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Abstract— This paper presents a method to track in real-time
a 3D textureless object which undergoes large deformations
such as elastic ones, and rigid motions, using the point cloud
data provided by an RGB-D sensor. This solution is expected
to be useful for enhanced manipulation of humanoid robotic
systems. Our framework relies on a prior visual segmentation of
the object in the image. The segmented point cloud is registered
first in a rigid manner and then by non-rigidly fitting the mesh,
based on the Finite Element Method to model elasticity, and on
geometrical point-to-point correspondences to compute external
forces exerted on the mesh. The real-time performance of the
system is demonstrated on synthetic and real data involving
challenging deformations and motions.

I. INTRODUCTION

Unlike vision-based tracking problems with rigid objects,
for which a certain maturity has been reached, perception
for non-rigid objects is still a challenging problem. It has
aroused much interest in recent years in the computer vi-
sion, computer graphics and robotics communities. A lot of
potential applications would indeed be targeted, in fields such
as augmented reality, medical imaging, robotic manipulation,
by handling a huge variety of objects: tissues, paper, rubber,
viscous fluids, cables, food, organs, etc.

This study comes within the scope of the RoDyMan
project2, consisting in a unified framework for robotic dy-
namic manipulation of deformable objects. As seen in Fig. 1,
a demonstration scenario is the humanoid dual-arm/hand
manipulation of the pizza dough, in an authentic manner,
showing a humanoid robot involved in culinary traditions
and rituals.

With respect to rigid objects, the problem of dealing
with deformations poses several additional challenges such
as modeling the properties of the considered material, and
fitting this model with the vision and/or range data. This
registration problem also involves critical real-time concerns,
which are especially required for robotic dynamic manipu-
lation. Although numerous studies have proposed efficient
real-time techniques to handle 3D surfaces (paper, clothes)
which undergo isometric or slightly elastic deformations,
a large open field remains when considering larger elastic
deformations. The aim of this paper is thus to propose
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a real-time tracking system able to handle elastic objects,
potentially textureless, by tracking large deformations and
fast rigid motions, using visual and range data provided by
an RGB-D sensor.

To cope with such deformations, our approach involves a
physical modeling of the considered object, by relying on a
Finite Element Method (FEM). The considerable progresses
recently made within the computer graphics and medical
simulation domains have enabled real-time performance for
processing such models. As demonstrated in this paper, our
whole system is able to run fastly at around 35 frame per
seconds.

The remainder of the paper is organized as follows.
Some works related to ours are presented in Sect. II. Our
system requires the visual segmentation of the object, what is
addressed in Sect. III. Then in Sect. IV the mechanical model
of the object considered here is introduced, Sect. V explains
how the point cloud data is processed and matched with the
model to perform registration. Finally, some experimental
results are presented in Sect. VI.

Fig. 1: Artistic views of the RoDyMan robotic platform and the
pizza making process.

II. RELATED WORKS AND MOTIVATIONS

In the literature, the various approaches proposed to reg-
ister deformable objects, using vision and/or range data,
could be classified according to the underlying model of
the considered object and its physical realism. Let us first
clarify our scope and distinguish it from non-rigid recon-
struction methods for which at each frame provided by the
vision/range sensor, a single mesh is reconstructed, as in
[1, 23, 17]. Instead, the goal is here to continuously estimate
the rigid transformations and the deformations undergone by
a specific object, modeled by a known mesh.

A. Registration using implicit physical modeling

Based on implicit physical models, approaches in [13, 2,
18] use a 1D parametric curve or 2D splines models (B-
splines, Radial Basis Functions) to track deformable objects
in monocular images. This class of methods relies on the
minimization of an energy function involving an external
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energy term related to some image features, and an internal
energy term regularizing curvature, bending or twisting,
compelling the model to vary smoothly. Adapting these
techniques to register with 3D shapes or surfaces in monoc-
ular images is much more complex, since 3D deformations
can imply ambiguous 2D transformations, resulting in an
underconstrained problem. A first attempt by Terzopoulos
et al. [22], relying on 3D splines and inspired by [13],
densely processes gradient features, to compute the data
energy term. Less ambiguous feature-based approaches such
as [20] have been preferred and additional constraints are
often added to solve ambiguities. With point cloud data,
methods in [12, 24] employ an RGB-D sensor to register the
acquired point cloud to a surface mesh by minimizing an
error function accounting for geometric or direct depth and
color errors, and a stretching penalty function for the mesh.
By means of a NURBS parametrization [12] or an optimized
GPU implementation [24], real-time performance can be
achieved. Although these two systems have shown promising
and impressive results, they are still bounded to isometric
or slightly elastic deformations, by means of regularization
functions proportional to squared distances between nodes
of the mesh, whereas we wish to model elastic in more
physically realistic manner, to handle larger strains. Another
limitation of these methods is that they process mesh to input
point cloud correspondences in their data error functions, and
are thus sensitive to missing data, or unobserved areas of
the considered object due to occlusions. We consider in this
paper also correspondences from the input point cloud to the
mesh, through the use of a segmentation method to restrict
the input point cloud to the observed areas of the object, and
based on these correspondences, the occluded or unobserved
areas would not affect registration.

B. Registration using explicit physical modeling

Instead, another formulation of the problem relies on
physics-based deformable models to perform registration,
by modeling more explicitly elasticity. With respect to im-
plicit methods, other sorts (such as non-linear elasticity)
and magnitudes of deformations can be treated, inferring
more consistently shape and/or volumetric regularization.
Statistically, the solution can be determined, by setting in-
ternal and external forces equal or, equivalently, minimizing
energy functions. Physics-based methods include discrete a
mass-spring-damper system [14, 6, 21], or more explicit
approaches relying on the Finite Element Method (FEM),
based on continuum mechanics. In [21], based on mass-
spring-damper systems, 3D-3D correspondences, determined
through a probabilistic inference, enable the computation of
the external forces applied to the mesh. First attempts for
registration employing the FEM for 3D surfaces in [4, 16]
used linear elasticity FEM models. More recently, in [15],
registration in monocular images is addressed by designing
a stretching/shrinking energy using continuous mechanical
constraints on 2D elements assuming linear elasticity, and
some 3D boundary conditions. Haouchine et al. [10] uses
a linear tetrahedral co-rotational FEM model, coping with

larger elastic deformations, external forces being related to
correspondences between tracked 3D feature points mapped
to the 3D mesh by means of a stereo camera system. To the
best of our knowledge, this latter method proposes the most
realistic physical elastic model within a real-time vision-
based tracking system, and we propose a similar model in
this paper.

C. Contributions

Since our system would attempt to handle large defor-
mations and elastic volumetric strains, a realistic mechanical
model, based on the FEM, has been adopted. Besides, for po-
tential robotic dynamic manipulation applications, an explicit
physical modeling would enable the reliable computation and
prediction of internal forces undergone by the object and thus
to perform proper force control tasks. The recent suitability
of these models for real-time applications, as demonstrated
by promising approaches [6, 21, 10], has confirmed our
choice. We assume the prior knowledge of a consistent mesh
(which could be automatically reconstructed offline) and of
the material properties (through the Young modulus and the
Poisson ratio), which could be estimated offline. Robustness
concerns, regarding for instance textureless objects, have lead
us to rely on an RGB-D sensor.

Among the methods having the closest goals, motivations
and constraints to ours, we can mention [12, 21, 10, 24].
With respect to them, several contributions are proposed,
such as handling various large deformations like elastic ones,
handling rigid motions, handling occlusions, and addressing
all these tasks in real-time (35 fps).

D. Overview of the system

As also represented in Fig.2, our tracking system can be
outlined as follows: Input : the known 3D volumetric mesh
of the object, a given RGB-D data , and assuming a fair
registration at the previous time step.

1) Visual segmentation of the considered object, with a
graph cut-based approach ensuring temporal coherence.

2) Using the resulted segmented point cloud, perform a
rigid Iterative Closest Point (ICP) to estimate a rigid
transformation from the point cloud to the mesh.

3) Using the resulting segmented point cloud, compute
external linear elastic forces exerted on the vertices
of the mesh from the point cloud to the mesh and
conversely, based on closest point correspondences.

4) Compute elastic internal forces, based on a tetrahedral
linear co-rotational FEM model.

5) Numerical resolution of mechanical equations.

III. SEGMENTATION

In this work we advocate the use of a prior segmentation
step in order to restrict the acquired point cloud to the object
of interest (see section V for a more detailed justification).
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Fig. 2: Overview of our approach for deformable object tracking.

A. Grabcut segmentation

We rely here on the efficient and widespread GrabCut
method [19], based on graph cuts. In its original formu-
lation, the Grabcut algorithm addresses the visual bilayer
segmentation task as an energy minimization problem, based
on statistical models of the foreground (the object) and the
background.

For an input image I, we denote by α = {αi}Ni=1 the
set of the unknown binary labels of the set of pixels (αi =
0 for the background pixels, αi = 1 for the foreground).
Estimating the values α̂ of the labels can be formulated as
the minimization of an energy-based Markov Random Field
objective function E(α), with respect to α:

E(α) = Edata(α) + γEsmooth(α) (1)

with Edata(α) =
∑
i

Ui(αi) (2)

Edata is the data energy term, with Ui(αi) accounting for
the observation probability for a pixel to belong to the
foreground or to the background, based on some image
"data" (intensity, color, location...) observed on the pixel,
using the statistical models built for the background and the
foreground.

In order to compute the optimal solution of this energy
minimization problem and determine α̂, a graph cuts min-
imization algorithm [3] is employed, providing us with a
segmented frame Is.

Statistical models for the data energy function are Gaus-
sian Mixture Models (GMM) based on color distributions,
learned for both the foreground and background layers,

which are initially determined by the user through a bounding
box around the foreground on the initial image. Besides,
pixels outside this bounding box are definitely assigned to
the background layer (Ui(αi = 0) = inf ), whereas inside
their label is unknown, so that energy minimization only has
effects inside the bounding box.

B. Temporal coherence and real-time issues

Once the initial image is segmented through user interac-
tion, the following frames are treated by updating the area
to effectively segment. As shown in Fig. 3, the silhouette
contour of the previous segmented foreground is extracted,
and the distance transform is computed over it, providing
a signed distance map to these contours. According to a
fixed threshold on this distance map, we define a narrow
strip around the contour, in which labels of the pixels are
unknown (grey area on 3d), whereas they are definitely
assigned to the foreground on the inner side of the strip
(Ui(αi = 1) = inf , white area on 3d), and to the background
otherwise (Ui(αi = 0) = inf ). In this manner, temporal
consistency is ensured, since energy minimization is only
effective within this strip, in the vicinity of the previous
segmentation boundary, avoiding some outliers outside or
inside, and reducing significantly computations.

(a) Original frame (b) Segmentation (c) Distance map (d) Trimap

Fig. 3: Temporal consistency for segmentation. Segmentation will
be effective on the strip (grey area on (d)) around the contour of
the previous segmented frame (b), through the distance map to the
contour (c).

IV. DEFORMABLE OBJECT MODELING WITH THE FINITE
ELEMENT METHOD

Since we deal with objects which may undergo large
elastic deformations, a major issue lies in the definition
of a relevant physical model. The Finite Element Method
(FEM) [5] provides a realistic physical model, by relying on
continuum mechanics, instead of finite differences for mass-
spring systems for instance. It consists in tessellating the
deformable object into a mesh made of elements, usually
tetrahedrons. The deformation field ue over an element e
is then approximated as a continuous interpolation of the
displacements ûe of its vertices. We rely here on a volumetric
linear FEM approach with tetrahedral elements.

By resorting to the infinitesimal strain theory and linear
elasticity through Hooke’s law, the internal elastic forces fe
exerted on the four vertices of e of the mesh can be linearly
related to their displacements:

fe = Keûe (3)

with being Ke the 12 × 12 stiffness matrix of the element
e, depending on two elastic parameters of the material, the
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Young modulus E, which measures the ratio between the
tensile stress and the extensional strain and the Poisson
ratio ν, which measures, under compression efforts on the
object, the amount of expansion it undergoes in the two
perpendicular directions [5].

Although it is insensitive to translation transformations,
the model, by using an infinitesimal approximation of the
strain tensor, giving a constant Ke linearizing the elastic
forces, is however inaccurate when modeling large rotations
of the elements, the non-linear effects leading to non-zero
summations of the forces and causing for instance unex-
pected growth of volume. A work-around consists in the
co-rotational approach [7], used for registration purposes in
[10], which is a good compromise between the ability to
model large elastic deformations, cope and computational
efficiency. Since the displacement of an element can be de-
composed into a rigid transformation and a pure deformation,
the idea is to extract the rotation matrix Re related to the
rigid transformation. Then the stiffness matrix can be warped
with respect to this rotation, so as to accommodate rotation
transformations, giving:

fe = ReKeû
r
e = ReKe(R

−1
e xe − xe,0), (4)

with being ûr
e = R−1e xe−xe,0, with R−1e xe the back rotated

deformed coordinates of the vertices of e, to an unrotated
frame, the forces Keû

r
e being then rotated to the current

deformed element through the multiplication by Re. In this
way, the overall forces on the whole mesh can be summed
to zero, while computational efficiency is ensured since Ke

can be computed in advance, in contrast to non-linear FEM
approaches.

V. REGISTRATION WITH POINT CLOUD DATA

Our deformable registration problem consists in fitting the
point cloud data provided by an RGB-D sensor with the
tetrahedral mesh. The basic idea is to derive external forces
exerted by the point cloud on the mesh and to integrate these
forces, along with the internal forces computed using the
physical model presented in Sect. IV, into a numerical solver
solving the resulting mechanical equations.

In this work, these external forces are computed based
on geometrical point-to-point correspondences between the
point cloud and the mesh, relaxing the assumption of having
a textured object [10] with a rough surface, for which 2D/3D
keypoints can be extracted and matched. We assume that
the mesh is available (manually designed here) and correctly
initialized. Let us however note that off-line automatic re-
construction and meshing techniques could be considered to
build the mesh and initialization could be addressed through
some learning and recognition of spin images [11] or local
3D features. Besides, the Young modulus and Poisson ratio
of the considered material are assumed to be known.

A. Segmented and sampled point cloud

As introduced in Sect. III, we use the acquired RGB image
sequence to visually segment the object of interest from its
background and occlusions. Since we do not rely on some

distinctive visual features, the point cloud provided by the
depth sensor is indeed restricted to the considered object
so as to avoid ambiguities in the matching process with
the background or with occluding shapes, and to be able
to process correspondences from the input point cloud to the
mesh. Using the segmented image Is, a segmented depth map
Ds is obtained by aligning and intersecting the original input
depth map D with the segmented area in Is. Then by back-
projecting Ds in the sensor frame, the desired segmented
point cloud Y = {yj}nYj=1, with yj a 3D point in the sensor
frame, is determined. For computational concerns, we limit
the size of Y by first sampling Ds on a regular grid in the
image plane.

B. Rigid iterative closest point

A first step in our method is to register the observed
segmented point cloud Y in terms of rigid translation and
rotation transformations, initially considering the mesh of
the object as rigid. Let us first define X = {xj}nXj=1 the set
of vertices of the mesh, in its previous computed state. We
suggest a classical rigid ICP algorithm between Y and the
vertices of the visible surface XV of the mesh transformed
with respect to the previous RGB-D data. XV is determined
by performing a visibility test on the rendered depth map of
the projected 3D mesh of the object. Through this procedure,
which converges rapidly, fast rigid motions can be tracked
and a fair initialization for the non-rigid process can be
obtained.

C. Deformable iterative closest point

In order to register the segmented point cloud with the
mesh in a non-rigid manner, we suggest an ICP-like proce-
dure.

1) Nearest neighbor correspondences: By means of K-d
tree searches, nearest neighbor correspondences are deter-
mined, both from the segmented point cloud to the visible
surface of the mesh and from the visible surface of the mesh
to the segmented point cloud. This step provides us with the
sets of nearest neighbors NXV = {NNY (xj) | xj ∈ XV }
and NY = {NNX(yj)}nYj=1 respectively in Y for XV , with
the 1-NN function NNY , and in XV for Y , with the 1-NN
function NNXV .

Both sets of correspondences are processed since relying
on the sole geometrical proximity may lead to inconsistent
matches using single point-to-point matches.

Indeed from the segmented point cloud to the mesh,
correspondences enable to track for instance expansion de-
formations under stretching forces, for which the observed
segmented point cloud Y would spread over the visible
surface of the mesh XV . The extended areas of Y with
respect to XV can be matched with the outer areas of XV .
These correspondences also enable to deal with occlusions
and segmentation errors since the corresponding unobserved
areas of the object would not affect the underlying areas
of XV . Conversely, from XV to Y , correspondences are
instead more suited to track shrinking deformations under
compression actions, the outer areas of XV being coherently
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matched with the outer areas of the observed point cloud Y
of the compressed object. As a drawback, unobserved areas
(occlusions, segmentation errors) would affect the underlying
areas XV which would match with the closest areas of Y .

As described hereafter, a trade-off has to be found between
these two sets of correspondences, whether the application
deals with stretching or compression actions on the object,
and whether occlusions or segmentation errors are to be dealt
with.

2) Computation of external forces: Based on the two sets
of mesh-to-point cloud and point cloud-to-mesh correspon-
dences, given by NXV and NY , an external elastic force fext
exerted on each xj in XV , can be computed as follows:

fext(xj) = k(xj − yf
j ) (5)

with

yf
j =



λNNY (xj) + (1− λ) 1
nKj

∑
yj∈Kj

yj

if ]Kj > 0

λNNY (xj) + (1− λ)xj

if ]Kj = 0

(6)

where Kj = {yi ∈ Y |NNXV (yi) = xj} is the set of points
in Y whose nearest neighbors are xj ; k is the stiffness
of these external elastic forces. As in [9], it is set to the
same order of magnitude of the Young modulus, to be
physically consistent. The fixed scalar λ tunes the balance
between the mesh-to-point cloud and point cloud-to-mesh
correspondences, as a trade-off suggested above (section V-
C.1) between the stretching or compression actions to be
tracked. If Kj is empty, the missing point cloud-to-mesh
correspondences are replaced by a self-contribution for the
vertice xj , compelling it to remain at its current position.
In Fig.4, the vectors xj − yf

j are displayed, from each xj .
Some outliers in the point cloud may result in aberrant
correspondences and thus aberrant forces exerted on some
vertices. A simple solution has been to discard points in the
point cloud whose point-to-point distances with their nearest
neighbors in the mesh are above a certain threshold with
respect to the mean value and the standard deviation of the
whole set of point-to-point distances. In this case, for the
considered vertices xj , we have fext(xj) = 0.

Finally, regarding points xj in X which are not visible,
we also set fext(xj) = 0.

The whole set of forces is finally concatenated in a vector
fext of size nX .

3) Weighting forces using contours: A limitation of this
method lies in tracking large elastic deformations due to
stretching efforts for instance. In this case, since correspon-
dences are established based on 3D geometry, only vertices
lying on the outer contour of the mesh are attracted to the
extended area in the point cloud. As a consequence, forces
attracting the contours are weak. We propose to emphasize
them by weighting the vertices of the visible surface of the
mesh, given their distance to the occluding contour of the
mesh in the image plane. Based on the depth map dM of

Fig. 4: External forces exerted on the vertices of the mesh, with
k = 1.

the projected mesh, we compute the distance map of the
occluding contour of the mesh, determined by rendering the
projection of the mesh in the image plane. Then, the weight
wj for the vertex xj is computed as follows:

wj ∝ e−
dMj
σ (7)

where dMj is the distance from xj to the nearest contour of
the projected mesh, σ is a parameter which is empirically set;
wj is normalized so that we get an observation probability.
Finally, forces are computed this way:

fext(xj) = wjk(xj − yf
j ) (8)

4) Numerical solver to compute the deformations: Es-
timating the deformations of the mesh consists in solving
a dynamic system of non-linear ordinary differential equa-
tions involving the internal and external forces, based on
Lagrangian dynamics:

M¨̂u+C ˙̂u+ f = fext (9)

where M is the mass matrix, and C is the damping ma-
trix, and f contains the element-wise forces fe. An Euler
implicit integration scheme is used to solve the system,
along with a conjugate gradient method. Using the estimated
displacements û of the vertices of the mesh, X can be
updated. In case of severe deformations, correspondences
initially established may not be very consistent, and thus
the procedure is iteratively repeated, up to a fixed number
K of iterations (K = 3 in the experiments presented in
section VI).

VI. EXPERIMENTAL RESULTS

In order to evaluate the performance of our method
and contributions, some experimental results are shown in
this section, in a quantitative manner on some computer-
generated data, and in a qualitative manner on some real data.
Different objects, deformations and conditions are tested.

For the non-rigid registration phase, we have employed
the Simulation Open Framework Architecture (SOFA) simu-
lator [8], which enables to deal with various physical models
and to evolve simulations in real-time.
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A. Results on synthetic data

Relying on the SOFA framework, we have generated a
sequence involving the deformations of a cylindrical elastic
object, modeled by the FEM co-rotational approach. It has
a Young Modulus of E = 0.130MPa and Poisson ratio of
ν = 0.49. The tetrahedral mesh is made of 352 vertices with
a circumferential/radial/height resolution of 25 × 7 × 2, for
radius/height dimensions of 0.11 × 0.02m, and is featured
in Fig. 4. An impulse elastic stretching force is applied in
the −Z direction (see Fig. 5), on one point on the border
of the object (point 1), for which few other points are fixed
on the opposite border (points 4,5,6), and two compression
forces are applied along Y and −Y (points 2,3). The applied
forces result in a fast elongation deformation of the object,
with a maximum elongation above 50% at frame 25. For the
tracking phase, segmentation aspects are not considered in
these experiments. We only process the visible vertices of the
rendered object in the sequence, and as a ground truth, the
positions of the whole set of points are stored for evaluation.
The following models and methods have been compared:
• Mass-spring model
• Standard FEM model, based on 3
• Co-rotational FEM model
• Co-rotational FEM model along with contour weighting

(CW) (proposed method)
where for the mass-spring model, the vertices consist of point
masses connected together by springs, deformations being
solved through Newton’s second law. Results can be visually
observed in Fig. 5, and in Fig. 6 the 3D errors between
the vertices of the registered mesh and the corresponding
points in the point cloud are plotted (see also the attached
video). The benefit of our method can also be observed in
Fig. 5 featuring the original target (red) and the tracking 3D
mesh (blue). The suitability of the co-rotational model can
be stressed out and with the contour weighting technique,
our method manages better to track the extensions on the
extremities, even though some errors remain.

B. Results on real data

In order to carry out experiments on real data, the point
cloud of the investigated scene is acquired from a calibrated
RGB-D camera Asus Xtion, 320 × 240 RGB and depth
images being processed. A standard laptop with an NVIDIA
GeForce 720M graphic card has been used, along with a
2.4GHz Intel Core i7 CPU. Here the segmentation process
is involved in the loop, and since fast real-time performance
is required, it relies on a CUDA implementation. The results
presented here deal with a pizza-like elastic object, lacking
of texture and showing a smooth surface, and with an elastic
cylindrical bar object made with modeling clay.

For the pizza-like object, the idea has been to test motions
and deformations similar to the ones involved in the pizza
making process, in the scope of the RoDyMan project.
On the presented sequence, the object undergoes fast rigid
motions and various deformations such as isometric or elastic
ones. The involved mesh has a circumferential/radial/height

frame 15 frame 20 frame 35 frame 100

Fig. 5: Results of the deformable tracking process, for the cylin-
drical object. On the first row is featured the ground truth, on the
second the tracking with the linear FEM, the third with the linear
FEM and contour weighting, the fourth with the co-rotational FEM
and the fifth adding contour weighting.
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Fig. 6: Errors of the deformable tracking process, for the cylindrical
object, with the different tested approaches. The results with contour
weighting method for the mass spring and standard linear FEM
models are also shown.

resolution of 25×7×2, consisting in 352 vertices, as depicted
in Fig. 8. The Young Modulus has been empirically set
to E = 0.150MPa and the Poisson ratio to ν = 0.3.
Qualitative results are presented in Fig. 7, comparing our
method using the co-rotational FEM approach with other
models. On the first row are shown input RGB images, the
second row features the corresponding segmented frame, the
third row shows the 3D mesh tracking the object with the
mass spring model, the fourth with the standard linear FEM
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model, the fifth with the co-rotational model, and the last
along with contour weighting. We can notice the ability of
the process of the proposed method to correctly segment
the visible part of the object, to track rigid motions and,
in contrast to the mass spring and standard FEM models,
to accurately register deformations, while being robust to
occlusions due to the hands manipulating the object (third
column on 7) or segmentation errors. The slight advantage
of the contour weighting technique can be observed when
stretching the object.

Fig. 7: Results of the tracking process for the pizza-like object,
with the input images (first row), the segmented frames (second
row), and the registered mesh reprojected in the input image, for
the mass spring model (third row), the standard FEM model (fourth
row) and finally with the co-rotational model, and with the contour
weighting technique (CW).

With the cylindrical bar object, a sequence featuring rigid
motions, along with bending deformations, is featured in
Fig. 9. Here the circumferential/radial/height resolution of
the mesh, depicted in Fig.8, is 10 × 20 × 2, resulting in
420 vertices. The material is here poorly elastic, the Young
Modulus being empirically set to E = 0.900MPa and
the Poisson ratio to ν = 0.3. Satisfactory results are also
observed regarding occlusions, tracking rigid motions and
isometric deformations, in comparison with other methods
(mass spring and standard FEM models).

1) Computational costs: Regarding computational as-
pects, in Tab. I are shown the computation times of the

Fig. 8: Meshes used for the pizza-like object and the cylindrical bar
object.

Fig. 9: Results of the tracking process for the cylindrical bar object,
with the input images (first row), the segmented frames (second
row), and the registered mesh reprojected in the input image, for
the mass spring model (third row), the standard FEM model (fourth
row) and finally with our approach.

various phases of the algorithm, for the different methods
compared in this paper. Visibility corresponds to the process
of determining the visible vertices of the rendered mesh, and
in the case of using the contour weighting mode, extracting
the vertices lying on the contour. Ext. forces is the step
involving the determination of the closest points between
the mesh and the point cloud, and the computation the
subsequent external forces exerted on the mesh. Resolution
consists in the resolution of the Lagrangian mechanical
equations, to compute the deformations. The presented fig-
ures are the averages of the execution times per frame
(in milliseconds) for the sequence presented in Fig. 7. As
noticed, the suggested method (Co-rotational model with the
contour weighting mode) runs on the sequence at around 35
fps. We can also observe that, the computational costs for
the resolution phase being relatively small within the whole
process, overall execution times are relatively independent
of the selected model.
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Mass Spring Stand. FEM Corot. Corot. - CW
Segmentation 10.7 10.5 10.7 10.7

Rigid ICP 3.0 2.5 2.7 2.6
Visibility 8.1 8.2 7.6 7.4

Ext. forces 3.4 3.5 3.5 4.0
Resolution 2.8 3.3 4.0 4.1

Total 28.0 27.9 28.6 28.8

TABLE I: Execution times, in milliseconds, for the different phases
of the approach, and the various models and methods employed in
this paper.

VII. CONCLUSION

The recent development of physics-based modeling meth-
ods for deformable elastic objects for registration purposes
and the availability of real-time implementations have lead
us to choosing such an approach to track a textureless object
subjected to various large deformations, with an RGB-D
sensor. The use of a pertinent linear FEM model, of an
efficient segmentation method, and of classical point cloud
registration techniques have made our system a promising
real-time tracking method able to handle various deforma-
tions and motions. Regarding future works, efforts could
be concentrated on different aspects to improve, such as
segmentation, which could benefit from the depth data, the
point cloud matching procedure, and the physical model,
by extending it to other deformations such as plastic ones.
A major issue would also consist in demonstrating the
suitability of the approach to mimic the art of making pizzas
with a dual arm/hand robot.
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