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Abstract— Polyp dissection requires very accurate detection
of the region of interest and high-precision cutting with ad-
equate safety margins. Robot-assisted polyp dissection is a
solution to accomplish high-quality intervention. This paper
proposes a method to constrain the robot to follow an accurate
dissection path based on Virtual Fixtures (VF). The VFs are
created via specific control points obtained directly from images
of the surgical scene and are updated by the vision algorithm.
The VF constraints can autonomously adapt themselves to
environment changing during the surgical intervention. The
entire pipeline is validated through experiments on the da Vinci
Research Kit (dVRK) robot.

I. INTRODUCTION
Nowadays, colorectal cancer (CRC) is one of the ma-

jor health problems. The majority of CRCs arises from
adenomas or “polyps” growths on the inner surface of
the colon. Endoscopic detection and removal of colorectal
polyps significantly reduces the incidence and mortality of
CRC, justifying the development of efficient polyp dissection
procedures, which require precise movements, high dexterity
and enhanced surgeon’s skills for region identification and
accurate path definition [1]. Particularly, sessile polyps are
flat serrated growths adhered to colon surface, difficult to be
detected and removed.

Since its introduction, Minimally Invasive Robotic Surgery
(MIRS) completely changes surgical procedures, improving
surgeon’s technical skills, especially in tasks executed at
limits of human capabilities. The da Vinci robotic system (In-
tuitive Surgical Inc., Sunnyvale, CA) is the most widely used
robotic system for robot-assisted laparoscopic procedures.
This robotic system provides the surgeon with improved
dexterity, introducing tremor filtering, motion scaling, and
stereoscopic vision. The benefits and safety of MIRS in gas-
tric surgery have been evaluated, showing the enhancement
of the quality in surgical procedures [2].

In the case of robotic polypectomy, the surgical operation
is performed following precise steps:
• colonscopy for polyp detection;
• safety margins definition around the polyp;
• path planning for cutting execution.

Traditionally, the polyp detection is performed by the sur-
geon based only on his/her experience in the identification of
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specific surgical features (colours and textures), allowing the
definition of the region of intervention. Moreover, the safety
margins’ definition is executed by the surgeon that marks
selected points in telemanipulation modality by producing
cautery spots around the polyp. Finally, the surgeon performs
a first cutting operation considering the defined margins,
then he/she lifts the surface of the polyp to execute another
cutting operation on the underlying tissue while keeping the
focus on predefined margins. Furthermore, change in polyp’s
shape and rigid displacements, due to patient’s movements
during the task, may compromise the correct execution of
the procedure, modifying the predetermined safety margins.

In this scenario, images are the main feedback the surgeon
can use to correctly operate in the surgical site. Therefore,
in view of the increasingly autonomy in surgical robotics,
vision-based techniques play an important role and can
arise by extending computer vision algorithms to surgical
scenarios [3]. Moreover, a large number of surgical tasks
could benefits from the application of advanced shared-
control techniques [4]. Particularly, Virtual Fixtures are com-
monly recognized as a powerful method to improve surgeon’s
performances, increasing accuracy and precision [5].

A. Related Works

Related works can be divided in two main topics: (i)
vision algorithms for polyp detection and (ii) Virtual Fixtures
techniques applied to surgical robotics.

1) Vision algorithms: Automatic polyp detection is a hot
research topic. Bernal et al. [6] compared the performances
of different polyp detection methods. Some detection meth-
ods exploit classic image processing techniques to obtain
polyp boundaries. Hwang [7] used speeded up robust features
(SURF) and quantized them with K-means clustering to
represent the images as a histogram of visual words. The
features are then, classified with SVM classifier. Zhu et
al. [8] developed a computer-aided detection of colonic
polyps based on polyp curvature estimation. Other authors
exploit texture and color information as region descriptors in
the image. Karkanis et al. [9] proposed an approach based
on wavelet decomposition, while Hwang and Celebi [10]
used watershed segmentation with initial markers selected
using Gabor texture features and K-means clustering. Recent
developments in deep learning, e.g., the use of convolutional
neural networks (CNNs) have made significant advances in
this field. In most of all, the differences among the methods
are based on the selection of the specific network architecture
or on the data-set for training. Particularly, Riberio et al. [11]
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used CNNs for automated classification of colonic mucosa
for colon polyp staging.

Remarkably, none of these methods are currently used
in clinic procedures. There are several reasons behind this,
for example: some of them are not suitable for real-time
constraints; some are built on theoretical model of the
polyp; CNNs performance is strongly related to the quality
and amount of realistic images used to train the network;
finally, the clinical environment, with the presence of smoke,
blood and specular highlights, makes the detection process
a complicated task. For these reasons, more feasible and
reliable methods for polyp detection needs to be developed
and implemented to ensure the correct execution of polyp
resection pipeline.

2) Virtual Fixtures: VFs can be classified into two cate-
gories: forbidden-region virtual fixtures, suitable for simulat-
ing barriers around forbidden regions, and guidance virtual
fixtures, showing attractive behavior pulling the robot end-
effector towards a desired path.

The first author to have introduced VFs was Rosenberg
in his work [12]. Since its introduction, these shared con-
trol techniques have had great success in surgical applica-
tions [5]. One of the major obstacles in vision-based virtual
fixtures generation in surgical procedures is the ability to
adapt the VF geometry to a changing environment. More
recently, VF generation is supported by the introduction of
vision-based techniques. Bettini et al. [13] proposed a VF ap-
plication in vitreoretinal eye surgery, using computer vision
for providing a reference trajectory to the virtual fixtures
control algorithm. Rydén et al. [14] showed a method for
creating forbidden region virtual fixtures protecting an object
from unwanted contact using point cloud streamed by an
RGB-D camera. Yamamoto et al.[15] developed an interface
for teleoperated RMIS providing vision-based forbidden-
region virtual fixtures (FRVF) and augmented visual feed-
back. Very few papers make a significant consideration of
adaptive VFs, where the constraint geometry autonomously
moves as a result of environmental changes.

B. Contribution

This paper proposes a vision-based method for robot-aided
polyp dissection using the da Vinci Research Kit (dVRK)
robot, which is a research version of the da Vinci robotic
system [16]. The method exploits basic computer vision
concepts, simplified setup with colored object and impedance
control to enforce guidance VF constraints. The VF path is
adapted to the change in polyp’s shape and environment dis-
placement, that may occur during the dissection procedure,
by updating new control points from the vision algorithm.
The goal of the work is to define a functioning pipeline to
assist the surgeon in the dissection task, by enhancing the
quality of intervention.

An experimental setup recreates patient’s anatomy using
phantoms and the proposed approach includes vision algo-
rithms for detection and segmentation of the polyp and for
path planning of the cutting task. Then, a VF, i.e. a constraint
that restricts the motion of the robot’s tip along the path
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Fig. 1. Overview of the system. The approach starts from stereo
endoscopic images processing, including detection and segmenta-
tion of the region of interest, and leads to the definition of accurate
points needed in path planning and VF generation, executed through
haptic guidance forces rendered to the user.

through a haptic guidance force rendered to the surgeon, is
generated.

The work is a natural continuation of [17] and [18], to-
wards fully autonomous surgical interventions. The proposed
pipeline is articulated as follows:

1) Pre-operative calibration;
2) Stereo endoscopic images acquisition, with the dVRK

endoscope in fixed position;
3) Detection and segmentation of the polyp, allowing the

computation of control points, defining the polyp con-
tours adjusted with a safety margin;

4) Point 3D reconstruction and path planning;
5) VF generation on the pre-planned path, by rendering a

force to the user when the the robot exceeds the path.

II. SYSTEM DESCRIPTION

Figure 1 shows the overview of the system, composed
by the dVRK robot and an experimental setup intended to
replicate a surgical scene, adopting a plastic phantom to
reproduce patient’s skin and a blue object representing the
polyp.

A. dVRK Robot

The dVRK robot is used in teleoperation mode, with the
two Patient Side Manipulators (PSMs) commanded by two
Master Tool Manipulators (MTMs), using the open controller
developed by [16]. One of the MTMs is controlled through
an impedance controller, which requires the measurement
of external forces to the user. Considering an n-degree-of-
freedom manipulator and a task space vector x ∈ Rr with
r ≤ n, the impedance dynamics is achieved through control:

M ¨̃x+D ˙̃x = fh + fV F(·), (1)

where x̃ = xd − x, with xd as the desired value of the robot
task space variable, M ∈ Rr×r and D ∈ Rr×r are the inertia
and damping matrices, designed to be fixed, diagonal and
positive definite, fh ∈ Rr is the external forces applied by
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Fig. 2. Reference frames definition. Fc : (Oc−xcyczc) = endoscope
reference frame; Fp : (Op−xpypzp) = inertial reference frame; Ft :
(Ot − xtytzt) = tool reference frame.

the user and fV F(·) is the additional force due to the VF.
This dynamics is obtained by setting the torque control input
τ ∈ Rn of the master robot as

τ = B(q)v+N(q, q̇)+ JT (q) fh, (2)

v = J−1
A (q)M−1(Mẍd +D ˙̃x−MJ̇A(q, q̇)q̇− fh,A), (3)

where B(q) ∈ Rr×n is the joint space inertia matrix, J(q),
JA(q) ∈ Rr×n are the geometric and the analytic Jacobians
respectively, and

N(q, q̇) =C(q, q̇)q̇+g(q)+h(q, q̇) (4)

are terms for Coriolis and centrifugal contributions C(q, q̇)q̇,
gravity g(q), friction and disturbance torques h(q, q̇) [19]
and [17]. The force estimation is performed by resorting to a
nonlinear observer [17], [20], and [21]. The system includes
an endoscopic camera manipulator (ECM), consisting in a
stereo camera with 5 mm baseline. The dVRK dynamic
model was computed and identified in [22].

B. Calibration and Reference Frame Definition

The proposed method requires pre-operative calibration.
Figure 2 shows the reference frames used in the work.
Each PSM is a 7-Degrees-of-Freedom (DoFs) actuated arm
moving around a fixed Remote Center of Motion (RCM).
An inertial reference frame Fp : (Op−xpybzp) is considered,
with the origin positioned in the PSM’s RCM. The generated
VF is expressed in this inertial reference frame. The origin
of the reference frame Ft : (Ot − xtytzt) is positioned in the
PSM tool tip. The current position of the tool tip in Cartesian
space, computed through the direct kinematics of the dVRK,
provides the coordinates of point Ot in the frame Fp. A
Zhang’s stereo camera calibration is performed [23] to esti-
mate the transformation between the two endoscopic cameras
and to define the camera reference frame Fc : (Oc−xcyczc).
Then, by positioning the tool tip in ten different points, the
transformation T b

c between Fp and Fc is computed adopting
an absolute orientation formulation [24]. It is important to

(a) (b) (c)

Fig. 3. Segmentation method: (a) Original frame; (b) Binary mask;
(c) Segmented Image.

underline that this kind of calibration still remains an open
problem in robotics, and this solution ensures an error lower
that 1 cm.

C. Vision Algorithm: Segmentation and 3D Reconstruction

The system takes stereo endoscopic images as input and a
pre-process step is performed. A watershed transformation is
performed on the left gray-scale image. The transformation
operates on the image like a topographic map, with the
brightness of each point representing its height, and finds the
lines that run along the tops of ridges. This method allows
defining the object region in the image, that is later used as
seed point defining a bounding box around it. Relying on
the defined region, the widespread GrabCut segmentation
method [25] is applied. This technique is based on graph
cuts, addressing the visual segmentation task as a energy
minimization problem, based on foreground (polyp) and
background models. Giving the input image I, α = (α)P

i=1
is the set of unknown binary label of the pixels (αi = 0 for
the background pixels, αi = 1 for foreground), with P as
the number of pixel. The algorithm estimates the values α

minimizing the energy function:

E(α) = Edata(α)+ γEsmooth(α) (5)

with Edata(α) = ∑i Ui(αi) and Ui(αi) defines the probability
for a pixel to belong to the foreground or background [26].
As in [26], a modifications of this algorithm is adopted, solv-
ing the minimization problem by a graph cuts minimization
algorithm and defining the statistical models for the data
energy function as a Gaussian Mixture Models based on
color distribution. The background and foreground layers are
defined by a bounding box around the seed point created
by the watershed transformation around the object, allowing
isolating the object inside image. Figure 3 shows the results
of segmentation method.

At this point, the homographic transformation H be-
tween the original left and right images is computed, us-
ing Scale-Invariant Feature Transform (SIFT) for features
detection [27] and Fast Library for Approximate Nearest
Neighbors (FLANN) for matching [28]. The left segmented
image allows detecting contour’s points of the object on the
left image plane, computing the Hull convex approximation.
The corresponding contour’s points on right image plane
are computed applying the previously computed H trans-
formation. Finally, the 3D position of the contour’s points is
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reconstructed using triangulation method with direct linear
transform, expressed in the camera frame Fc.

D. Path Planning and VF Generation

The contour’s points are mapped in the inertial reference
frame Fp through the transformation T b

c . In particular, the
points’ coordinates are adjusted with a safety margin that
allows performing the cutting in safe conditions. Once these
3D points are determined, they are used to build the VF
geometry. As in [17], the path for cutting is formulated
through a parametric curve. In this case, a closed B-Spline
curve is adopted, defined in its 1-dimensional form by:

Γ(s) =
n

∑
i=0

Ni,k (s) pi, (6)

where Γ(s) denotes the curve, k its order, s ∈ [0,1] is the
normalized curve parameter and Ni,k are its basis function.
The 3D points identified by our vision algorithm are used as
controls points of the curve (pi). Then, the VF is defined
as the surface created by sweeping the polyp contours,
determined by the B-Spline curve, along the axis that is
perpendicular to the tissue’s plane, which is set as coincident
to the axis perpendicular to the camera. A simple constraint
enforcement method is selected, consisting in the application
of a spring-damper like force imposed on the path:

fV F = Kp(xd− x)−Kd ẋ, (7)

where Kp and Kd are properly designed diagonal and positive
definite matrices and xd is the set point belonging to the
constraint geometry having minimum distance from the
current position x.

For the defined B-Spline, the Newton-Raphson (NR)
method is used to find the nearest point on the curve xd
starting from the current robot position. This represents a
general method for finding the extrema of a given function
in an iterative manner. As explained in [17], the desired
point on the curve is the minimum distance point xd = Γ(s̄),
obtained by finding the correspondent spline parameter s̄.
The customary NR update law is:

sk+1 = sk +
δ (x,sk)

δ ′(x,sk)
, (8)

where δ (x,s) : Rr×R→R is the distance function the point
x and the spline Γ(s), defined by:

δ (x,s) =
√
(x−Γ(s))T (x−Γ(s)) (9)

δ ′(x,sk) is the derivative at sk of δ (x,s) with respect to the
curve parameter s.

Finally, the VF is mapped to the MTM robot, considering
the z-axis value defined by the tissue’s normal and displaying
the attractive force f through impedance control of the
MTM, realized thanks to the dVRK dynamic model with
the parameters identified in [22].

(a) (b) (c)

Fig. 4. (a) VF path (red line); (b) The polyp’s shape and position
during the task changes due to dVRK tool interaction; (C) VF path
(red line) adapted after the change in polyp position.

III. EXPERIMENTAL VALIDATION

The proposed vision-based assistive control is evaluated
by executing multiple dissection tasks. In all the sessions, a
blue object with 1 cm diameter is considered to reproduce
the polyp attached to a silicon rubber phantom commonly
used by the surgeons for training. The safety margin is set
on 1 cm from the polyp’s edge, as usual in surgical dissection
operations.

During the task, the user performs the dissection procedure
by commanding the PSM of the dVRK through the MTM
manipulator and following the cutting path defined by the
vision algorithm. The dissection task is repeated twice, in the
first session the VF is activated while in the second session it
is deactivated. In the first session, whenever the user exceeds
the defined path, the attractive force pulls him/her towards
the planned path. During the second session, without the VF
generation, the cutting path is simply defined by a circle,
with 1.5 cm diameter, centred on the polyp. The user can
perform the dissection task, trying to follow the imposed
circle, projected on the endoscopic image, without any haptic
constraint.

To evaluate the accuracy and precision in the dissection
task, the mean absolute error is computed between the
current position of the PSM and the desired position defined
as the minimum distance point on the B-Spline (as defined
in Section II-D). To evaluate the performance of the 3D
reconstruction, the current position of the PSM tool’s tip is
recorded through the direct kinematics of the dVRK and the
vision algorithm proposed, positioning the tip in 50 different
workspace positions. Then, a comparison is made between
the means of the z-axis values through a statistical unpaired
t-test with a significance level α = 0.05.

The B-Splines projected on the left camera image are
shown in Fig. 4. It is possible to notice that the vision
algorithm adapts the B-Spline, at frequency of 25 Hz, after
a change in polyp position and shape, that occurred after
the interaction with the dVRK tool during the task. This
allows keeping the VF constraint on the specific path during
the entire dissection procedure, autonomously moving as a
results of environmental changes.

A. Results

Figure 5 shows the PSM position and B-Spline during a
dissection task in the xy plane of the PSM reference frame;
Figure 6 shows the PSM position and the circle during a
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Fig. 5. VF path (red line) and PSM position during the dissection
task.

Fig. 6. PSM position and the guided circle (red line).

dissection task in free motion. The dissection tasks with VF
generation presents a mean absolute error equal to 2.1 mm
along x-axis and 1.7 mm along y-axis. Conversely, the
dissection tasks without VF generation has a mean absolute
error equal to 13 mm along x-axis and 31.6 mm along y-axis.
The results of the t-test for the 3D reconstruction evaluation
proved to be statistically significant with a probability level
of p = 0.9831 (α = 0.05).

Figure 7(a) shows the PSM position and the desired
position (minimum distance point on the B-Spline) along
x-axis. The related estimated force norm along x-axis is
represented in Figure 7(b). Moreover, Figure 7(c) reports
the corresponding PSM position and desired position along
y-axis, and, finally, Figure 7(d) shows the estimated force
norm along y-axis. Figure 8 contains the estimated haptic
guidance forces rendered to the user through the master side
(MTM) during the tasks. Figure 7 and 8 are referred to the
same dissection task.

B. Discussion

As it is possible to notice in Fig. 5, the user follows
the determined path during the procedure, while in Fig. 6 a
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Fig. 7. Dissection experiment. Duration: 100 seconds. Time
histories of: (a) PSM position and the desired position (minimum
distance point on the B-Spline) along the x-axis; (b) The related
estimated force norm along x-axis; (c) PSM position and the desired
position (minimum distance point on the B-Spline) along the y-axis;
(d) The related estimated force norm along y-axis.

more irregular path is performed by the user in free motion
without the VF assistance. The mean absolute error values
present a significant reduction (∼ 10 mm along x-axis and
∼ 30 mm along y-axis) in the VF-based dissection task.
This suggests that the introduction of the VF improves the
accuracy of the procedure, helping the user performing a
more precise cutting path. It may be noted that in Fig. 8
the maximum reached force is about 4 N, allowing the
surgeon to perform the task accurately, without experiencing
excessive force. The results of 3D reconstruction t-test show
the absence of statistically significant differences between z-
axis values computed through the vision algorithm and the
robot’s kinematics. In Fig. 7, the peaks in force norms occur
when the PSM position distances the desired position. Thus,
the user continuously experiences guidance forces when the
robot position is not on the VF path.

IV. CONCLUSION AND FUTURE WORKS

This paper introduces an experimentally validated vision-
based method for VF generation in minimally invasive
robotic surgery polyp dissection tasks. The vision algorithm
allows creating a constraint path for cutting, through VF
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Fig. 8. Estimated Haptic guidance forces displayed to the user
through the MTM.

generation. The VF path is updated by the vision algorithm,
allowing considering environment displacement during the
dissection task. The proposed strategies are evaluated through
multiple dissection experiments on dVRK, showing good
results in improving accuracy and precision of intervention
and thus suggesting the feasibility of the proposed pipeline.

The goal of future works is to consider more advanced
computer vision techniques, allowing to extend the proposed
method to realistic surgical scenarios with regards to polyp
detection, to integrate tissue’s deformation and to enforce
the method also in presence of occlusions. Also, an accurate
study on medical procedures will be considered for a correct
definition of safety margins for cutting. Finally, a validation
involving surgeons could be conducted to proof the effec-
tiveness of the pipeline.
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