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Abstract— During suturing tasks performed with minimally
invasive surgical robots, configuration singularities and joint
limits often force surgeons to interrupt the task and re-grasp
the needle using dual-arm movements. This yields an increased
operator’s cognitive load, time-to-completion and performance
degradation. In this paper, we propose a haptic-guided shared
control method for grasping the needle with the Patient Side
Manipulator (PSM) of the da Vinci robot avoiding such issues.
We suggest a cost function consisting of (i) the distance from
robot joint limits and (ii) the task-oriented manipulability
along the suturing trajectory. Evaluating the cost and its
gradient on the needle grasping manifold allows us to obtain the
optimal grasping pose for joint-limit and singularity free robot
movements during suturing. We compute force cues and display
them through the Master Tool Manipulator (MTM) to guide the
surgeon towards the optimal grasp. As such, our system helps
the operator to choose a grasping configuration that allows
the robot to avoid joint limits and singularities during post-
grasp suturing movements. We show the effectiveness of the
proposed haptic-guided shared control method during suturing
using both simulated and real experiments. The results illustrate
that our approach significantly improves the performance in
terms of needle re-grasping.

I. INTRODUCTION

Autonomous control methods are not yet sufficiently

trusted in robotic surgery because of safety-critical and high-

consequence tasks to perform. On the other hand, remote

teleoperation of surgical robotic systems imposes extreme

cognitive loading to the human operator, causing severe

fatigue and, consequently, a progressive degeneration in

performance. However, patients are highly conservative and

trust more a surgeon who remotely teleoperates the robotic

system within the patient’s body through a master console

as in the da Vinci robot (see Fig. 1).

Haptic-guided shared control is a promising approach to

reduce the human operator’s cognitive load during teleoper-

ation. This improves performance by providing haptic cues

that guide the operator in carrying out safe and effective

actions. For instance, Ghalamzan et al. showed in [1] that

haptic cues, guiding the human operator based on a predictive
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(a) Master system (b) Slave system (c) Needle tracking

Fig. 1. Experimental setup comprising of master (1a) and slave (1b) systems
of da Vinci Research Kit. An operator commands the slave tool through the
master device to grasp a needle. Figure 1c shows the tracking system to
retrieve the needle pose.

cost of avoiding singularities during the teleoperation task,

drastically improve the manipulation performance.

In da Vinci-like surgical systems, while tremor filtering

and motion scaling enhance the movements precision, the

robot mechanical structure also imposes some constraints. In

particular, joint limits and singularities are common issues

that, for example, force the surgeon to re-grasp the needle in

the middle of the suturing task. As such, surgeons waste a

considerable amount of time re-configuring the robot during

interventions despite the substantial training they undergo.

Fontanelli et al. in [2] noticed that the suturing task, performed

by a surgeon using a da Vinci robot, requires several hand-off

movements using both arms to re-orient the needle before each

stitch. This results in longer procedural time, increased fatigue,

higher cognitive loading and degenerating performance.

This paper proposes a haptic-guided shared control system

that assists the surgeon in avoiding such problems during

suturing tasks performed with a da Vinci robot. The proposed

approach ‘guides’ the operator during the reach-to-grasp phase

to choose a needle grasping configuration that results in

neither joint limits nor singularities in the course of sutur-

ing. The chosen grasping pose allows starting the suturing

procedure immediately with no need for re-configurations

during post-grasp manipulative movements, i.e. over the

course of the suturing trajectory. While the haptic-guided

shared control system informs the user about the optimal

grasping configuration, it allows the operator to ultimately

choose the grasp making a trade-off between the computed

cost and other non-modeled objectives.

The rest of this paper is structured as follows. Section II

describes the related work in robotic grasping and manip-

ulation, needle grasping and haptic-guided shared control

fields. Section III formulates the problem. Needle grasping

optimization and haptic guidance are described in Section IV

and V, respectively. Section VI presents simulations and
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(a) Initial pose (b) Approaching (c) Grasping (d) Initial pose (e) Approaching (f) Grasping

Fig. 2. Grasping a needle using the PSM in a simulated (2a, 2b and 2c) and a real (2d, 2e and 2f) environment: our proposed haptic-guided shared control
system generates force cues guiding the operator to choose a grasping configuration yielding neither joint limits nor singularities during suturing movements.

experiments performed to evaluate the developed system.

Section VII concludes the paper.

II. RELATED WORK

Performing a successful robotic manipulation task involves:

robot approaching an object (g0: reach-to-grasp); making

stable contacts on the object surface (g1: grasping); and

moving the object to perform the task (g2: post-grasp).

Figures. 2a-2b-2c and 2d-2e-2f, illustrate g0 and g1 phases

for grasping a needle in simulated and real experiments,

respectively. State-of-the-art approaches are able to efficiently

computing stable grasp configurations (g1) from a point cloud

of a scene with high success rate (e.g. using probabilistic

learning algorithms [3] or artificial neural networks [4], [5]).

In the robotic surgery domain, D’Ettorre et al. proposed

in [6] a vision-guided method for autonomous needle grasping

which allows the surgeon to immediately start suturing.

Nevertheless, the authors only focused on planning the

success of g0 and g1. For manipulation tasks, planning g1
and g2 cannot be performed in isolation as a chosen grasping

configuration may lead to encounter system constraints during

g2: although the obtained needle grasping yields stable

contacts, it may make it impossible for the robot arm to

deliver the entire intended suturing movement.

Autonomously performing g0 − g1 − g2 is not sufficiently

trusted by conservative industries in safety-critical tasks, such

as robotic surgery. However, there exist efficient approaches

to autonomously perform g2. For instance, motion planning

algorithms, such as learning from demonstration [7], general-

ize demonstrated motions to new knot tying examples using a

da Vinci robot [8]. The generalized motions are known before

g0−g1, thus allowing the computation of limitations the robot

will face during g2 given a certain grasp. Some g2 objectives

relevant to g0−g1 may include the object affordance [9], mass

distribution [10] and collisions with the environment [11]. In

contrast, a human operator is not able to foresee these issues

during the future movements resulting in several cycles of

(i) planning, (ii) executing part of the planned motions, (iii)
facing a limitation and (iv) re-planning.

By inspecting the JIGSAW dataset [12], Fontanelli et al.

noted that the occurrence of hand-off movements during

surgical sub-tasks is significant and yields an increased

procedural time [2]. They proposed to use an additional

DoF in the surgical robotic tool allowing in-hand needle re-

orientation. Sen et al. proposed in [13] a mechanical device

designed to align and hold the needle in a known orientation.

The authors aim was to improve needle pose tracking

capabilities of a computer vision software for automating

multi-throw surgical suturing. However, these approaches

require substantial modification of the robot mechanical

structure that are not always practically feasible.

On the other hand, an operator can be successfully guided

towards an optimal grasping configuration. To this end, haptic

guidance has been used to avoid constraints during g0 [14],

[15] and g2 [1]. These works reported significant performance

improvement compared to direct teleoperation. However, they

have been only used to grasp and manipulate simple objects

whereas they do not account for the object shape. In this case,

force cues, which continuously attract the operator’s towards

optimal grasping poses, may have non-intuitive components

pushing away from the object shape.

Liu et al. presented in [16], [17] an offline optimization-

based solution to needle grasping and robotic instruments

entry ports selection. An exhaustive search method finds

the optimal needle grasping and entry ports poses. However,

this method cannot be utilized for real time implementation

of haptic-guided shared control systems due to the high

computation time.

We propose a haptic-guided shared control method for

suturing tasks with a da Vinci robot to assist the operator

during g0. We use a cost function which is comprised of two

terms: (i) joint limits and (ii) task-oriented velocity (TOV)

manipulability1. In contrast to previous works [1], [14], we

assume the shape of the object to be grasped, i.e. the needle, is

known. To eliminate the force cues non-intuitive components,

we compute the cost and project its gradient onto the space of

feasible grasping pose (grasping manifold). Hence, the non-

intuitive components are eliminated and force cues always

attract the operator’s hand towards the needle shape.

III. PROBLEM FORMULATION

Let us consider the Patient Side Manipulator (PSM) of a

da Vinci surgical robot performing a suturing task (Fig. 1b).

The PSM is a 6-DoFs manipulator with qs ∈ R
6 being

the set of its generalized coordinates (see [18] for a detailed

PSM kinematic description). An operator commands the PSM

through the da Vinci Master Tool Manipulator (MTM)(Fig. 1a)

to grasp a needle (Fig. 1c) and performing a suturing task.

Stitching trajectories can be computed based on the desired

1In contrast, [17] used the classical manipulability measure. The superiority
of TOV over classical manipulability in manipulation tasks is discussed in [1].
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needle insertion and extraction points and include approaching

the insertion point on a tissue, piercing, reaching the desired

extraction point, piercing and pushing the needle out of the

tissue [19]. We assume that the needle trajectory necessary

to perform the stitching is given (Fig. 3) by either a planning

algorithm [20] or learning from demonstration [21].

We denote by Fn : {On;xn, yn, zn} a local frame attached

to the needle and with Fr : {Or;xr, yr, zr} an inertial

reference frame. Fn can be expressed in Fr through the

transformation matrix2 rTn ∈ SE(3)

r
Tn(t) =

[

R3×3(t) p3×1(t)
01×3 1

]

, (1)

where, as usual, p ∈ R
3 and R ∈ SO(3) are the position and

orientation of any point in Cartesian space. We denote by

Ft : {Ot;xt, yt, zt} a reference frame attached to the needle

tip. The trajectory to be followed by the needle implies that

Ft matches a sequence of planned stitching poses (see Fig. 3)

Fp(t) = ζ(t) t ∈ [0, T ], (2)

where ζ is the stitching trajectory, t denotes the time and T is

the total time to complete the stitching. In other words, Fp(t)
determines a complete object pose (position and orientation)

at every time t along the trajectory ζ.

Let us denote a local frame attached to the PSM

end-effector by Fe : {Oe;xe, ye, ze}. Let also Fg :
{Og;xg, yg, zg} be a local reference frame attached to the

needle shape which serves as a grasping pose candidate for

the robot end-effector. Since the needle is not deformable

and the PSM end-effector forms stable contacts on the needle

surface, the PSM end-effector pose Fg becomes equal to Fe

once contacts are made. As such, Fg can be fully expressed

at all time by a fixed transformation matrix, namely nTg,

w.r.t. needle local frame Fn. The PSM end-effector trajectory

during suturing can be derived given the planned needle

trajectory ζ in (2) as follows

r
Tg(t) = {rTn(t)

n
Tg : 0 ≤ t ≤ T}. (3)

Finally, the post-grasp joint configuration trajectory corre-

sponding to a given grasping rTe (t) = rTg (t), can be

computed as follows

q̂g (t) = IK (rTg (t)) (4)

where IK (·) is the PSM inverse kinematics function which

computes the joint space trajectory q̂g(t) corresponding to

the grasping frame trajectory Fg(t). The problem is to find
nTg in (3) and thus q̂g (t) in (4) which yields no singularities

or joint limits along ζ in (2).

IV. NEEDLE GRASPING

To successfully perform a suturing task without hands-off

movements, we guide the human operator towards a grasping

pose which yields no singularities or joint limits during

the post-grasping suturing trajectory. In contrast to previous

studies [1], [14], here we know the geometrical shape of the

2In general, b
Ta ∈ SE(3) denotes a homogeneous transformation matrix

representing the pose of local frame a into local frame b.

Fig. 3. A schematic surgical setting during the suturing task: Fr , Fe,
Fn and Ft denote the inertial, the end-effector, the needle center and the
needle tip reference frames, respectively. Furthermore, Fg represents a frame
attached to the needle corresponding to a generic desired grasping pose for
the robot end-effector. The needle tip trajectory (dashed black curve) from
the insertion point (rightmost) to the exit point (leftmost) is assumed to
be given by motion planning or learning by demonstration techniques. Fp

denotes a generic needle-tip trajectory pose, i.e. position and orientation.

object to be grasped. To obtain consistent results, we should

account for the needle geometry in the problem formulation

and optimize in the space of feasible grasping poses. In

Section IV-A, we will discuss parameterizing needle grasping

poses while in Section IV-B we propose the joint limits

and singularities cost function and the grasping manifold

optimization method.

A. Grasp manifold parametrization

To grasp a curved needle with the PSM gripper, it is

necessary to align the ye-axis of Fe (green axis in Fig. 3)3

with the needle tangent (this results in a 2-DoFs rotational

constraint). In addition, grasping requires the gripper position

to belong to the needle shape (additional 2-DoFs position

constraint) [17]. The remaining subspace of possible grasping

configurations (2-DoFs) can be conveniently parametrized

using the needle curvilinear abscissa n ∈ [0, n⋆] and the

angle around the needle tangent α ∈ [α−, α+] (see Fig. 4).

We denote by z = [n, α]T the vector identifying any point

in the considered subspace Z denoting the needle grasping

manifold (locally Z ⊆ R
2). Hence, we can explicitly express

Fe as function of z at grasping through (3) with nTg being

n
Tg (z) = Tp(n)Tr(α) =

=







1 0 0 0
0 s (nπ) c (nπ) −rc (nπ)
0 −c (nπ) s (nπ) −rs (nπ)
0 0 0 1













c(α) 0 s(α) 0
0 1 0 0

−s(α) 0 c(α) 0
0 0 0 1







(5)

where c (·) and s (·) are shorthand notations for the cos(·) and

sin(·) functions, r is the needle radius and n, α have been

introduced above. Denoting with ẋe = [ṗT ,ωT ]T the stacked

vector of the PSM linear (ṗ ∈ R
3) and angular (ω ∈ R

3)

velocities at grasping it yields

r
ẋe = r

R̄n
n
ẋg = r

R̄nJg (z) ż,
r
R̄n =

[

rRn O
O rRn

]

(6)

where rR̄n ∈ R
6×6 transforms the twist ẋg from Fn to Fr,

Jg (z) ∈ R
6×2 is the grasp Jacobian specific to the object

3Subscript ∗e refers to the end-effector during reach-to-grasp whereas
∗g refers to the end-effector after making stable contacts between the end-
effector and the needle.
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Fig. 4. Grasp parameterization: grasping configurations can be parametrized
by α, representing the angle around the needle tangent, and n, representing
the needle curvilinear abscissa (see also [17], [19]).

shape and the choice of grasping parameters, and mapping the

grasping manifold velocities ż into nẋg . Combining the PSM

differential forward kinematics, i.e. rẋe = Js(qs)q̇s (where

Js is the conventional PSM geometric Jacobian), and (5)-(6)

yields

q̇s = J
†
s (qs)

r
R̄nJg (z) ż, (7)

where J†
s denotes the usual Js Moore-Penrose pseudoinverse.

Equation (7) will be exploited in the following Section to

optimize the needle grasping pose.

B. Optimal grasping pose selection

In this work, we are interested in avoiding joint limits

and singularities during post-grasp movements, i.e. along

the suturing trajectory. As such, we define a cost function

accounting for joint limits, i.e.

hj (q̂g(t)) =
n
∑

i=1

1

λ

(

q̂+

g,i − q̂−
g,i

)2

(

q̂+

g,i − q̂g,i(t)
) (

q̂g,i(t)− q̂−
g,i

) , (8)

and another accounting for task-oriented manipulability, i.e.

hs (q̂g(t)) =
r ˙̂xT

e (Js(q̂g(t))Js(q̂g(t))
T )−1r ˙̂xe, (9)

where λ ∈ R
+ is a constant scalar, q̂g,i(t) is the ith joint

coordinate at time t, q̂+

g,i and q̂−
g,i are its corresponding

upper and lower limits, respectively, and r ˙̂xe =
rẋe/||

rẋe||
denotes the velocity direction along which the manipulability

is measured. Thus, the total cost is (omitting t dependence)

h (q̂g) = hj (q̂g) + hs (q̂g) . (10)

We parametrize the single stitch suturing trajectory (given

in (2)) with s ∈ [0, s⋆] obtaining rTn(s). Substituting this

in (3) and using (5) yields rTg(s, z) = rTn(s)
nTg(z).

Thus, given rTg(s, z) we can compute q̂g (s, z) through (4).

Hence, the cost function evaluated along the trajectory can

be expressed as a function of s and z as follows

H (z) =

∫ s⋆

0

h (q̂g (s, z)) ds. (11)

Our aim is to find the vector z that minimizes the cost function

in (11). Mathematically, the problem writes as follows

minimize
z

H (z)

subject to α
− ≤ α ≤ α

+

0 ≤ n ≤ n
⋆

. (12)

The problem in (12) is clearly non-convex and may have

local minima that can be reached through iterative methods.

For our purpose, we use the gradient descent, i.e. a first-order

iterative optimization algorithm, to find a local minimum of

the cost function in (11). At each optimization step we update

z as in the following succession

zn+1 = zn − γ∇zH, (13)

where γ ∈ R
+ represents the step increment and ∇zH the

cost function gradient with respect to z. Convergence to a

local minimum can be guaranteed and is not problematic for

our scope since we seek only a locally optimized solution.

Equation (13) requires the computation of ∇zH. Exploiting

Leibniz’s formulas this can be written as

∇zH =
∂H

∂z
=

∫ s⋆

0

∂h

∂z
ds, (14)

and using the chain rule, we can additionally write

∂h

∂z
=

∂h

∂qs

∂qs

∂z
. (15)

where the term ∂h/∂qs is the derivative of the cost function

with respect to the generalized coordinates vector of PSM

and tells in which joint space direction the cost function

increases most. The term ∂qs/∂z can be computed from (7)

as follows
∂qs

∂z
= J

†
s (qs)

r
R̄nJg (z) , (16)

and depends only upon the robot kinematics and the chosen

grasp parametrization. Substituting in (15), it yields

∂h

∂z
=

∂h

∂qs

J
†
s (qs)

r
R̄nJg (z) . (17)

The partial derivatives of (8) and (9) w.r.t. qs can be easily

computed analytically (see [1], [14]) and then plugged in (17)

to evaluate (14), thus finding the optimal grasping parameter

vector z∗ according to (13). The optimal Cartesian pose for

the PSM xg,d can be easily calculated from the optimal

grasping parameter vector z∗ given the needle kinematics (5)

and its global pose (1).

V. HAPTIC GUIDANCE

As discussed above, the haptic guidance purpose is to

guide the user toward the optimal Cartesian space grasping

pose. Let xg,d = [pT
g,d,φ

T
g,d]

T ∈ R
6 be the optimal desired

pose for the PSM end-effector frame Fe with pg,d ∈ R
3

denoting the position and φg,d ∈ R
3 any parametrization of

the orientation, e.g. Euler angles. xg,d can be calculated as

discussed in Sect. IV-B. The corresponding desired MTM

pose xm,d = [pT
m,d,φ

T
m,d]

T can be calculated from xg,d

through the following master-slave transformation

xm,d = R̄cxg,d + xc, R̄c =

[

Rc O
O Rc

]

(18)

where R̄c ∈ R
6×6 is the master-slave coupling rotation matrix

and xc = [pT
c ,φ

T
c ]

T ∈ R
6 its offset. Given xm,d we can

display haptic cues on the MTM using impedance control.

The MTM is a 7-DoF serial robot arm with qm ∈ R
7 denoting
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the vector of its generalized coordinates. The MTM exhibits

the following joint space dynamics

Mm(qm)q̈m +Cm(qm, q̇m)q̇m+

+Bmq̇m + gm(qm) = um,
(19)

where Mm(qm) ∈ R
7×7 is the symmetric and positive-

definite joint space inertia matrix, Cm(qm, q̇m) ∈ R
7×7

consists of the Coriolis/centrifugal terms, Bm ∈ R
7×7

accounts for the friction term, gm ∈ R
7 is the gravity term

and um ∈ R
7 is a vector of control torques used to display

haptic guidance forces to the operator. To realize a linear and

decoupled Cartesian space impedance the control, inputs are

designed as follows

um = Mm (qm)v +Cm(qm, q̇m)q̇m+

+gm (qm) + J
T
m (qm)wh

(20)

v = J
†
m,A (qm)M−1

m (Mmẍd +Kpx̃m +Kd
˙̃xm+

−MmJ̇m,A (qm, q̇m) q̇m −wh,A),
(21)

where x̃m = xm,d − xm ∈ R
6 with xm,d given by

(18), Jm (q), Jm,A (q) ∈ R
6×7 are MTM geometric and

the analytical Jacobians, respectively, Kp,Kd ∈ R
6×6 are

diagonal and positive-definite gain matrices to be opportunely

designed and wh ∈ R
6 is the vector of the external forces

applied by an interacting user. Notice that the term wh,A

differs from wh by a mapping depending on the adopted

orientation representation. The choice in (20) and (21) allow

realizing the following linear and decoupled Cartesian space

impedance

Mm
¨̃xm +Kd

˙̃xm +Kpx̃m = wh, (22)

which represents the sought haptic-guided shared control

system. More details on the use of impedance control for

haptic rendering with the dVRK robot are given in [22].

VI. EXPERIMENTS AND RESULTS

A. Experimental setup

In this section, experimental results using the dVRK

platform (see Fig. 1a and 1b) are shown. One PSM is

commanded by one MTM through the standard dVRK

teleoperation architecture. The MTM impedance control was

previously developed using the robot dynamic parameters

identified in [23]. External force measurement is required

by the impedance control laws (20) and (21). Since forces

applied to the MTM are not directly measurable, estimation is

performed through the nonlinear dynamic observer developed

in [24]. The application of torque inputs is possible thanks to

the open-source hardware and software architecture developed

in [25]. The complete list of parameters used in this work

TABLE I

PARAMETERS

Parameter Value Parameter Value

Mm diag(1.5)
Kp diag(100) Kd diag(20)
˙̃xd 06×1

¨̃xd 06×1

α+ π/2 α− −π/2
n⋆ 1.0 s⋆ 1.0

(a) Initial pose (b) Middle pose (c) Joint limits

(d) Initial pose (e) Near-singularity pose (f) Final pose

Fig. 5. The first row (5a-5b-5c) shows the effect of the joint limits
occurrence during the suturing trajectory execution: the needle deviates from
the desired trajectory when the fourth joint (see [18] for more information
on PSM kinematics) reaches its upper limit (5c). The second row (5d-5e-5f)
shows the singularity occurrence: the needle follows the path accurately but
the manipulator undergoes large joint velocities (5e). Snapshot 5e corresponds
to t = 0.3 s in Fig. 6c. .

are shown in Table I, while PSM joint limits are given in

Table II. The needle pose estimation follows the work in [6]

(see Fig. 1c). The PSM inverse kinematics is implemented

using the inverse Jacobian Closed Loop Inverse Kinematics

Algorithm (CLIK) [26]. The overall pipeline, is first tested

in simulation using the recently developed dVRK V-REP

simulator [18]. The control loop rate is fixed at 5ms while

the lower level teleoperation loop runs at 1ms.

B. Results

We designed three experiments to show that joint limits and

singularities create serious issues. The first two experiments

demonstrate the occurrence of these constraints during an

autonomous suturing trajectory execution. The last experiment

shows the effectiveness of our proposed haptic-guided shared

control in choosing an optimal needle grasping pose (that

yields neither joint limits nor singularities during the suturing

task) and in guiding the operator towards it. The experiments

are also shown in the accompanying video.

In experiment 1, a single stitch semi-circular trajectory

(see Fig. 9) is defined between pi = [−0.08,−0.08,−0.106]
and pe = [0.14,−0.08,−0.106] with center at c =
[0.03,−0.08,−0.105] where pi, pe and c are insertion point,

exit point and the needle center position during stitching,

respectively. All the coordinates are expressed in the world

reference frame Fr shown in Fig. 3. The needle is grasped

at z = [0.15, 0.0], see Fig. 4. This grasping configuration

causes the robot to encounter joint limits during the suturing

trajectory as shown in Figs. 5a-5b-5c. We apply a saturation

TABLE II

PSM JOINT LIMITS ([deg] OR [m])

Joint # 1 2 3 4 5 6

q+s 60 90 0.25 180 90 90

q−s -60 -90 0.05 -180 -90 -90
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(a) (b) (c)

Fig. 6. Experiment 1: 6a shows joint values reaching joint limits and saturated within the yellow shaded area; 6b shows the task space tracking error
along the suturing path, i.e. pd − p in Fig. 9. Experiment 2: 6c shows the manipulator undergoing high joint velocities value during the suturing path. This
corresponds to small TOV manipulability at that part of the path.

(a) (b) (c)

Fig. 7. Experiment 3: 7a and 7b show the evolution of the cost and parameters values during the execution of the optimization routine; 7c shows haptic
guidance force felt by the operator during the haptic-guided shared control grasping experiment. Higher forces are felt in the initial part of the experiment
when the operator is far from the optimal grasping pose.

(a) (b) (c)

Fig. 8. Experiment 3: 8a shows optimal joint values, far from reaching joint limits; 8b shows the Cartesian space tracking error along the suturing path,
i.e. pd − p; 8c shows that minimizing the cost of TOV manipulability results in reduced joint velocities (one order of magnitude smaller than those in
experiment 2, shown in Fig. 6c).

Fig. 9. Desired path pd (defined between pi = [−0.08,−0.08,−0.106]
and pe = [0.14,−0.08,−0.106] with center at c = [0.03,−0.08,−0.105]
where pi, pe and c are insertion and exit points and the position of the
semi-circular path center, respectively) for the needle tip during suturing
shown with blue solid line. When the needle can not follow the desired path
due to joint limits, this results in actual path p shown in red dashed line.

policy in the joint values to simulate encountering joint

limits. Figures 5a-5b-5c show that the needle tip diverges

from the desired suturing trajectory due to the joint limit

occurrence. This may be experienced by the surgeon quite

often as it is not trivial for her/him to predict the joint

limits and avoid them during the reach-to-grasp phase. Fig. 9

shows the desired (solid blue line) and the actual (red dashed

line) trajectories. Furthermore, Fig. 6a shows the PSM joint

values during the experiment. The joint limits occurrence

time slot is highlighted by the yellow shaded area. The joint

exceeding its limit (in particular the fourth joint) is saturated

in this region. Thus, the PSM cannot follow the desired

trajectory yielding the Cartesian space error shown in Fig. 6b.

In real procedures, this translates into (i) interrupting the task

execution, (ii) releasing the needle and (iii) re-grasping it

from a different pose. In experiment 2, we have chosen pi =
[−0.08,−0.01,−0.106] and pe = [0.14,−0.01,−0.106] with

center at c = [0.03,−0.01,−0.105] to stress the issue caused

by singularity during the suturing. Snapshots shown in

Figs. 5d-5e-5f illustrates a sequence of PSM pose during

this second trajectory. Although the trajectory is very sim-

ilar to the one in experiment 1, the fast change of joint

configuration (shown in Figs. 5d-5e-5f) occurs due to the

proximity to singularity. Singularities are a common concern

in manipulation that causes dangerous situations and must

be avoided. Singularity occurrence translates into high joint

velocities generated for small commanded Cartesian space

displacements. Fig. 6c shows that joint velocities of the PSM

reach a large value during the second trajectory execution.

In experiment 3, we consider again the suturing trajectory

of experiment 1. The optimal grasping pose xs,d(z
∗ =

[0,−0.138]) is obtained through the above-explained opti-

mization method (see Sect. IV-B) using as initial condition

z0 = [0, 0]. This choice is supported by real suturing
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procedures observations: surgeons often grasp the needle

towards its tail (to favor needle insertion), normal to the

needle sagittal plane (to minimize collisions between the tool

and patient’s anatomy). Fig. 7 shows the evolution of the cost

function H (given by (11)) and z during the optimization

routine. The optimization problem can be solved relatively fast

with the proposed gradient descent method. A non-optimized

version of the code, over 1000 queries, takes on average

µt = 1.0395 s for each optimization step, with a variance of

σ2
t = 2.6046× 10−4 s.

The obtained grasping pose is used to generate force cues

and inform a human operator during the reach-to-grasp phase.

The operator feels the haptic cues, shown in Fig. 7c, during

the real experiment shown in Fig. 2. The force cues intensity

decreases by the closeness to the optimal grasping pose. Fi-

nally, Figs. 8a, 8b and 8c show the corresponding post-grasp

joint positions, Cartesian space errors, and joint velocities that

are obtained using the optimal grasping configuration during

the suturing tasks execution. These figures demonstrate that

the obtained grasping configuration allows simultaneously

avoiding issues encountered in experiment 1 and 2. Hence,

the proposed haptic-guided shared control method helps the

operator to avoid joint limits and singularities that translate

in significant Cartesian space errors and high joint velocities

respectively during the suturing task execution.

VII. CONCLUSIONS

In this paper, we devised a novel haptic-guided shared

control method for the da Vinci robot which assists the

surgeon in grasping the needle in an optimal configuration.

Our novel approach helps the surgeon to grasp the needle

such that the robot does not face joint limits and singularities

during the post-grasping suturing movements. To achieve

this, we optimize the joint limits and singularities cost by

evaluating its gradient on the needle grasping manifold. This

allows computing the optimal grasping pose and, sequentially,

force cues (exerted via the MTM) attracting the operator’s

hand towards it. Although haptic guidance forces inform

the surgeon about the optimal needle grasping, the operator

ultimately controls the system and decides which grasping

pose to choose, thus taking into account other non-modelled

objectives. We illustrate the effectiveness of our approach

for optimal needle grasping using a real MTM and both

simulated and real PSMs. The results show that the proposed

haptic-guided shared control system significantly improves

the performance during suturing in terms of distance from

joint limits and singularities.
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