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Abstract--  This work reports experimental results on kinematic control of a 6-dof in- 
dustrial robot manipulator in the neighborhood of kinematic singularities. A weighted 
damped-least squares inverse kinematics solution with varying damping and weight- 
ing factors is devised; a feedback correction error term is added. The performance of 
the solutions is investigated in two case studies of critical trajectories passing by the 
shoulder and wrist singularities of the manipulator. 

1. I n t r o d u c t i o n  

Close to a kinematic singularity, the usual inverse differential kinematics so- 
lutions based on Jacobian (pseudo-)inverse become ill-conditioned, and this is 
experienced in the form of very high joint velocities and large control devia- 
tions. In real-time and sensory control of robotic manipulators, the reference 
trajectory is not known a priori and some remedies must be taken in order to 
counteract the unexpected occurrence of singularities. The same kind of prob- 
lem is encountered in joy-stick control of a robot if the operator attempts to 
lead the robot through ---or nearby-- a singularity using end-effector motion 
increments. 

Several methods and/or algorithms aimed at computing well-behaved or 
robust inverse kinematics solutions have been proposed in the literature. Most 
of them are based on a modification of the exact inverse differential kinemat- 
ics mapping by resorting to approximate mappings that offer robustness to 
singularities at the expense of reduced tracking accuracy. 

In the framework of our joint research project, following the earlier sat- 
isfactory experimental results obtained on the five-joint ABB Trallfa TR400 



manipulator [1], in this work we investigate the performance of a number of 
schemes for control in singular configurations on the six-joint ABB IRb 2000 
manipulator. 

The basic inverse kinematics solution is derived using a weighted damped 
least-squares inverse [2],[3] of the end-effector Jacobian where the use of proper 
weighting allows shaping of the solution along given end-effector space direc- 
tions. A recently proposed estimation algorithm of the two smallest singular 
values is utilized to compute varying damping and weighting factors [4]. Fur- 
ther, the introduction of a feedback correction term to avoid numerical drift 
instabilities [5] is proposed and its effects on solution accuracy and feasibility 
are discussed. 

A description of the laboratory set-up is provided. Experimental case stud- 
ies are illustrated with the manipulator passing nearby either a single (wrist) 
or a double (wrist and shoulder) singularity. The influence of the weighting 
factor and feedback correction term on solution accuracy is extensively tested 
out, and the performance of the various solutions is compared. 

2. Kinemat ics  

The ABB IRb 2000 is a six-revolute-joint robot manipulator manufactured 
by ABB Robotics. The manipulator is shown in Fig. 1. Its Craig-Denavit- 
Hartenberg parameters, joint working ranges and maximum speeds are reported 
in the tables below. 

Link O[rad] d[m] aim] tr[rad] 

1 7r/2 0 0 0 
2 ~/2 o 0 ~/2 
3 ~/2 0 0.710 0 
4 0 0.8500.125 ~r/2 
5 0 0 0 ~r/2 
6 0 0.100 0 7r/2 

Joint 

1 
2 
3 
4 
5 
6 

Working range [rad] Max speed [rad/s] 

-0.99 ÷ +0.99 
-0.85 + +0.85 
-2.72 + -0.49 
-3.43 ÷ +3.43 
-2.00 + +2.00 
-3.14 ÷ +3.14 

2.01 
2.01 
2.01 
4.89 
5.24 
5.24 

The inner three joints are in the same arrangement as in an elbow manipu- 
lator, while the outer three joints constitute the spherical wrist commonly used 
in industrial robots. 

Let q denote the (6 × 1) joint vector. The (6 x 6) 3acobian matrix J relates 
the joint velocity vector q to the (6 × 1) end-effector velocity vector v through 



the mapping 

where p and ~o represent end-effector linear and angular velocities, respectively. 
In configurations where J has full rank, any end-effector velocity can be 

attained. When J is rank deficient, i.e. rank(J) < 6, constraints on the feasible 
end-effector velocity occur and the manipulator is said to be at a singular 
configuration or at a singularity. 

The ABB IRb 2000 manipulator has a simple kinematic structure and its 
singularities are well-understood. We have: 

• ff a3 cos 03 + d4 sin 0a = 0, the elbow is stretched out and the manipu- 
lator is in the so-called elbow singularity; this does not correspond to a 
reachable configuration of the manipulator, due to the mechanical joint 
range for 03, and then is of no interest. 

• If the wrist point lies on the axis of joint 1, its position cannot be changed 
by a rotation of 01 and the manipulator is in the so-called shoulder singu- 
larity; from simple geometry, it can be found that the shoulder singularity 
occurs when a2 sin 02 + a3 cos(02 + t93) + d4 sin(02 + 03) = O. 

• If Os = 0 the two roll axes of the wrist are aligned and the manipulator 
is in the so-called wrist singularity. 

3. Kinematic  Control  

It is well-known that the control system of a robotic manipulator operates 
in the joint space generating the driving torques at the joint actuators. The 
reference trajectory for the joint control servos is to be generated via kinematic 
inversion of the given end-effector trajectory; this is known as the kinematic 
control problem. When the arm is at --or close to--- a singularity, large joint 
velocities may occur or degenerate directions may exist where end- effector 
velocity is not feasible. Therefore, the control system of a robotic manipulator 
should be provided with the capability of handling singularities. 

A well-known effective strategy that allows motion control of manipulators 
in the neighborhood of kinematic singularities is the damped least-squares tech- 
nique originally proposed in [2],[6]. The joint velocity solution can be formally 
written as 

= [ jT(q) j (q)  + )~2i]- l jT(q)v (2) 

where ~ >_ 0 is a damping factor. Small values of $ give accurate solutions 
but low robustness to occurrence of singular and near-singular configurations. 
Large values of ~ result in low tracking accuracy even when a feasible and 
accurate solution would be possible. 

The damping factor ~ determines the degree of approximation introduced 
with respect to the pure least-squares solution; then, using a constant value 
for ~ may turn out to be inadequate for obtaining good performance over the 
entire manipulator workspace. An effective choice is to adjust ~ as a function 



of some measure of closeness to the singularity at the current configuration of 
the manipulator. 

A singular region can be defined on the basis of the estimate of the smallest 
singular value of J ;  outside the region the exact solution is used, while inside 
the region a configuration-varying damping factor is introduced to obtain the 
desired approximate solution. The factor must be chosen so that continuity of 
joint velocity q is ensured in the transition at the border of the singular region. 
We have selected the damping factor according to the following law [7]: 

A2 2 
1 2 = - -  ) t r n a ~  ~r 6 < C 

(3) 

where &6 is the estimate of the smallest singular value, and ¢ defines the size 
of the singular region; the value of $mar is at user's disposal to suitably shape 
the solution in the neighborhood of a singularity. 

We have computed an estimate of the smallest singular value by the recur- 
sire algorithm recently proposed in [4] which is an extension of the algorithm 
in [8]; this algorithm allows estimating not only the smallest but also the second 
smallest singular value and then is congenial to handle closeness to a double 
singularity, whenever crossing of smallest singular values occurs. 

The above damped least-squares method achieves a compromise between 
accuracy and robustness of the solution. This is performed without specific 
regard to the components of the particular task assigned to the manipulator's 
end effector. The user-defined accuracy strategy introduced in [7] based on the 
weighted damped least-squares method in [2] allows discriminating between 
directions in the end-effector space where higher accuracy is desired and direc- 
tions where lower accuracy can be tolerated. 

Let a weighted end-effector velocity vector be defined as 

= (4 )  

where W is the (6 x 6) task-dependent weighting matrix taking into account 
the anisotropy of the task requirements. Substituting (4) into (1) gives 

= ~r(q)// (5) 

where .1 = W J .  It is worth noticing that if W is full-rank, solving (1) is equiv- 
alent to solving (5), but with different conditioning of the system of equations 
to solve. This suggests selecting only the strictly necessary weighting action 
in order to avoid undesired ill-conditioning of J .  The damped least-squares 
solution to (5) is 

= [.)T(q).)(q) + ~2i]-13T(q)~, (6) 

For the typical elbow geometry with spherical wrist, it is worthwhile to 
devise a special handling of the wrist singularity which is difficult to predict at 
the planning level in the end-effector space. It can be recognized that, at the 
wrist singularity, there are only two components of the angular velocity vector 



that can be generated by the wrist itself. The remaining component might be 
generated by the inner joints, at the expense of loss of accuracy along some 
other end-effector space directions though. For this reason, lower weight should 
be put on the angular velocity component that is infeasible to the wrist. For 
the ABB IRb 2000, this is easily expressed in the frame attached to link 4; let 
R4 denote the rotation matrix describing orientation of this frame with respect 
to the base frame, so that the infeasible component is aligned with the x-axis. 
We propose then to choose the weighting matrix as 

' O 
W =  [I0 R4diag{w,l ,1}RT] (7) 

Similarly to the choice of the damping factor as in (3), the weighting factor w 
is selected according to the following expression: 

(1 - w) 2 = 1 - (1 - w,un) 2 86 < e (8) 

where wmi,~ > 0 is a design parameter [7],[3]. 
The above inverse kinematics solutions are expected to suffer from typical 

numerical drift, when implemented in discrete time. In order to avoid this 
drawback, a feedback correction term [5] can be keenly introduced by replacing 
the end-effector velocity v by 

Vd ÷ K e  (9) 

where the subscript "d" denotes the desired reference end-effector velocity, K is 
a positive definite --usually diagonal-- (6 x 6) matrix, and e expresses the error 
between the desired and actual end-effector location. The error e is computed 
a s  

= ~ ( n x n d + s X s e + a x a e )  eo 1 

where the translation error is given by the (3 x 1) vector e~ and the orientation 
error is given by the (3 x 1) vector eo. The end-effector position is expressed 
by the (3 x 1) position vector p while its orientation by the (3 x 3) rotation 
matrix R = [n  8 a], with n, s, a being the unit vectors of the end-effector 
frame. 

It is important t, notice that, in the neighborhood of a singularity, end- 
effector errors typically increase along the near-degenerate components of the 
given end-effector velocity and convergence is slowed down [9]. Therefore, we 
propose to shape the action of the feedback correction term around the sin- 
gularities using K -- ~K0, where K0 is a constant matrix and ~ is a varying 
factor to be properly adjusted. 

We have found that it is important to have 9 = 0 inside the singular region 
defined by ae _~ E. Indeed, if a velocity is assigned along a near-degenerate 
direction and a nonzero gain is used for the feedback correction term, the 
error e will eventually approach zero; however, the resulting joint velocities 



may cause the manipulator to reach the joint limits. Outside the singular 
region, interpolation is used to achieve a smooth solution and full value to the 
gains (~ = 1) is set when far enough from the singularity. In our experience, 
interpolation had to be performed when ¢ < o's < 4¢ using a quadratic type 
function, i.e. 

= (3¢) 2 ¢ < a6 < 4¢ (11) 

1 as >_ 4¢ 

4 .  E x p e r i m e n t a l  r e s u l t s  

The experiments were run on an ABB IRb 2000 robot manipulator. The origi- 
nal joint servos of the $3 industrial control system were used, and an interface 
was established at the joint increment level. This allowed implementation of a 
kinematic control strategy, that  is an inverse kinematics module based on the 
foregoing damped least-squares solution providing the reference inputs to the 
manipulator joint servos. This was done in cooperation with ABB Robotics 
who slightly modified the $3 control system by adding an interface board with 
a dual-port RAM, as well as software modules to establish the required com- 
munication protocol. The resulting communication facilitated the transfer of 
joint variables and increments at a sampling time of 12 [ms], and in addition it 
allowed for remote initialization and activation of the ABB $3 system. 

The inverse kinematics were computed on a 25 [MHz] Motorola 68040 VME 
board which communicated with the ABB $3 control system through the dual- 
port  RAM. The software was developed on a SUN 350 workstation, and the 
executable code was downloaded to the 68040 board and executed using Vx- 
Works. A block diagram showing the interconnection between major compo- 
nents of the laboratory set-up is sketched in Fig. 2. 

The program system which was executed on the Motorola 68040 was written 
in C, and consisted of two activities; an interactive activity containing initial- 
ization and user interface, and the real-time controller activity. The real-time 
controller activity had the following steps: input joint angles, calculate joint 
increments, output  joint increments, store data  for logging. 

The interactive user interface contained initialization of the $3 control sys- 
tem and of the communication between the ABB controller and the real-time 
activity. Further it contained initialization of kinematic parameters and a 
menu-driven system for adjusting kinematic parameters,  specifying trajectory 
data, and selecting the algorithm for the inverse kinematics solution. In addi- 
tion, a function for transferring logged data  to the SUN system was included. 
The logged data  was subsequently written to a file in MATLAB format which 
allowed for postprocessing and plotting in the SUN UNIX environment. 

A simple solution to the problem of communication between the real-time 
and interactive activities was achieved by including both activities in the same 
C program. The interactive activity was the main program, while the real- 
time activity was called from a function which was started by a timer interrupt 
every 12 [ms]. The data  transfer between the two activities was performed 



through global data  structures containing parameters for the inverse kinematics 
algorithms, trajectory data, logged data  and logical variables for algorithm 
selection. 

In the following we present two case studies to demonstrate the application 
of the preceding schemes to real-time kinematic control of the ABB IRb 2000 
robot manipulator. 

Trajectory 1: A reference trajectory through the wrist singularity was stud- 
ied. The initial configuration was q = [0 ~r/12 -~r/2 0 0.15 0] T [tad]. 
An end-effector increment Ap = [0.18 0.45 --0.45] T[m]  was interpolated 
using linear segments with parabolic blends. The blend time was 0.2 [s], and 
the total time of the trajectory was 1.5 [s]. The resulting cruise velocity be- 
tween 0.2 [s] and 1.3 [s] was approximately 0.5 [m/s]. The wrist singularity was 
encountered after approximately 0.6 [s]. 

The damping factor was computed from (3) with ¢ = 0.04 and X,,~a= = 
0.04. The estimate ~rs of the smallest singular value was computed using the 
algorithm in [4] 

The basic damped least-squares scheme (2) was used first; then, for compar- 
ison, the same trajectory was tested with the weighted damped least-squares 
scheme based on (6). The weighting matrix was chosen as in (7),(8) with 
wmi, = 0.1. The results are shown in Fig. 3 for both the damped least- 
squares and weighted damped least-squares schemes, without feedback correc- 
tion term. In both cases the joint velocities were feasible with peak values of 
approximately 2 [rad/s]. Without  weighting, the norm of the translation error 
at final time t l  was I le , ( t l ) l l  = 0.055 [m], while the orientation error norm was 
t teo(t l) t l  = 0.06 [rad]. With weighting, the errors were I le , ( t l ) l t  = 0.0025 [m] 
a n d  Ileo(tf)ll - -  0 .12  [rad]. 

This result clearly demonstrates the advantage of using weighting since our 
main concern was to achieve accuracy in translation. In fact, weighting resulted 
in a reduction of the translation error by a factor of approximately 20, while the 
orientation error was increased only by a factor of two. The effect of weighting 
on the smallest singular values is seen from Fig. 3; a significant reduction of 
~6 around the singularity is obtained compared to the corresponding 0"6 in the 
non-weighted case. 

The same experiments were repeated with a feedback correction term ac- 
cording to (9),(10) with K = diag{12. . .  12}. The results are shown in Fig. 4. 
In this case the joint velocities were higher. In fact, with the damped least- 
squares solution, joint velocities 4 and 6 saturated between 0.6 and 0.8 [s] at 
5 [rad/s] and -5 [rad/s], respectively. With the introduction of weighting, the 
joint velocities were feasible with peak values less than 5 [rad/s]. Thanks to 
the feedback correction term, the end-effector error e converged to zero after 
leaving the singular region (see Fig. 4). This resulted in a reorientation of 
joints 4 and 6 by -t-Tr in the non-weighted case, which reflects the fact that  
large increments in joint angles may result from small end-effector increments 
when the manipulator is close to a singularity. Remarkably, Figure 3 reveals 
also that  outside the singular region $6 tends to 0"6; obviously, this was not the 
case in the previous experiments without feedback correction (see Fig. 3). 
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Trajectory 2: A reference trajectory involving both the shoulder singu- 
larity and the wrist singularity was studied. The initial configuration was 
q = [0 0.7893 -~r/2 lr/2 -0.05 0]T[rad]. An end-effector increment 
Ap = [ 0.1 0.1 0 IT [m] was interpolated using linear segments with parabolic 
blends. The blend time was 0.15 Is], and the total time of the trajectory was 
1.0 Is]. The resulting cruise velocity between 0.15 Is] and 0.85 Is] was approxi- 
mately 0.166 Ira/s]. The wrist singularity was encountered after approximately 
0.22 Is]. 

Also for this trajectory, the damping factor was computed from (3) with ~ = 
0.04 and Xm~ = 0.04. The basic damped least-squares solution (2) was used. 
The estimate #6 of the smallest singular value was found: a) by computing 
both &s and #6 as in [4], and b) by computing #6 as in [8]. 

The results without feedback correction are shown in Figs. 5,6. The damped 
least-squares scheme performs well also in this case. The norm of the translation 
error at final time t !  was Ile~(tl)ll = 0.03 [m], while the norm of the orientation 
e r r o r  w a s  I l e o ( t l ) l l  = 0.015 [rad]. 

In case a) the crossing of the two smallest singular values associated with the 
wrist and shoulder singularity was successfully detected at 0.15 Is] and 0.37 Is], 
and an accurate estimate #6 of the smallest singular value was found. This gave 
satisfactory damping around the wrist singularity. The resulting joint velocities 
had peak values less than 1.2 [rad/s]. In case b) the crossing of the two smallest 
singular values caused the estimate &6 to track as, and the wrist singularity 
appearing at 0.22 Is] was not detected. This resulted into a low damping factor 
around the wrist singularity, and high joint velocities were experienced; in 
particular, the velocity of joint 1 saturated at -2 [rad/s]. Finally, note that  the 
final errors were a little smaller in case b) since the incorrect estimate of ~r 6 
produced lower damping on the solution throughout the singular region. 

5.  C o n c l u s i o n s  

The weighted damped least-squares solution with varying damping factor, vary- 
ing weighting factor and feedback correction term has been implemented on an 
industrially available hardware indicating that  enhanced real-time kinematic 
control of robot manipulators through singularities is definitely possible. 
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