implementation. Moreover,

the bias is modeled as a constant parameter causing a

state augmentation. With reference to the synchronous case,

Table I show the comparison between the two different

mentioned approaches. whereas, Table III and Fig. 5 show

the comparison for the asynchronous case. In both cases the

proposed problem formulation is able to reduce the error

norm by about 30%. In the asynchronous case, an increasing

of oscillations in the error norm can be observed, which is

caused by the presence of significant noise on acceleration

measurements typical on aerial platforms.

0 10 20 30
0

0.05

0.1

0.15

0.2

[s]

[m
]

 

 

Fig. 5. Asynchronous case: comparison between SC-KF (black point
dashed line) and the proposed method (red continuous line).

TABLE III

AVERAGE ERROR NORM

Case Trapez. Velocity Cubic Poly 5thorder Poly

Proposed method [m] 0.0574 0.0544 0.0497
Sto. Clo. KF [m] 0.0799 0.0798 0.0792

Notice that, when the vision measurement is unavailable,

only acceleration is used for the estimation. By starting

the estimation from an optimal position value, as shown

in (12), it is possible to prevent estimation divergence due

to acceleration measurements. The bias E{ωax(k)} and its

corresponding variance in case of too noisy acceleration, can

be computed from filtered acceleration data obtained using

a classical first order low pass filter.

The index (18) minimizes a combination of state bias

and variance, while through a KF approach the covariance

state matrix is minimized. Being a combination of bias and

variance, it can be directly interpreted as a measure of the

Mean Square Error (MSE) of the unknown scalar parameter

ωx, similarly to the biased estimation in [24]. This is even

confirmed by the analysis of the average covariance values.

The computational complexity of the proposed solution

is O (n1n2) with n1 = t/T , n2 = 1/Tρ, where t is the

current time, T = Ti and Tρ is the step time used to search

the ρ value such that P2 ≃ P 2
1 , while for KF approaches it

is just O (n1). The difference is confirmed by the average

computational time of both methods, as shown in Table IV

for two different hardware platforms.

TABLE IV

COMPUTATIONAL TIME

Case Intel Core i2 Intel Core i7
Proposed method [ms] 2.3 1.6

Sto. Clo. KF [ms] 0.4 0.18

VI. CONCLUSION

In this paper a new sensor fusion technique for motion

estimation which combines mono-camera visual and inertial

measurements via a Pareto optimization process has been

presented. The proposed method minimizes a combination

of state bias and variance by balancing available data in-

put in an optimal way. Only the measurements statistical

characterization is required, without any prior knowledge

of the motion model. The effectiveness of the proposed

theoretical approach, in terms of accuracy, computational

requirements, and robustness was tested in simulation case

studies and compared to a Kalman-filter based approach.

It is shown that the proposed method gives a benefit in

terms of estimation accuracy with a limited increase of the

computational complexity.

Future works will involve the test on a real dataset and an

extended analysis on the optimization index.

A. APPENDIX

By developing the third term of (25) we have

k−1∑

j=k−N

E{ωvx (j)} = E{ωvx(k −N)}

+ E{ωvx(k −N + 1)}+ · · ·+ E{ωvx(k − 1)},

where every single term can be written as

E{ωvx (k −N + 1)} =

E{ωvx (k −N)}+ TiE{ωax (k −N)}

E{ωvx (k −N + 2)} = E{ωvx (k −N + 1)}

+ TiE{ωax (k −N + 1)} = E{ωvx (k −N)}

+ TiE{ωax (k −N)}+ TiE{ωax (k −N + 1)}

E{ωvx (k − 1))} = E{ωvx (k −N)}

+ TiE{ωax (k −N)}+ · · ·+ TiE{ωax (k − 2)}.

Thus it gives

k−1∑

j=k−N

TiE{ωvx (j)} = (N − 1)E{ωvx (k −N)}

+ Ti

k−1∑

j=k−N

(k − j)E{ωax (j)}.

This results shows how the recursive expression of the

velocity bias is obtained. The same approach can be used to

derive the velocity variance σvx .
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In the following the symbol σi for the variance associated

to i will be employed.

Lemma A. 1: Let ϕ̃(k) be Gaussian and independent re-

spect to the acceleration component ã(k); then

E{ã(k) sin(ϕ̃(k))} = a(k) sin(ϕ(k))e
−σ2ϕ

2 .
Proof: Using sine properties, since ã(k) and ϕ̃(k) are

statistically independent, we obtain that

E{ã(k) sin(ϕ̃(k))} = E{a(k)}E{sin(ϕ̃(k))} =

a(k)E{sin(ϕ(k))}E{cos(ωϕ(k))}+

a(k)E{cos(ϕ(k))}E{sin(ωϕ(k))}.

As shown in [13], [15]

E{cos(ωϕ(k))} = e
−σ2ϕ

2

E{sin(ωϕ(k))} = 0,

that leads to

E{ã(k) sin(ϕ̃(k))} = a(k) sin(ϕ(k))e
−σ2ϕ

2 .

Lemma A. 2: Let ϕ̃(k) be Gaussian and independent with

respect to the acceleration component ã(k); then

E{ã2(k) sin2(ϕ̃(k))} = σ2
a

(
1

2
−

1

2
cos(2ϕ)

)
e−2σ2

ϕ .

Proof: Since ã(k) and ϕ̃(k) are statistically indepen-

dent, we obtain that

E{ã2(k) sin2(ϕ̃(k))} = E{ã2(k)}E{sin2(ϕ̃(k))}.

Then using sine properties yields

E{sin2(ϕ̃(k))} = E

{
1

2
−

1

2
cos(2ϕ̃(k))

}
=

E

{
1

2
−

1

2
cos(2(ϕ(k) + ωϕ(k))

}
=

1

2
−

1

2
E {cos(2(ϕ(k)) cos(2ωϕ(k))+

− sin(2(ϕ(k)) sin(2ωϕ(k))} .

As shown in [13], [15]

E{cos(2ωφ(k))} = e−2σ2

ϕ .

The result can be extended to the sin term by considering

its series expansion

E{sin(2ωϕ(k))} = E {2ωϕ(k) + · · ·+

+(−1)n
2ωϕ(k)

2n+1

(2n+ 1)!

}
= 0.

Hence the initial expression becomes

E{sin2(ϕ̃(k))} =

(
1

2
−

1

2
cos(2ϕ)

)
e−2σ2

ϕ .

Then the final result is

E{ã2(k) sin2(ϕ̃(k))} = σ2
a

(
1

2
−

1

2
cos(2ϕ)

)
e−2σ2

ϕ .
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[20] D. Scaramuzza, F. Fraundorfer, “Visual odometry. Part I: The first 30

years and fundamentals”, IEEE Robotics and Automation Magazine,
18(4), 80–92, 2011.

[21] F. Fraundorfer, D. Scaramuzza, “Visual odometry – Part II: Matching,
robustness, optimization and applications”, IEEE Robotics and Automa-

tion Magazine, 19(2), 78–90, 2012.
[22] A. Georgiev, P.K. Allen, “Localization for mobile robots in urban

environments”, IEEE Transactions on Robotics, 20, 851–864, 2004.
[23] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge Univer-

sity Press, 2004.
[24] S. Kay, Y.C. Eldar, “Rethinking biased estimation”, IEEE Signal

Processing Magazine, 25(3), 133–136, 2008.

3999


