Design of a Composite Controller for a Two-
Link Flexible Manipulator

Bruno Siciliano

Dipartimento di Informatica e Sistemistica, Universita degli Studi di Napoli
“Federico II" Via Cluadio 21, 80125 Napoli, Italy

Jonnalagadda V.R. Prasad and Anthony J. Calise

School of Aerospace Engineering, Georgia Institute cf Technology, Atlanta,
Georgia 30332-0150, USA

Abstract

This paper presents the design of a composite controller for a a two-time scale nonlinear model of a two-link
flexible manipulator. First a slow control s designed for the slow (rigid) sybsystem, then a fast stabilizing
control for the fast (flexible} subsystem. In particular, the problem of lack of full state measurements
concerned with the fast control design is addressed: An output feedback dynamic compensator of fized
order 18 designed, and its optimal gains are computed according to a loop transfer recovery technique in
order to obtain a robust design. The overall control is tested by means of simulation results.

1. Introduction

Lightweight flexible arms have lately been receiving the attention of an increasing number of researchers.
Potentially, they may improve on the performance of conventional massive rigid industrial manipulators.
The main problem for modeling and controlling a flexible arm is induced by the structural flexibility.

Several approaches have been proposed in the literature for modeling lightweight arms. One common
denominator is the adoption of the Lagrangian technique which yields closed-form expressions of all
dynamic terms. As for the inherently distributed nature of the flexible system, finite-dimensional models
are needed which approximate the exact infinite-dimensional models. The recursive formulation proposed
by Book (1984), suitably combined with the assumed-modes method, leads to a number of generalized
coordinates to handle for control purposes.

A variety of contributions aimed at designing control systems performing active feedback control of
flexible vibrations have been proposed, employing linear control (Cannon and Schmitz, 1984; Hastings and
Book, 1985; Oakley and Cannon, 1988), frequency domain techniques (Chait, Radcliffe, and MacCluer,
1988; Bayo et al., 1989; Yurkovich, Pacheco, and Tzes, 1989), adaptive control (Yuan, Book, and Siciliano,
1989), robust control (Korolov and Chen, 1988), transfer function approaches (Wang and Vidyasagar,
1989), inverse dynamics techniques (Asada, Ma, and Tokumaru, 1987; Bayo, Movaghar, and Medus,
1988), nonlinear decoupling controllers (Singh and Schy, 1986; De Luca and Siciliano, 1989; Pfeiffer,
1989), pseudolinearization methods (Nicosia, Tomei, and Tornambé, 1989). One limitation of most
studies is that the flexible one-link case is investigated. This is much too a simple case to capture the
coupling effects between rigid body and flexible body dynamics.

Here we adopt a two-time scale approach (Siciliano and Book, 1988) which allows the definition of
a slow subsystem corresponding to the rigid body motion, and a fast subsystem describing the flexible
motion. A composite control strategy (Kokotovic, 1984) is then applied. First a slow control is designed
for the slow subsystem as it would be done for an equivalent rigid arm, then a fast control stabilizes the
fast subsystem. In particular, the problem of the lack of full state availability is addressed, as the rates of
the flexible variables cannot be directly measured. Preliminary work can be found in (Siciliano, Calise,

126



and Prasad, 1989) and in (Calise, Prasad, and Siciliano, 1990) for the simple case of a one-link flexible
arm. This paper extends this approach to the case of a two-link nonlinear arm model (De Luca and
Siciliano, 1990a, 1990b). A fixed order dynamic compensator for the fast subsystem is designed (Kramer
and Calise, 1988) according to a loop transfer recovery formulation (Calise and Prasad, 1989) which is
shown to lead to a straightforward design procedure, with excellent robustness properties. Simulation
results are presented which validate the theoretical conclusions.

2. Two-Time Scale Model of a Two-Link Flexible Arm

In what follows, we consider a planar two-link flexible arm with rotary joints subject only to bending
deformations in the plane of motion (torsional effects are neglected). A sketch of the arm with kinematic
frame assignments is shown in Fig. 1. A payload is added at the tip of the outer link, while hub inertias

two assumed modes for each link. The standard Lagrangian approach (Book, 1984) is followed and the

resulting dynamic equations are explicited below in a form suitable to two-time scale modeling (Siciliano

and Book, 1988). The reader is referred to (De Luca and Siciliano, 1990a) for the details on intermediate

steps of derivation and to (De Luca and Siciliano, 1990b) for the expressions of the model coefficients.
The equations of motion can be written in the closed-form

M (3]« (26 8]+ [Bledad]« &) =[] g

where q = (g, ¢2)7 is the vector of joint variables, M is the inertia matrix, f; and f; are the vectors con-
taining gravitational, Coriolis, and centrifugal terms, g1 and g; are the vectors accounting for the interac-
tion of joint variables and their rates with deflection variables and their rates, K = diag(k;, k;3, ks, vkaz)
is the positive diagonal matrix of the constant flexural stiffness coefficients, u = (u, u;)T is the vector of
input torques applied at the joints. Two null vectors of appropriate dimensions appear in (1). As for the
vector of deflection variables d = (di1 d;z d3, dys )T, this is obtained as the result of an assumed modes

control (Cetinkunt and Book, 1990).

Since the inertia matrix M is symmetric and positive-definite, it can be inverted and denoted by H,
which can be partitioned as follows:

H= Hu[zx:] HHI?M]]. (2

21 [4x3) 22 [4x 4]
Equations (1) then become — dropping the dependences for notation compactness —

‘.i= —Huf1 —lefz ‘—31181 "H;gS:"H;;Kd"‘Hl;u, (33)
= —Huf, - Hpf; — Hy, 8, - Hzg: - Hy;Kd + Hyju. (3b)

(=7

The system (3) is characterized by having siz generalized coordinates but only two control inputs. This
poses serious drawbacks for control design purposes, compared to the case of rigid arms.

A viable strategy is represented by a singular perturbation approach (Siciliano and Book, 1988),
according to which a two-time scale description of the system is obtained. Specifically, the smallest
stiffness constant of K in (1), say k,,, can be regarded as the inverse of a perturbation parameter, i.e.
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#=1/k;;. For a given manipulator geometry, the limit u — O corresponds to the case of an equivalent
rigid manipulator. Therefore, factoring K as K = K /u and defining the new variables (elastic forces)

=1z
L= “Kd (4)

yields the equations of the system in two-time .scale form

q=-Huf, —H.f, —Hy; 8, —Hjag: - Hizz + Hyju, (5a)
ki = -H; f, - Hypfy - Hy, g —Hy8, — Hyz + Hy . (5b)
where the superscript “’” in (5b) indicates that the corresponding quantities have been premultiplied by

At this point, the typical steps of a singular perturbation formulation can be taken (Kokotovic,
1984). Because of the presence of u, the system described by equations (5) exhibits a boundary layer
phenomenon in the fast variables 2. Formally setting u = 0 accomplishes a model order reduction from
n+m’ to n. It can be shown (Siciliano and Book, 1988) that g, (1 = 0) = 0 and g,(u = 0) = 0. The
differential equations (5b) degenerate into the algebraic transcendental equations

0= ‘-H;l.lflul - H;ﬂ.nf&l - H;ﬂ.l’l +H;l.au' (6)

where the subscript “s” indicates that the corresponding quantities are computed in the slow time scale,
i.e. for p = 0. Since Hj, , is positive definite, it is possible to solve equations (6) for 2, as

I, = H'n,. (""H'n.-fl.o + H'n,-“-) —f2,.. (1)

Using this solution in (5a) formally yields the slow subsystem

1

& = (Hu,. - Hy JH, H, N1, +1,). (8)

It can easily be checked that
-1 _
H,,, - Hl?.-H'n.. ;1.: =M, 11.. (9)

where M, is the (2 x 2) positive definite matrix appearing in the model of the equivalent rigid arm.
To derive the fast (boundary-layer) subsystem, the slow variables are treated as constants. Defining
the fast varaibles z; = z — 2,, and the fast control u; = u — u,, the fast subsystem of (5b) becomes

ox

dr3 = _H'S?.azf +H;l,lu‘ ) (10)

where r = t/, /i is the fast time scale.

3. Design of a Composite Controller with Fast Output Feedback

On the basis of the above two-time scale model, the design of a feedback controller for the system (5)
can be performed according to a composite strategy (Kokotovic 1984); namely

ds
u=1u,(q,4) +ur (s, ) (11)
with the constraint that u;(0,0) = 0, so that u, is inactive along the trajectories specified by (7).
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The slow control for the slow subsystem (8) can be designed according to the well-known computed-
torque concept used for rigid manipulators,

u, = ﬂn.a"’ + fl.s (12)

where M 11, and l-'l‘. denote the available estimates of M, 10 and f; ,, respectively, and v is a new control
input. This can be chosen as

V=Eid +KDé+er (13&)

where qgq is the desired joint trajectory, e = 94 — q, and Kp, Kp are suitable positive diagonal matrices
which, under the assumption of perfect compensation (Myy,, =M, fi, =1,,) shape the response of
the linear stable system

é+Kpé+Kpe=0. (13b)

At this point, it is required that the fast subsystem (10) be uniformly stable along the trajectories z,
given by (7). To this purpose, let a state space representation of (10) be

% = Ax + By, (14a)
[ o 1 ] o
Mo =gz, o) B = g | (140)
where xT = [zT (dz;/dr)T], and zero block matrices of appropriate dimensions appear. The system

described by equations (14) is a linear system with m' couples of poles on the imaginary axis in the
s-plane. Since the pair (A,B) can be shown to be completely controllable, a fast state feedback control
of the type

dz
ur = Kpez + Km*'d;l- (15)

can be devised to arbitrarily place the poles of the system (14). This would require, however, full
state availability. In practice, Hastings and Book (1985) showed that the deflection variables d can
be accurately reconstructed from strain gage measurements, whereas their rates d cannot. In order to
overcome this drawback, in the following an output feedback controller for the fast subsystem (14) is
developed which is based on the design of an optimal fixed-order compensator

Kramer and Calise (1988) showed two canonical forms for the compensator representation which
provide a minimal parameterization. These representations exclude the use of direct feedthrough of the
output, since direct feedback is undesirable both from the point of view of sensor noise reduction and
robustness. Also, a loop transfer recovery procedure for fixed-order compensators was proposed by Calise
and Prasad (1989) which uniquely defines the state and compensator weighting matrix, and the initial
state distribution matrix. Below we adopt this formulation for the design of the output fast feedback
controller.

The output equation for the fast subsystem (14) can be simply expressed as
y=0Cx (16a)

Ciuxyy =[I O] (16b)

where the identity matrix I and the null matrix O account for the fact the variables z; are available while
their rates dz, /dr are not.
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A compensator of fixed order p, without direct feedthrough of the output, can be formulated in
obsever canonical form as

u = --How ) (175)
W =P°w +u, (17b)
u, =P,u; — Ny : (17¢)
where
HY,, = block diag|(0,....,0,1)(,x1), § = 1,2] (18)
and
P}, = blockdiag[P?,P?) (19a)
o0 ... 00
1 0 ... 00
Pllemet = [0 1 -0 0 0 (190
00 ... 10

with the observability indices ¢ satisfying the following conditions: L+4 =p,and ¢ < . In (17c),
N and P,, are respectively a (p x 4) matrix and a (p x 2) matrix of free parameters.

Defining %™ = (x* wT), §7 = (yT — u), and ii = u,, the dynamic compensator design can be
expressed in terms of a standard output feedback problem for the augmented system

x = A%+ Bi (20a)
§=Cx (20b)
i =-Gy (20c)
- A -BH° ~ (4]
Af(a+p)x(84p)] = [0 Ppo ] Bis+p)xp) = [ 1 ] (20d)
= cC o0
CI"*[H-P]I = [o Ho] G[pxﬁ] = [N P,] (20e)

where the number of free parameters is minimized and no zero elements in G appear.
The output feedback problem is then optimized according to the following augmented quadratic
performance index

J=Eg,|[ f " (XTQx + 6" Ri1)dt) (21)

where Q > O and R > O, and the expectation is taken over some initial distribution on Xo.
The necessary conditions for optimality require the solution of the triple (G, S, L) satisfying:

ATS+SA.+Q+CTG™RGE =0 (22a)
AL+LAT+X,=0 (22b)
RGCLCT - B™SLCT =0 (22¢)

for a stable closed-loop system matrix

A . =A-BGC. (23)



In (22b), Xo = E[%oX] ] is the variance matrix associated with the distribution assumed for the initial
conditions. The convergent algorithm proposed by Moerder and Calise (1985) can be employed for
solving (22a-22c). :

Full state feedback design is often used as a first step in designing an output feedback controller.
If the fixed order compensator is designed to approximate the loop transfer properties of the full state
design, then the closed-loop system should contain a set of eigenvalues and eigenvectors that approximate
those of the full state design. The return vector in the case of full state design is ~K*x, where K* is the
optimal gain matrix specified as in (15), i.e. K* = [Kp; Kp(|. Referring to (17a), the return vector in the
case of fixed-order compensator design is ~HOw. Thus, as in (Calise and Prasad, 1989), the objective
in designing the compensator should be to minimize

Y1 =K'x-H°w (24)

for a suitably chosen input and for zero initial conditions. This naturally leads to sclecting the following
index of performance:

7 =B 6T+ aTa)al. (25)

Substituting for y, from (24), and rewriting (25) in the form of (21) leads to the following expressions
for the weighting matrices:
exeaT
_| K°K* -K*H° _
Q=|_jokT moTgo ] R =l (26)

Selecting the inpﬁt. waveforms as impulses with magnitudes uniformly distributed on the unit sphere
results in the following expression for X,:

X="0 o (27)

= [BBT 0]
Equations (26) and (27) uniquely define the structure of the weighting matrices needed for the fixed-order
compensator design. Notice that, unlike the design of a full-order observer, the design of a fixed-order
compensator depends on the gain matrix from the full state design. Moreover, this gain matrix is not
implemented as a part of the final controller.

4. A Case Study

A numerical case study is developed to illustrate the effectiveness of the design procedure outlined in the
previous section. The physical parameters of the arm with uniform mass link density are:

link lengths: 1m

link masses: 1 m

2nd-link center of mass: 0.5m
2nd-joint hub mass: 0.2kg
payload mass: 0.1kg

link inertias: 0.066 kg m?

hub inertias: 0.1kgm?

* payload inertia: 0.0005 kg m?
e link flexural rigidities: 1 Nm?

With these data, the perturbation parameter in (4) turns out u = 0.0503 justifying the two-time scale
separation.
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A composite control is designed first, which is composed of a slow control as in (12,13) and a
fast full state feedback control as in (15). Perfect compensation is assumed in (12), and the feedback
matrices in (13) are chosen as Kp = 2.25I and Kp = 3], corresponding to a double pole at —1.5 for
the error dynamics at both joints. Then, a full state feedback design is carried out to stabilize the two
fast modes at each link. In the open-loop, the modes have zero damping with natural frequencies at
10.3;13.6,67.4,85.3rad/s. Thus, the above choice for the slow control poles preserves the time-scale
separation between the slow and the fast subsystem which is crucial for the applicability of the singular
perturbation approach. A standard LQR design is undertaken for the nominal configuration of the arm
with g, = 0;* the matrices Hj, , and Hj, , in (14b) take on the following values:

3.17x 102 -3.15 x 10? -5.30 —2.55
" = | —460x10° 7.06x10° 4.83x10' 2.33x 10
207 | S717Tx 100 44T x 10" 1.91 x 10° 2.04 x 10
~217x10° 1.35x10° 1.28x 10° 4.54 x 10°

-227x 10" -3.59 x 107
~1.93 x 10? 7.46 x 10°
~2.06 x 10! —5.40x 10!

-6.26 1.07 x 10°

The weighting matrices are set to diag(0,0,0,0,0.015,0.,0.005,0.0005) and diag(1,1). The resulting
feedback gain matrices as in (15) are: )

! —
H?l.l -

Ko, = | 413x1072  -199x10"2 -9.06x 10~7 —4.25 x 10-2
I 1 -438%x 107! -202x10"! 5.29x 10! 1.33

-385x10"% 1.15x10"? -7.21x10"%2 -—1.01x 10~!

which achieve damping ratios of 0.23, 0.25, 0.22, 0.31 for the four modes.

Next, an output fast feedback design with fourth-order compensation — p = 4 in (17) — is carried
out. The above full state feedback gain matrices are used to compute Q in (26), while p = 1.0 x 10™°,
The design results in damping ratios of 0.17, 0.25, 0.25, 0.26 for the four modes, with the gain matrix
in (20e) being formed by:

Ko = [—1.10 x 107! -542x107° 131x10"2 4.05x 10~* ]
Df =

3.07x 10 -1.19x10° 1.08x10° —1.95x 10°
1-295x10° 1.07x10° -1.67x10° 5.89x% 10?

1.05x 10° -3.87x10° 450x 10?2 —4.74x 10?

1.88x10* -6.83x10° 1.07Tx10* —3.84 x 10°

N=

-9.28 x 10° -1.04 x 10°
9.88 x 10° 1.42 x 10°
-3.28 x10® -3.97 x 10?
—-6.26 x 10* -8.94 x 10°

Fig. 2a illustrates the extent of recovery achieved by the output feedback design. Shown is a comparison
of the singular value plots for the return difference matrix with the loop broken at the input to the plant
dynamics of the fast subsystem. An expanded view of the minimum singular value plots of Fig. 2a is
shown in Fig. 2b. For the full state feedback design, the minimum singular value over all frequencies is

P, =

* The arm dynamics does not depend on the first joint variable (De Luca and Siciliano, 1990b).
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greater than or equal to 1.0. This ensures multivariable gain and phase margins of —~6dB < GM < co and
—60° < PM < 60°. The minimum singular value for the fourth order compensator reaches a lower bound
of 0.65 — 0.6 is generally regarded as a good design value for practical applications — at a frequency
of 7.2rad/s. This corresponds to multivariable gain and phase margins of —4.4dB < GM < 9.2dB and
-38° < PM < 38°. -

In the following, a set of simulation is presented. A joint motion is commanded from g4 (0) =
(0 = x/2) rad to qu(T) = (0 0)T rad with the velocity profile daz(t) = (x/2)[1 +sin(2xt/T - x/2)] rad/s,
0 <t <T,with T = 4s. A fifth order Runge-Kutta-Merson method has been implemented to integrate
the nonlinear differential equations (1) with a sampling rate for the controller of 1.0 x 10~*s.

Three controllers have been applied; the slow control, the composite control with full state fast
feedback, and the composite control with output fast feedback.

The results in Fig. 3 and 4 indicate that with the slow control, the performance of the arm joints is
acceptable while that of the tip is not; the y-component of the tip keeps vibrating about the final target
position while the z-component is quite unaffected by the imposed motion. Notice, also, the typical
non-minimum phase repsonse of the tip. _

With the introduction of the fast control with full state feedback, the vibratory motion of the arm
tip tends to die out (Fig. 6), without appreciably modifying the joint arm motion (Fig. 5). _

Finally, the results in Fig. 7 and 8 demonstrate that the performance obtained by replacing the full
state design with the output feedback design is still satisfactory.

5. Conclusions

A two-time scale approach has been developed for the control of a two-link flexible arms. The design of
a composite control has been presented: This consists of a slow control design that can be performed as
for the equivalent rigid arm, and of a fast control design for a simple linear system describing the flexible
dynamics. The problem of lack of full state measurements has successfully been solved by adopting
a fixed-order dynamic compensator design combined with the loop transfer recovery technique. The
simulated case study has illustrated the eflectiveness of the formulation and overall design metodology.

Acknowledgements

This work is based on research supported by Ministero dell’Universita e della Ricerca Scientifica e Tec-
nologica under 40% funds, and by US Army Research Office under contract no. DAAL3-88-C-0003.

References

Asada, H., Ma, Z.-D., and Tokumaru, H., 1987, “Inverse dynamics of flexible robot arms for trajectory
control,” Proc. ASME Winter Annual Meet., Boston, MA, Vol. 6, pp. 329-336.

Bayo, E., Movaghar, R., and Medus, M., 1988, “Inverse dynamics of a single-link flexible robot.
Analytical and experimental results,” Int. J. of Robotics and Automation, Vol. 4, pp. 63-75.

Bayo, E., Papadopoulos, P, Stubbe, J., and Serna, M., 1989, “Inverse dynamics and kinematics of
multi-link elastic robots. An iterative frequency domain approach,” Int. J. of Robotics Research, Vol. 8,
No. 6, pp. 46-62. '

Book, W.J., 1984, “Recursive Lagrangian dynamics of flexible manipulator arms,” Int. J. of Robotics
Research, Vol. 3, No. 3, pp. 87-101. '

Calise, A.J. and Prasad, J.V.R., 1990, “An approximate loop transfer recovery method for designing
fixed-order compensators,” AIAA J. of Guidance, Control, and Dynamics, Vol. 13, pp. 297-302.

Calise, A.J., Prasad, J.V.R., and Siciliano, B., 1990, “Design of optimal output feedback compen-
sators in two-time scale systems,” IEEE Trans. on Automatic Control, Vol. AC-35, pp. 488-492.

133



Cannon, R.H. and Schmitz, E., 1984, “Initial experiments on the end-point contral of a flexible
one-link robot,” Int. J. of Robotics Ruurch Vol. 3, No. 3, pp. 62-75.
Cetinkunt, S. and Book, W.J., 1990, “Performance limitations of joint vu'mble-l'eedback controllers

due to manipulator structurnl ﬂexnblllty, IEEE Trans. on Robotics and Automation, Vol. RA-6, pp. 219-
231.

Chait, Y., Radcliffe, C.J., and MacCluer, C.R., 1988, "Frequeﬁcy domain stability criterion for vi-
bration control of the Bernoulli-Euler beam,” ASME J. of Dynamic Systems, Measurement, and Control,
Vol. 110, pp. 303-307.

De Luca, A. and Siciliano, B., 1989, “Trajectory control of a non-linear one-link flexible arm,” Int.
J. of Control, Vol. 50, pp. 1699-1715.

De Luca, A. and Siciliano, B., 1990a, “Dynamic modelling of mu]ti:link flexible robot arms,” Prep.
IFIP Int. Conf. on Modelling the Innovation, Roma, I, pp. 157-164.

De Luca, A. and Siciliano, B., 1990b,."Explicit dynamic modeling of a planar two-link flexible
manipulator,” Proc. 29th IEEE Conf. on Decision and Control, Honolulu, HL

Hastings, G.G. and Book, W.J., 1985, “Experiments in optimal control of a flexible arm,* Proc. 1985
Amer. Control Conf., Boston, MA, pp. 728-729.

Kokotovic, P.V., 1984, “Applications of singular perturbation techniques to control problems,* SIAM
Review, Vol. 26, pp. 501-550.

Korolov, V.V, and Chen, Y.H., 1989, “Controller design robust to frequency variations in a one-link
flexible robot,” ASME J. of Dynamic Systems, Measurement, and Control, Vol. 111, pp. 1-14.

Kramer, F.S. and Calise, A.J., 1988, “Fixed order dynamic' compensation for multivariable linear
systems,” AJAA J. of Guidance, Contra! and Dynamics, Vol. 11, pp. 80-85.

Meiroviteh, L., 1967, Analytical Methods in Vibrations, New York: Macmillan.

Moerder, D.D. and Calise, A.J., 1985, “Convergence of a numerical algorithm for calculating optimal
output feedback gains,” IEEE Trans. on Automatsc Control, Vol. AC-30, pp. 900-903.

Nicosia, S., Tomei, P., and Tornamb#, A., 1989, *“Hamiltonian description and dynamic control of
flexible robots,” J. of Robotic Systems, Vol. 8, pp. 345-3616.

Oakley, C.M. and Cannon, R.H., 1988, “Initial experiments on the control of a two-link manipulator
with a very flexible forearm,” Proc. 1988 Amer. Control Conf., Atlanta, GA, pp. 996-1002.

Pfeiffer, F., 1989, “A feedforward decoupling concept for the control of elastic robots,” J. of Robotse
Systems, Vol. 6, pp. 407—416.

Siciliano, B. and Book, W.J., 1988, “A singular perturbation approach to control of lightweight
flexible manipulators,” Int. J. of Robotics Research, Vol. 7, No. 4, pp. 79-90.

Siciliano, B., Calise, A.J., and Prasad, J.V.R., 1989, “T'wo-time scale stabilization of a flexible arm
with output feedback,” Proc. 1989 Amer. Control Conf., Pittsburgh, PA, pp. 2377-2382.

Singh, S.N. and Schy, A.A., 1986, “Elastic robot control: Nonlinear inversion and linear stabilization,”
IEEE Tvans. on Aerospace and Electronic Systema Vol. AES-22, pp. 340-348.

Wang, D. and Vidyasagar, M., 1989, “Transfer function for a single flexible link,” Proc. 1989 IEEE
Int. Conf. on Robotics and Automchon Scottsdale, AZ, pp. 1042-1047.

Yuan, B.-S., Book, W.]., and Siciliano, B., 1989, *Direct adaptive control of a one-link flexible arm
with tracking,” J. of Robotice Systems, Vol. 8, pp. 663-680.

Yurkovich, S., Pacheco, F.E., and Tzes, A.P., 1989, “On-line frequency domain information for . .

control of a flexible-link robot with varying payload,” IEEE Trans. on Automatic Control, Vol. AC-34,
pp. 1300-1304.

134



Fig. 1 — The planar two-link flexible arm

——— Max. $ing. ValuelFull Stele Fosdback)
WL riex. Sing. Valus(Outpul Feacback) b
0wl T Min. Sing Velus{Full Stete Fasdback) )
=== . Sing. Value(Outpul Fesdbeck)
ﬁ ©L 4
= Wi -
5
2

AdalL P

104 [ 1
Frequency (red/sec)

T o

Fig. 2a — Singular value plot of the return difference matrix

Hinimum singular velue
L]
13
1
.

==== Full $1ate Fosdbeck
== Oulpul Fesdbeck

ok T — -
Fraquency (rad/eec)

Fig. 2b — Minimum singular value plot of the return difference matrix

135



[
.0

1o 40 -80 -0 =30 -\".l ~1.0

® = joint o [oeg)
e - jounc #1 [degl

%0 4.8
- i

o 1s 2o 38 40 Ko &9 re e we
tism () L]

Fig. 3 — Time history of joints with slow control

L

./

1.0

= tip x.coss [w)

» - tip y_comp [a)

™~

o 1o
timm [3)

ze 3n a0 so e6 7n &0 29
)

Fig. 4 — Time history of tip with slow control

::r"‘"-\_‘__‘________.

* - Jeint 92 [oeg)
® = jeint #1 [oeg)

40 RO 70 40 40 40

e 1e 2o 30 48 e se 79 ee 90
tine {3) L ]

Fig. 5 — Time history of joints with composite full state feedback control

136



10

.9

» = tip y.comp (=)
8 = tio w_com (=]

o

L] 10 LX) a0 5.0 60 re [ X an

‘o 1o
ties [a) {3

Fig. 6 — Time history of tip with composite full state feedback control

ta

23 -0 -’1'° -4.¢ -80 =40 =30 -*.' L8 8.0

- Joire o1 [dey]
Jeine ot (deg]

0.0 10 29 LY “o 5.0 S0 re LA 0
time [3) F o

Fig. 7 — Time history of joints with composite output leedback control

°
T w7
-

1.0

® - bl y_coss [a]
& - t1p x_coma [u)

“1.0

o 16 e 36 e K¢ &® O Mme vo
. tina [9) t 0

Fig. 8 — Time history of tip with composite output feedback control -

137



