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Abstract 

This paper describes analytical and experimental work for controlling robotic manipula- 
tors in the neighbourhood of kinematically singular configurations. The proposed method 
is based on a damped least-squares solution with user-defined accuracy. Results are given 
for a five-joint industrial robot. 

Introduction 

It has been iong demonstrated that singular configurations constitute a serious problem 
in sensory control of robotic manipulators. Close to kinematic singularities the usual 
inverse differential kinematics solutions based on Jacobian (pseudo-)inverse become iI1- 
conditioned, and this is experienced in the form of very high joint velocities and large 
control deviations. 

When a preprogrammed reference end-effector trajectory is to be tracked, it is 
possible to interpolate in joint coordinates close to singular configurations, or to plan 
motions so that singularities are avoided. Instead, this is not possible in sensory control 
where the reference trajectory is not known a priori. The same problem is encountered 
in joy-stick controI of a robot if the operator attempts to lead the robot through a 
singularity using end-effector motion increments. 

Several research efforts have been devoted to devise control schemes that allow the 
robot to handle the occurrence of singularities. Some schemes identify the degenerate 
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directions in the task space associated with a given singularity aa~d eliminate the task 
velocity components along those directions in a suitable neighbourhood of the singu- 
larity [1-4]. Other schemes modify the exact inverse differential kinematic mapping by 
resorting to approximate mappings that offer robustness to singularities at the expense 
of reduced tracking accuracy [5-7]. A recent overview of control techniques of robotic 
systems through singularities can be found in [8]. 

In this paper we investigate the performance of a scheme for control in singular 
configurations based on the damped least-squares solution [5,6]. Implementation issues 
are discussed regarding the tuning of the damping factor for high accuracy with feasible 
velocities [9,10]. In particular, the use of weighted damped least-squares to achieve 
user-defined accuracy along given end-effector space directions is presented [11]. 

The scheme is applied in experiments to the five-joint ABB Trallfa TR400 robot. 
The results demonstrate the good performance of the system in crossing a singularity, 
and the influence of the weighting parameters is tested out extensively. 

D a m p e d  l e a s t - s q u a r e s  s o l u t i o n  

A robotic manipulator is naturally actuated in the joint space, whereas its end-effector 
motions are planned in the operational space. Therefore, in order to design effective 
control schemes in the joint or in the operational space, it is necessary to take into 
account the differential kinematic mapping between a motion increment 5q E R n in the 
joint space and the corresponding motion increment 5x E R m in the operational space, 
i .e.  

~x = J(q)Sq, (1) 

where J(q)  is the ( m x  n) Jacobian matrix of the manipulator considered. In practical 
cases, it is m < n; when m < n the manipulator is said to be redundant and there 
exists an (n - m)-dimensional subspace of R u in which differential joint-space motions 
give null differential operational space motions. 

A configuration gt is said to be singular if rank(J(~l)) = r < m .  At a singu- 
lar configuration the subspace of the differential joint motion space which maps into 
the null differential motion vector in the operational space increases its dimension, as 
dim(N'(J(~l))) = n - r > n - m .  On the other hand, since dim(Tg(J(~l))) -- r < m ,  
only an r-dimensional subspace of differential motion in the operational space can be 
spmaned at a singularity; this subspace is the space of feasible motion for the manipula- 
tor. In general, at a singular configuration a differential motion vector in the operational 
space may have both feasible components, lying in T4(J(~I)), and degenerate components, 
belonging to Tg±(J(~I)). 

The linear mapping (1) can be effectively analyzed in terms of the singular value 
decomposition of the Jaeobian matrix, that  is 

J = Ur~V ~ = ~ a iu iv  T (2) 
i=1 

where U is the (m x m) matrix of the output singular vectors ui, V is the (n x n) matrix 
of the input singular vectors vi, and E = ( S O ) is the m x n matrix whose ( m x  m) 
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diagonal submatrix S contains the singular values c~i of the matrix J. H r denotes the 
rank of J, the following hold: 

a )  0-1 >-~ 0"2 ~ . . .  ~ 0"r > 0 " r + l  ---- . . .  ---~ 0"m ----" 0 

b) n(a) = span(u~,..., u~} 
c) X(a)  : span{v~+l,... ,vn}. 

Notice that the m - r output singular vectors associated to the null singular values 
represent the degenerate directions in the given configuration. The singular value de- 
composition is continuous and well-behaved not only in singular vMues but also in the 
direction of the singular vectors; thus, the ui and vi vectors will not change appreciably 
in the neighbourhood of a singularity. 

Upon these premises, it can be recognized that the control system of a robotic 
manipulator should be provided with the capability of handling singularities. Usually, 
control operates in the joint space generating the driving torques at the joint actuators. 
The reference trajectory for the joint control servos is to be generated via kinematic 
inversion of the given end-effeetor trajectory, and then the occurrence of a singularity 
may prevent motion along degenerate components. On the other hand, even in the case 
the robot control system is designed directly in the operational space, still the problem 
of motion through and close to singular configurations exists since any" controller of that 
kind is based on the use of the manipulator aacobian. 

An effective strategy that permits control of robotic manipulators in the neighbour- 
hood of kinematic singularities is the damped least-squares technique originally proposed 
in [5,6]. The method corresponds to solving the equation 

y r ( q ) &  = (:lT(q)a(q) + ;~2i) 6q (3) 

in lieu of eq. (1); in (3) A E R is the damping factor and I is the identity matrix of' 
proper dimension. It can be easily shown that the solution to (3) can be cast in the 
form 

~Sq : aT(q) (a(q)aT(q) + ~I)-* ex (4) 
which remarlmbly requires the inverse of an (rn × m) matrix instead of an (n × n) matrix. 
Notice that when .k is zero eq. (1) becomes identical to (3) and the damped least-squares 
solution reduces to the well-known Moore-Penrose pseudo-inverse solution. 

It is important to point out that solutions of (3) satisfy the condition 

rain [16x - :l(q)6q[l 2 + A 21[6q[[ ~ (5) 
6q 

which evidences the possibility of trading off accuracy against feasibility of the joint 
space motion increment required to match up with the given operational space motion. 
Therefore, it is essential to select suitable values for the damping factor: Small values 
of A give accurate solution but low robustness to the occurrence of singular and near- 
singular configurations. High values of ~ result in low tracking accuracy even where a 
feasible and accurate solution would be possible. 
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To gain more insight into the features of solution (4), the above singular value 
decomposition (2) is helpful as it allows to rewrite the damped least-squares solution (4) 
a s  

m 
O-i T 

6 q =  ~) 2 2viu/ 6x. (6) 

It is clear that the components for which ai >> A are little influenced by the damping 
factor, being 

al 1 
2 $~ "~ (7) 

c~ i + ai  

On the other hand, when a singularity is approached the smallest singular value tends 
to zero while the associated component of the solution is driven to zero by the factor 
cri/)~2; this progressively reduces the joint motion required to achieve near-degenerate 
components of the commanded 8x. 

The value selected for the damping factor represents the index which allows to 
decide about the closeness of the current configuration to a singularity; moreover, A de- 
ten-nines the degree of approximation introduced with respect to the pure least-squares 
(pseudo-inverse) solution. 

An optimal choice for A requires consideration of the smallest non-null singular 
value experienced along the whole trajectory and of the minimum damping needed to 
ensure feasible joint motion. To achieve good performance in the entire manipulator's 
workspace the use of a configuration-varying damping factor was proposed in [5]. The 
natural choice is to adjust A as a function of some measure of closeness to the singularity 
at the current configuration of the robot arm; to this purpose maniputability measures [5] 
or estimates of the smallest singular value [9] can be adopted. A varying damping factor 
is in general computationally expensive; simplified computation exploiting knowledge 
of the kinematical structure has been recently proposed in [12] and in [13,10] for the 
manipulability and for the smallest singular value, respectively. 

U s e r - d e f i n e d  a c c u r a c y  

The above damped least-squares method achieves a compromise between accuracy and 
robustness of the solution. This is performed without specific regard to the components 
of the particular task assigned to the manipulator's end effector. Consequently, it would 
be nice to think of a strategy that allows to discriminate between directions in the 
operational space where higher accuracy is desired and directions where lower accuracy 
can be tolerated. This is the case, for instance, of spot welding or spray painting in 
which the tool angle around the approach direction is not essential to the fulfilment 
of the task. Below is illustrated a user -de f ined  accuracy  technique [11] that meets the 
above requirements. 

Let a weighted task increment be defined as 

8~ = W~x, (s) 
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where W is the ( m x  m) task-dependent weighting matrix that takes into account 
the anisotropy of the task requirements. The differential mapping relating the motion 
increment in joint coordinates to the weighted task increment is then given by 

~ = J(q)Sq (9) 

where J = W J .  It is worth noticing that if W is full-rank, solving (1) is equivalent to 
solving (9), but with different conditioning in the matrix to be inverted. This suggests 
to select only the strictly necessary weighting action in order to avoid undesired ill- 
conditioning of J. 

A solution to the inverse kinematics problem for eq. (9) is obtained using the 
weighted damped least-squares technique [5]. This corresponds to solving the equation 

jT(q)5~ = ( :~(q) j (q)  + A2i)Sq (10) 

which in turn implies the fulfilment of the condition 

n~in 115:~ - J(q)6q[[ 2 + 12H6ql{2. (11) 

Again, the singular value decomposition of the matrix J comes in support, i.e. 

m 

i = l  

and the solution to (10) Carl be written as 

< v fiT (za) 5q = ~2 
i=1 cri -}- ~2 

It is clear that the singular values ffi and the singular vectors hi and ?i depend on 
the choice of the weighting matrix W.  While this has no effect on the solution 5q as 
long as 6m >> ;~, dose to singularities where ~ << A for some r < m the sohition 
can be shaped by properly selecting the matrix W.  To this purpose, two major issues 
must be considered: 

a) The matrix W modifies the singular values ¢i into 6i, and then the relative weight 
of each singular value is changed with respect to the selected A; this differently 
modulates the damping of the near-degenerate components in comparison to the 
basic solution. 

b) The matrix W modifies the singular vectors; in particular, this can be exploited to 
obtain that the output singular vectors fii associated to degenerate directions be 
aligned to the task-space components which can tolerate loss of tracking accuracy. 

Experimental results 

The weighted damped least-squares method was applied in experiments to an ABB 
Trallfa TR400 industrial robot with hydraulic actuators. The computer system had a 
VME interface to the robot which was developed in cooperation with ABB Trallfa. The 
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interface runs at 100 Hz. The inverse kinematic solutions were executed on a Motorola 
68020/68881 VME board. On the same processor, independent joint control servos were 
implemented using proportional feedback which is the conventional type of controller 
for hydraulic drives; a bandwidth of 18 rad/sec was assigned. 

As for the kinematic description, the manipulator has five joints with a vertical 
first axis, horizontal and parallel second, third and fourth axes, and a fifth axis which 
is orthogonal to the fourth axis; Figure 1 shows the manipulator with its Denavit- 
Hartenberg parameters. 

The workspace of this manipulator is limited by the linear actuators of the rotary 
joints 2 and 3, so that  the elbow and shoulder singularities are outside the workspace. 
Then, the only internal singularity of the manipulator is associated with the wrist. 

The actual configuration of the wrist singularity will depend on the definition of 
the end-effector coordinates. It is clear that  at most five end-effeetor coordinates can be 
specified. The orientation around the tool axis was left undefined; thus, the end-effector 
motion is described by the velocity vector 

i = ( ~ 0  ~)0 ~0 ~y az) 'r 

where c~0,/)0, z0 are the end-effector velocity components in the base frame 0, and aJv, 
c~ are the angular velocity components along the tool axes y and z. The end-effector 
motion increment to be used in connection with (1) is 6x = i6 t ,  where 5t is a time 
increment. 

With  this end-effector coordinate vector, the singularity occurs for cos q5 = 0. In 
the neighbourhood of the singularity, it can be shown that the output singular vector 
corresponding to the smallest singular value is [13] 

U s = ( 0  a 0 l - a  2 0) T, (14) 

where a << t depends both on the weighting of the matrix W in (8) and on the 
actual configuration of the arm. From the above expression, it follows that the effect of 
damped least-squares is to eliminate a linear combination of the coramanded motion in 
end-effector coordinates 2 and 4, which correspond to  a translation in the Y0 direction 
in the base frame and a rotation around the same axis in the tool frame. 

As emphasized in the previous section, the adoption of the weighting matrix W 
modifies the singular values and the singular vectors of J into the ones characterizing 
J. According to the expression in (14), different weights were assigned to the second 
and fourth components of the task space end-effector vector. The choice 

W l  = diag(1, w, 1,1,1) (15) 

provides low task space sensitivity for a translation along y0 in the base frame, while 
the choice 

W2 = diag(1, t ,  1, w, 1) (16) 

provides low task space sensitivity for a rotation along y in the tool frame; obviously, a 
scalar 0 < w < 1 is to be chosen. 

The other crucial point for a damped least-squares solution is the selection of the 
damping factor. To this purpose, a singular region can be defined on the basis of the 
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estimate of the smallest singular value of J; outside the region the exact sdut ion is 
used, while inside the region configuration-varying damping and weighting factors are 
introduced to obtain the desired approximate solution. Both factors must be chosen 
so that  continuity of the joint space motion increment 6q is ensured in the transition 
between the solutions. Following the guidelines of [11], the damping and weighting 
factors take on the following expressions: 

1 = - Am, ~ otherwise, 

(w - 1) 2 = 1 - ( W m i r ,  - 1) 2 otherwise, 

where a5 is the estimate of the smallest singular value, which can be computed as 

a s =  l q ~ l -  , 

and E defines the size of the singular region. The numerical values used in the experi- 
ments were e = 0.2, corresponding to a singuIar region of about 20 degrees wide in q5, 
and A , ~  = 0.15. 

The initial configuration of the arm was 

q ( O ) = ( O  -0.1  0.1 -0 .1  ~ r / 2 - 0 . 4 )  T, 

and the commanded step velocity was 

: ~ = ( 0  0 0 0.07 0.17) T 

It can be easily recognized that the resulting motion trajectory passes through the 
singularity qs = ~r/2 with significant degenerate components. 

Experimental results were obtained adopting four different solutions; namely, 

1. pure resolved-rate inverse Jacobian, 

2. usual damped least-squares without weighting (~V = I), 

3. weighted damped least-squares with W l  as in (15) and w m i ~ ,  = 0.1, 

4. weighted damped least-squares with W2 as in (16) and wmin = 0.01. 

This was intended to analyze the performance of the proposed method in comparison 
to the standard methods. 

With  the first solution, the motion of the arm in the neighbourhood of the singular- 
ity becomes unacceptable; large joint velocities are generated which reach the mechanical 
limits and the arm breaks down. 

With the second solution, a significant deviation in y0 was observed due to the 
damping of the motion in the us task space direction. The nonzero ~ = 0.064 in (14) 
gives a kinematic coupling between the second and the fourth component of the task 
velocity. 

With  the third solution, a very large deviation from the given trajectory along Y0 
was generated (Fig. 2) due to the fact that the weighting is applied along that  same 
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direction (resulting in c~ = 0.54); a maximum error of 0.54 m occurred after 5 sec of 
motion. 

With the fourth solution, the performance along Y0 was much improved at the 
expense of that along w~ (c~ = 0.0006). The arm tracked satisfactorily the translational 
part of the trajectory with a maximum error of 0.03 m (Fig. 2). 

Notice that both the resulting joint trajectories in the last two cases (Fig. 3) pass 
through the singular configuration without any discontinuity. Obviously, the joint mo- 
tion is different in the two cases. 

The motion of the manipulator in the experiments is illustrated in a section of the 
video proceedings of this conference. 

Conclusions 

Analytical and experimental results have been presented for a damped least-squares so- 
lution with user-defined accuracy. Satisfactory performance was achieved for controlling 
the motion of a five joint industrial robot manipulator through the wrist singularity. It 
was shown that suitable weighting of task space directions can be exploited to achieve 
accurate tracking along specified axes of motion. Smoothness and continuity of the 
solution was ensured by defining a proper singular region in the neighbourhood of the 
singularity. 

Future developments of this joint research project will be devoted to/~pplying the 
proposed method to the case of the six joint ABB IRB 2000 robot with both shoulder 
and wrist singularities. 
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Fig. 1. The ABB Trallfa TR 400 industrial robot manipulator. 
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Fig .  2. Motion in Y0 due to commanded motion in the co v for the weighted damped 
least-squares solution. The y0 reference is constant (dashed curve). The motion 
in y0 and a;y becomes linearly dependent in the singularity, and an error in 
Y0 is observed. The error in Y0 depends strongly on the weighting. With  a 
weighting of 0.01 on wy the maximum error is 0.03 m (solid curve), while with 
a weighting of 0.1 on Y0 the maximum error is 0.54 m (curve with dots and 
dashes). 
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Motion in q5 for the weighted damped least-squares solution. The singularity 
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