
Synergy-based Policy Improvement with Path Integrals for
Anthropomorphic Hands

Fanny Ficuciello, Damiano Zaccara, Bruno Siciliano

Abstract— In this work, a synergy-based reinforcement learn-
ing algorithm has been developed to confer autonomous grasp-
ing capabilities to anthropomorphic hands. In the presence of
high degrees of freedom, classical machine learning techniques
require a number of iterations that increases with the size of the
problem, thus convergence of the solution is not ensured. The
use of postural synergies determines dimensionality reduction
of the search space and allows recent learning techniques, such
as Policy Improvement with Path Integrals, to become easily
applicable. A key point is the adoption of a suitable reward
function representing the goal of the task and ensuring one-
step performance evaluation. Force-closure quality of the grasp
in the synergies subspace has been chosen as a cost function
for performance evaluation. The experiments conducted on the
SCHUNK 5-Finger Hand demonstrate the effectiveness of the
algorithm showing skills comparable to human capabilities in
learning new grasps and in performing a wide variety from
power to high precision grasps of very small objects.

I. INTRODUCTION

New generation of robots, to serve humans by substituting
them in any kind of application or also by replacing parts
of the body, should have comparable abilities to deftly
move in different environments, autonomously learn and
make decisions. To learn new tasks just as humans do, i.e.
through trial-and-error policy, physical interaction is crucial.
Therefore, advanced mechatronic structure and high number
of degrees freedom (DoFs) for a robot are essential to change
different configurations and adapt to the environment. At the
same time, design and control complication due to high DoFs
can be somewhat offset by means of coordinated motion
patterns and sensory-motor synergies that help to simplify
robot hardware and software [1]. This can be summarized
by saying that the robot must be equipped with embodied
intelligence.

This work focuses on one of the most fascinating and
complex part of human and robot body in terms of mechan-
ical design, sensors and control, namely the hand. To play
the same role and functions of the human hand, artificial
hands require anthropomorphic design, human-inspired con-
trol strategies and autonomous learning from interaction and
exploration of the environment. Grasp synthesis based on
analytic approaches suffers from computational complexity
and modelling difficulties. First of all a precise model of the
object should be available and, even more complex, a task
description is needed to model object affordance. For this
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reason, new research trends in robotics go toward learning
strategies that can integrate model-based pre-programmed
actions with real-time learning from actions [2]. In the litera-
ture different classifications of learning strategies for robotics
exist [3], [4]. In [5] two broad categories are distinguished
for learning grasping mainly on the basis of the focus of
observation, i.e. techniques centered on the observation of
humans performing the grasp and techniques centered on
the observation of the grasped object. To the first category
belongs learning-by-demonstration strategies where sensors
and signal processing are the key points for categorization
[6], [7]; to the second category belong strategies that learn
to associate grasp parameters to object geometric features or
learn to identify grasping regions in an object image [8], [9].
The difference between imitation learning and Reinforcement
Learning (RL) are highlighted in [10] and in particular a
survey of RL in the context of robotics is provided. RL repre-
sents the future trends of learning strategies in robotics since
it provides a robot with autonomous capabilities of learning
new tasks on the basis of exploration and trial-and-error
policy. Several RL approaches are found in robotics literature
and are mainly based on policy search methods, which are
preferable with respect to value function approaches as the
latter are not suitable for high dimensional state and action
space [11]. Different approaches for implementing policy-
search are available with pros and cons, e.g. policy-gradient
algorithms [12], Expectation-Maximization (EM) [13], yet
more interesting results come from search algorithms from
the field of stochastic optimization such as Policy Improve-
ment with Path Integrals (PI2) [14], [15]. This method
belongs to the framework of stochastic optimal control and
overcomes gradient computation of a cost function for the
parameters update, thus avoiding problems related with dis-
continuities and noise in the cost functions. In this direction
promising methods are obtained combining Cross-Entropy
Method (CEM) optimization algorithm [16] to overcome a
limit of PI2 method that has a constant degree of exploration
during the learning process. Hence, to obtain an exploration-
exploitation trade-off, adaptive exploration is conceived by
integrating in PI2 the Covariance Matrix Adaptation (CAM)
rule from the CEM [17], [18], [19]. In the field of RL
some examples of application to robotics can be found in
[20], [21], [22], [23]. The application on an anthropomorphic
hand is realized in [24]. PI2 is used to learn particular tasks
involving two fingers such as slide a switch and turn a knob.
The trajectories are represented via Dynamic Movement
Primitives (DMPs), and are learned in the tendon-space of
the index finger and of the thumb. The authors demonstrate
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that optimizing a small number of trajectories in the synergy
space can produce comparable performance to optimizing
the trajectories of the tendons individually. In this work, the
goal is quite different as well as the method used to define
a policy, its initial parameters, and the reward function. The
design of appropriate policy representations is essential for
RL methods to be successfully applied to real-world robots.
The idea is to demonstrate that a synergy-based approach is
powerful for learning grasping with anthropomorphic hands
due to configuration space dimesionality reduction. Motor
synergies are a paradigm, inherited form neuroscience studies
on the human hand [25], to represent joint couplings and
inter-finger coordination as a powerful tool to plan grasps
and control artificial hands using few parameters compared
to the degrees of freedom (DOF) of the hand itself. Principal
component analysis (PCA) and human grasps data set serve
as data structures to define a policy and its initial parameters
for a reinforcement learning algorithm. Indeed, starting from
a “good enough” demonstration, the algorithm can optimize
the policy parameters to gradually refine a stable grasp.
When a clear measure about the success of the task is avail-
able, RL adaptability to new objects is ensured. The paper
is organized as follows. In Sect. II the main characteristic
of the Policy Improvement with Path Integrals algorithm
adopted in this work is described. Section III provides the
description of the hardware available for the experiments,
i.e. the SCHUNK 5-Finger Hand; moreover, the description
of the motor synergies subspace underlying the PI2 policy
is also provided; Section IV describes the reward function
and the learning policy. In Sect. V experimental results are
reported to validate the efficiency of the method in realizing
grasps of objects with different shape and size. Finally,
Section VI and VII respectively provide a discussion of the
results and the conclusions.

II. POLICY IMPROVEMENT WITH PATH INTEGRALS (PI2)

In reinforcement learning, the agent and its environment,
such as a robot arm that inserts a peg in a hole or a mobile
robot moving in a room or a hand that grasps objects,
are modeled with a state s ∈ S and can perform action
a ∈ A. The action a changes the state of the system and
the agent receives a feedback in terms of a scalar function
named reward that measures the one-step performance of
the robot with respect to the desired goal. The function
π that maps states to actions is called policy. The goal
of the RL is to discover the policy that maximizes the
cumulative expected reward. Due to robotic systems high-
dimensionality, Policy Search (PS) methods represent the
optimal choice in robotics with respect to the classical RL
techniques since the search space dimension is reduced by
operating directly in the parameter space of the policy.
Several policy search methods have been developed over the
last two decades [10], [18], [19]. The Policy Improvement
with Path Integrals algorithm is one of the most efficient
and numerically robust examples of this approach and comes
from the field of stochastic optimization. Unlike other policy
search algorithm, PI2 does not require a gradient estimate

for the parameters update since it uses the principle of
probability-weighted averaging to compute changes of the
policy parameters, avoiding numerical instabilities due to
matrix inversions. Minimizing a cost function through an
iterative process of exploration and parameter updating is the
goal of this method. The exploration is done by taking K
samples θk=1···K from a Multivariate Gaussian distribution,
with mean θ and covariance matrix Σ. The vector θ repre-
sents the parameters of a policy π (θ), which yields a specific
trajectory τ k. Each of these samples leads to different cost.
The cost is determined by evaluating a task specific scalar
function S (τ k), which is defined in terms of the trajectory
since the reward depends on the robot performance. The
trajectory assumes a different interpretation depending on
the particular application. The expression of the adopted
algorithm is provided in Algorithm 1 (see below) [14]. As
previously discussed, the main difference between PI2 and
other policy search algorithms is the parameter update rule.
In order to update the policy parameters, the PI2 assigns to
each trajectories a probability in inverse proportion to their
rewards, as in line 8 of Algorithm 1.

This is the key point of the entire algorithm, since the new
policy parameters are evaluated by performing probability-
weighted averaging on the samples, as in line 10 of Algo-
rithm 1. Therefore, the PI2 method updates the parameter
vector θ such that it is expected to generate trajectories
that lead to lower costs. The process continues with the
new θ as the basis for the new exploration. The classical
PI2 implementation provides only the distribution mean up-
dating. Therefore, the exploration degree is constant during
the learning process. However, the exploration-exploitation
trade-off is crucial in a reinforcement learning problem. The
agent has to exploit the already known actions, but it also
needs to explore in order to learn new actions that may be
better.

Algorithm 1 shows a variant of the classical PI2, by inte-
grating the covariance matrix adaptation (CAM), in which
the exploration decays during learning in favour of the
exploitation [18], [19]. In the early stages of the learning it
is convenient to have a high exploration degree to discover
the best alternatives. On the contrary, in order to exploit
the learned task, the exploration should be low in the final
stages of the process. For this reason, a gradual decay of
the exploration level has been implemented. In particular,
exploration decays during learning in accordance with the
law described in line 11 of Algorithm 1, where 0� γ < 1,
and u is the update number. The value γ depends on the
number of updates required to learn the task.

The algorithm parameters used in this work are detailed
in Table I. Moreover, in the considered application the
parameters of the policy are the synergies coefficient σ
and the trajectories τ k represent the hand configuration
corresponding to the synergy coefficients by means of (2)
that the hand reaches using its low-level control, i.e.

τ k = τ(θk) = q(σ).

The reward function S is based on the force closure cost
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function [26] i.e.

Sk = S(q(σk)) = r(σ).

All these parameters and functions will be better detailed in
Sects. III and IV.

TABLE I
PI2 PARAMETERS SETTING.

N = 10 Number of updates
K = 5 Number of trials per update
λ = 1000 Exploration level
γ = 0.9 Exploration decay coefficient

Algorithm 1 PI2

Input: θ
λinit

K
γ
Σinit = λI

1: while true do
2: for k = 1 to K do
3: θk ∼ N (θ,Σ)
4: τ k = τ(θk)
5: Sk ≡ S (τ k)
6: end for
7: for k = 1 to K do
8: Pk = e−

1
λ
Sk∑K

k=1 e−
1
λ
Sk

9: end for
10: θnew =

∑K
k=1 Pk (θk − θ)

11: Σ = γuΣinit

12: end while

III. THE SCHUNK S5FH MOTOR SYNERGIES

The synergy-based reinforcement learning strategy has
been tested experimentally on an anthropomorphic hand,
the Schunk 5-Finger Hand [27], [28]. The hand motion is
driven by 9 motors that move 20 joints. The majority of the
joints are actuated through leadscrew mechanisms converting
linear into rotational motion. The other joints are passively
moved by means of a rigid linkage that realizes couplings
to reproduce natural movements using a reduced number of
independent degrees of freedom. Therefore, the hand has its
own mechanical synergies represented by the (20 × 9) Sm

matrix that maps the motor space into the joint space, as in
the following:

q = Smm+ q0, (1)

where q ∈ IRn, with n = 20, is the vector of joint variables,
m ∈ IRm, with m = 9, is the vector of motor variables
and q0 is a mechanical offset characterizing joint angles
when the motors position are set to zero. To further reduce
the dimension of the control problem, postural synergies
are mapped from human hand grasping demonstration using

the results obtained in [29], [30] where the effectiveness of
the first three synergies subspace in planning and control
grasping actions has been demonstrated. As a result of these
studies the (9× 3) Ss matrix of the first three eigenvectors
sorted in decreasing order of variance are computed in the
motor space using Principal Component Analysis (PCA).
Hence, the computed motor synergies matrix Ss and the vec-
tor m̄, that represents the origin of the synergies subspace,
are connected to the hand configuration space by means of
the mechanical synergies matrix Sm. The mapping between
the synergies subspace and the joint space is given by the
following expression:

q = Sm(Ssσ + m̄) + q0, (2)

where σ represents the (3×1) vector of synergy coefficients.
The synergies subspace, represented by the matrix Ss, has
been computed using human grasp data and a mapping algo-
rithm available from previous work [31], [32]. Because of un-
deractuation, whatever is the mapping method of human hand
motion to the robotic hand, a faithful mapping will never be
achieved and part of the information will be inevitably lost.
Thus, the coefficients of the first three synergies, computed
by projection of a given grasp in the synergies subspace, can
determine only a good hand preshaping but cannot reproduce
a stable grasp [29].

IV. REWARD FUNCTION AND GRASP QUALITY

The success of a reinforcement learning algorithm based
on PI2 is the proper choice of the policy representations
suitable for the particular application. Examples available
in the literature of policy representation in the context
of robotic manipulation are the Gaussian Mixture Model
(GMM) and Gaussian Mixture Regression (GMR) used in
[33] and DMPs for a compact representation of a movement
[13]. In the particular application of anthropomorphic hand
grasping synthesis, to improve the PI2 performance and
ensure fast convergence, the algorithm has been implemented
in the synergies subspace and the learning policy is based
on the synergy-based approach. Taking advantage from
dimesionality reduction, the optimal policy parameters are
searched directly into the synergies subspace. The parameters
of the policy have a precise meaning; in particular, the
vector θ represents the postural synergy coefficients, i.e.
θ = σ. Therefore, each trial extracted from the multivariate
Gaussian distribution is a robotic hand grasp configuration.
In this framework, a synergy-based quality index V (σ) has
been used in the reward function where it is summed to a
discontinuous function φ that drastically penalizes the reward
if no contact occurred. In particular the adopted force-closure
cost function has been introduced in [26]. This cost function
has to be minimized to achieve the best grasp feasible with
the given set of synergies.

Specifically, the reward function r (σ) used in the PI2

algorithm is defined by:

r (σ) = βV (σ) + φ (3)
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where β = 10−6 is a normalization coefficient and φ is:

φ =

{
0 if grasp succeeds

103 if grasp fails (4)

The value φ = 103 has been chosen so high in order
to penalize decisively the failed grasp, where no contact
between robotic hand and object occurs.

PI2 is a global method, yet the convergence to the global
optimum is not ensured when variations to the classical
version of the method are introduced, as described in Sect. II.
Nevertheless, the choice of the policy and a good initializa-
tion of the parameters allows reaching an excellent solution.
In this work, the initial policy parameters for each grasp
is computed as the synergy coefficients corresponding to the
closer object contained in the reference set used for synergies
computation [30].

Starting from hand preshaping, the learning algorithm is
in charge of searching autonomously for a stable grasp.
The hand preshaping configuration is the result of a sort of
imitation learning of human actions and contains information
on task compatibility, i.e. number of fingers involved in the
grasp, influencing the cost function, and object affordance.
The imitation learning determines the policy and the initial
policy parameters, while the policy improvement learning
algorithm, based on the chosen reward function, ensures
stability and adaptability to new objects and determine the
task execution. In Fig. 1 a schematic representation of the
strategy is reported.

Fig. 1. A schematic representation of the learning algorithm.

V. EXPERIMENTS

To experimentally show the performance of the presented
method and validate the choice of the policy, the PI2 al-
gorithm has been tested on the SCHUNK 5-Finger Hand.
The S5FH is controlled using a Robot Operating System
(ROS) package that contains the driver for the low-level
interface and enables an easy control of the hand using
a customized library written in C++ [34]. The low-level
control law is a kinematic control strategy developed in the

TABLE II
VALUES OF THE FORCE CLOSURE COST FUNCTION FOR EACH STEP OF

THE LEARNING PROCESS DEPICTED IN FIGS. 2, 3, 4, 5, 6, 7.

Object Preshaping Intermediate grasp Final Grasp

Bottle 2.48 · 106 4.06 · 105 1.75 · 105

Cylindrical object 7.45 · 106 6.23 · 106 5.37 · 106

Card 6.96 · 106 5.46 · 106 4.60 · 106

Strawberry 5.52 · 106 4.96 · 106 2.70 · 106

Marble 3.38 · 105 2.57 · 105 1.84 · 105

Needle 2.08 · 105 1.45 · 105 9.37 · 104

synergies subspace where the fingers reference position is
given by the output of the learning algorithm as desired
synergy coefficients. Moreover, in order to limit the contact
forces during the execution of the grasp, the desired target is
modified on the basis of the measured motor current and of
a defined threshold that is related to the texture of the object,
for more details see [29]. The Robotics System Toolbox is
used to provide an interface between MATLAB and ROS in
such a way as to create a ROS node in MATLAB to exchange
messages with the hand driver node.

The PI2 algorithm has been implemented in MATLAB.
To test the learning capacity of the algorithm in different
situations, power, precision and lateral grasp have been
considered as well as objects of different shape and size.
The learning results are shown in Figs. 2 to 7. In each of
these figures three images of the experiment with the same
object are reported. The first image represents the hand in the
preshaping phase that is the result of the imitation learning
as shown in Fig. 1. The intermediate image represents the
hand and the object during learning. To show the progress
of the algorithm during the learning phase, we have chosen
for each object a configuration of the hand corresponding
to an intermediate trial of the algorithm. Finally, the third
image represents the final hand configuration corresponding
to the convergence of the algorithm and to a stable grasp.
In Table II, the force closure cost value corresponding to
each learning phase (arranged from left to right in order of
appearance of the images in the figures) are reported. As
expected, the cost value decreases from left to right.

Fig. 2. Power grasp example: bottle.

First of all it should be noted that at the end of the learning
all the objects are grasped with accuracy and stability.
Moreover, starting from the initial parameters of the policy,
the algorithm is able to distinguish the number of fingers
involved in the grasp. This result is amazing, especially
considering that the hand, using only the initial parameters
of the policy, cannot grasp any of the considered objects.
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Fig. 3. Tripodal grasp example: strawberry.

Fig. 4. Bipodal grasp example: marble.

The algorithm implemented in this work provides a stan-
dard number of updates for each object. In particular, the
algorithm performs ten updates with five trials for each of
them. However, the experimental tests have shown that the
task is learned in fewer trials, as illustrated in Table III. In
this work, a certain grasp is evaluated as successful when
the object is not lost, and this evaluation can be easily
performed on the basis of the measured values of the motor
currents. It is important to emphasize that to avoid that hand
configurations, generated by the learning algorithm, could
exert excessively high contact forces on the object, we have
introduced a current threshold in the low-level control of the
hand such that beyond this threshold the motors are stopped.

VI. DISCUSSION OF THE RESULTS

A. Comparison of PI2 performance in the full-DoF system

To show how dimensionality reduction of the policy search
space makes the algorithm extremely fast and efficient, we
report the results obtained using the RL algorithm in the
full-DoF motor space. For the sake of comparison, two
different objects have been selected to perform a power grasp
and a precision grasp. When the complete motor space is
considered as the search space of the policy, the convergence
of the algorithm is not ensured. In Fig. 8 the results of the
RL algorithm applied to a tripodal grasp are reported. The
initial parameters of the search policy are chosen in the full-
DoF motor space. It is possible to observe from images that
the algorithm do not converge and the object is not grasped.
For simpler grasps the algorithm converges but with a higher

TABLE III
MINIMUM NUMBER OF TRIALS FOR A STABLE GRASP.

Bottle 15 Trials
Card 15 Trials
Cylindrical object 20 Trials
Strawberry 25 Trials
Marble 40 Trials
Needle 45 Trials

Fig. 5. Precision grasp with five fingers example: small cylinder.

Fig. 6. Lateral side grasp example: card.

number of trials. In Fig. 9 the bottle has been grasped after 20
trials, i.e. 5 more than the trials obtained when the algorithm
operates in the synergies subspace. In addition, the final
grasp has a higher value of the force closure cost function,
3.01 · 106.

B. Limits of the method

A limitation of this work is the absence of an arm
accompanying the hand in the phase of reaching towards
the object and preshaping. Thus, learning knowledge related
to object affordance and task description, that are obviously
two important aspects of grasping actions, will be addressed
in future work where the whole hand-arm system will be
considered. Nevertheless, at this stage part of the information
is contained in the initial parameters of the policy. Another
limitation regards the object association with the closest tar-
get in the reference data set to generate the initial parameters
of the policy (i.e. the preshaping of the hand), see Sect. IV.
In this regard, in future works a vision system can extract
the characteristics of the object and associate them to the
closest object among those contained in a database. After
identifying the nearest object, the synergies coefficients for
hand preshaping can be computed. Furthermore, the vision
system will be utilized also to automatically evaluate the
success of the grasp (Eq. (4)) for the reward function.

VII. CONCLUSIONS

In this work, a reinforcement learning algorithm has been
implemented for learning grasping with an anthropomorphic
robotic hand using a synergy-based search policy. In partic-
ular, the chosen search approach is the Policy Improvement
with Path Integrals and comes from the field of stochastic
optimization. This algorithm has been chosen for the char-
acteristic to be very effective in the field of robotics and
in particular in applications in which the dimension of the
“actions” space is high. In order to ensure the convergence of
the algorithm and improve the performance we have chosen,
as policy, an approach based on postural synergies of the
robotic hand. The convergence towards a solution that in our
case corresponds to a stable grasp, confirms that the chosen
reward function as the synergy-based force closure cost and
the chosen exploration law is a winning choice.
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Fig. 7. Precision grasp example of a very small object: needle.

Fig. 8. Tripodal grasp example using the full-DoF search space: strawberry.

REFERENCES

[1] F. Ficuciello and B. Siciliano, “Learning in robotic manipulation:
The role of dimensionality reduction in policy search methods. Com-
ment on Hand synergies: Integration of robotics and neuroscience
for understanding the control of biological and artificial hands by
Marco Santello, Matteo Bianchi, Marco Gabiccini, Emiliano Ricciardi,
Gionata Salvietti et al.” Physics of Life Reviews, vol. 17, pp. 36-37,
2016.

[2] S. Schaal and C. Atkeson, “Learning control in robotics,” IEEE
Robotics and Automation Magazine, vol. 17, no. 2, pp. 20–29, 2010.

[3] F. Ficuciello, G. Palli, C. Melchiorri, and B. Siciliano, “Postural
synergies and neural network for autonomous grasping: A tool for
dextrous Prosthetic and Robotic Hands,” in Converging Clinical and
Engineering Research on Neurorehabilitation J.L. Pons, D. Torricelli
and M. Pajaro Eds. ” pp. 467–480, Springer Berlin Heidelberg, 2012.

[4] F. Ficuciello, D. Zaccara, and B. Siciliano, “Learning grasps in a
synergy-based framework,” International Symposium on Experimental
Robotics, 2016.

[5] A. Sahbania, S. El-Khouryc, and P. Bidauda, “An overview of 3D
object grasp synthesis algorithms,” Robotics and Autonomous Systems,
vol. 60, no. 3, pp. 326–336, 2012.

[6] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot pro-
gramming by demonstration,” in Springer Handbook of Robotics,
B. Siciliano and O. Khatib, Eds. pp. 1371–1394, Springer, 2008.

[7] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survay
of robot learning from demonstration,” Robotics and Autonomous
Systems, vol. 57, no. 5, pp. 469–483, 2009.

[8] Y. Li, J. Fu, and N. Pollard, “Data-driven grasp synthesis using shape
matching and task-based pruning,” IEEE Transactions on Visualization
and Computer Graphics, vol. 13, no. 4, pp. 732–747, 2007.

[9] R. Pelossof, A. Miller, P. Allen, and T. Jebara, “An SVM learning
approach to robotic grasping,” in Proc. IEEE International Conference
on Robotics and Automation, New Orleans, USA, 2004, pp. 3512–
3518.

[10] P. Kormushev, S. Calinon, and D. Caldwell, “Reinforcement learning
in robotics: Applications and real-world challenges,” Robotics, vol. 2,
pp. 122–148, 2007.

[11] J. Peters and S. Schaal, “Policy gradient methods for robotics,” in Proc.
IEEE/RSJ International Conference on Intelligent Robotics Systems,
Beijing, China, 2006, pp. 2219–2225.

[12] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine Learning, vol. 8, pp.
229–256, 1992.

[13] J. Kober and J. Peters, “Learning motor primitives for robotics,” in
Proc. IEEE International Conference on Robotics and Automation,
Kobe, Japan, 2009, pp. 2112–2118.

[14] E. Theodorou, J. Buchli, and S. Schaal, “Learning policy improve-
ments with path integrals,” Journal of Machine Learning Research,
vol. 9, pp. 828–835, 2010.

[15] F. Stulp, A. Theodorou, and S. Schaal, “Reinforcement learning
with sequences of motion primitives for robust manipulation,” IEEE
Transactions on Robotics, vol. 28, no. 6, pp. 1360–1370, 2012.

[16] R. Rubinstein and D. Kroese, The Cross-Entropy Method: A unified
approach to combinatorial optimization, Monte-Carlo simulation and
Machine Learning. Springer-Verlag: New York, NY, 2004.

Fig. 9. Power grasp example using the full-DoF search space: bottle.

[17] N. Hansen, “The CMA evolution strategy: A comparing review,”
Towards a New Evolutionary Computation, J. Lozano, P. Larranaga,
I. Inza, and E. Bengoetxea, Eds. pp. 75–102, Springer: Berlin,
Germany, 2006.

[18] F. Stulp and O. Sigaud, “Path integral policy improvement with
covariance matrix adaptation,” in Proc. 29th International Conference
on Machine Learning, Edinburgh, Scotland, 2012, pp. 2112–2118.

[19] E. Theodorou, J. Buchli, and F. Schaal, “A generalized path integral
control approach to reinforcement learning,” Journal of Machine
Learning Research, vol. 11, pp. 3137–3181, 2010.

[20] P. Kormushev, S. Calinon, and D. Caldwell, “Robot motor skill coor-
dination with em-based reinforcement learning,” in Proc. IEEE/RSJ
International Conference on Intelligent Robotics Systems, Taipei,
Taiwan,, 2010, pp. 3232–3237.

[21] P. K. B. Ugurlu, S. Calinon, N. Tsagarakis, and D. Caldwell, “Bipedal
walking energy minimization by reinforcement learning with evolving
policy parameterization.” in Proc. IEEE/RSJ International Conference
on Intelligent Robotics Systems, San Francisco, CA, USA, 2011, pp.
318–324.

[22] F. Stulp, “Adaptive exploration for continual reinforcement learning,”
in Proc. IEEE/RSJ International Conference on Intelligent Robotics
Systems, Vilamoura, Algarve, Portugal, 2012, pp. 318–324.

[23] N. G. Tsagarakis, G. Metta, G. Sandini, D. Vernon, R. Beira, F. Becchi,
L. Righetti, J. Santos-Victor, A. J. Ijspeert, M. Carrozza, and D. Cald-
well, “iCub: The design and realization of an open humanoid platform
for cognitive and neuroscience research,” Advanced Robotics, vol. 21,
pp. 1151–1175, 2007.

[24] E. Rombokas, M. Malhotra, E. Theodorou, E. Todorov, and Y. Mat-
suoka, “Reinforcement learning and synergistic control of the act
hand,” IEEE/ASME Transactions on Mechatronics, vol. 18, no. 2, pp.
569–577, 2012.

[25] M. Santello, M. Flanders, and J. Soechting, “Postural hand synergies
for tool use,” Journal of Neuroscience, vol. 18, no. 23, pp. 10 105–
10 115, 1998.

[26] A. Bicchi, “On the closure properties of robotic grasping,” Interna-
tional Journal of Robotics Research, vol. 14, no. 4, pp. 319–334, 1994.

[27] “SCHUNK Hand webpage,” http://mobile.schunk-microsite.com/en/
produkte/produkte/servoelektrische-5-finger-greifhand-svh.html.

[28] S. Ruehl, C. Parliz, G. Heppner, A. Hermann, A. Roennau, and
R. Dillman, “Experimental evaluation of the SCHUNK 5-Finger
gripping hand for grasping tasks,” in Proc. IEEE Int. Conf. on Robotics
and Biomimetics, Bali, Indonesia, 2014, pp. 2465–2470.

[29] F. Ficuciello, A. Federico, V. Lippiello, and B. Siciliano, “Synergies
evaluation of the SCHUNK S5FH for grasping control,” in 15th
International Symposium on Advances in Robot Kinematics, 2016.

[30] F. Ficuciello, G. Palli, C. Melchiorri, and B. Siciliano, “Postural
synergies of the ub hand iv for human-like grasping,” Robotics and
Autonomous Systems, vol. 62, pp. 357–362, 2014.

[31] G. Palli, C. Melchiorri, G. Vassura, U. Scarcia, L. Moriello,
G. Berselli, A. Cavallo, G. D. Maria, C. Natale, S. Pirozzi, C. May,
F. Ficuciello, and B. Siciliano, “The DEXMART hand: Mechatronic
design and experimental evaluation of synergy-based control for
human-like grasping,” International Journal of Robotics Research,
vol. 33, pp. 799–824, 2014.

[32] F. Ficuciello, G. Palli, C. Melchiorri, and B. Siciliano, “Experimental
evaluation of postural synergies during reach to grasp with the UB
Hand IV,” in Proc. IEEE/RSJ International Conference on Intelligent
Robots and Systems, San Francisco, 2011, pp. 1775–1780.

[33] F. Guenter, M. Hersch, S. Calinon, and A. Billard, “Reinforcement
learning for imitating constrained reaching movements,” Advanced
Robotics, vol. 21, pp. 1521–1544, 2007.

[34] “schunk svh driver,” http://wiki.ros.org/schunk svh driver.

1945


