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Dynamic analysis of the space shuttle remote manipulatorsystem (RMS) reveals that compliance of both the joints and
the links contribute to its endpoint oscillations. As such, the RMS inherently exhibits a unique two time scale behavior
comprised of low frequency modes associated with joint compliance and higher frequency modes due to boom bending.
Of these, the joint compliance modes are generally the most significant. The implicit two-time scale dynamic character
of the RMS naturally suggests a singular perturbation approach to controller design. In this paper we consider the
control problem of a flexible manipulator with flexible joints, specifically, the case where a time-scale separation exists
between the joint compliance modes and the boom flexure modes. To illustrate the procedure, it is applied to a single-
axis, single-link arm with compliancein both the boom and the joint. The system is parameterized1o resemble the actual
dynamics of the second boom of the RMS. This system retains the fundamental two-time-scale character of the RMS.
A composite controller is designed for the system, which consists of a slow component aimed at controlling rigid body
and joint compliance modes, and a fast component devoted to stabilizing the link compliance modes.

Introduction

In this paper we present initial results of an investigationaimed at developing effective endpoint controllers for
large flexible space manipulators similar to the Space Shuttle Remote Manipulator System (RMS). The RMS is a
remotely controlled anthropomorphicmulti-degreeof freedomarm. It is of very lightweight construction,and as a result
it exhibits much more mechanical compliance than typical terrestrial manipulators. The RMS has been used extensively
by the shuttle crew for such tasks as deployment and retrieval of satellites, inspection and servicing of spacecraft and
transfer of men and equipment. While it has performed reliably for all of these tasks, due to its inherent flexibility,
- operations are sometimes delayed while operators wait for oscillations to damp out. In the future, the RMS and similar
lightweight arms are likely to play an importantrole in a variety of demanding on-orbit assembly and maintenancetasks
including the constructionof the space station. For such tasks the requirementsof precise motion and shortsettling time
from oscillation call for an effective means of end-point vibration control for these manipulators. The current control
scheme for the RMS is based on independent joint control. We believe that for advanced applications it is desirable

to consider model based control schemes which account for structural compliance,
Given the dynamic complexityof the RMS, the problem of controllingits motion presentsa substantialchallenge.
The results of a recent detailed dynamic analysis [1] of the RMS reveal that, unlike most industrial manipulators,
compliance of both the joints and the links contribute significantly to its endpoint oscillations. Of these two primary
sources of compliance, the joint compliance is generally a stronger influence, in terms of contributing to end-point
oscillations, than boom flexure. This influence has been recognized in industrial manipulators as well [2], but perhaps
to a lesser degree. However, in contrastto typical industrial manipulators, the RMS also exhibits sufficient boom flexure
to warrant its careful considerationduring control design. In this investigationwe propose an approach which exploits
the inherent two time scale nature of the RMS through the use of a singular perturbation approach, which formally
separates the dynamic model into slow and fast subsystems. The slow subsystem emerges as precisely the model for a
rigid link manipulator with joint compliance. The fast subsystem includes the link compliance effects. The controller
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then consists of a slow componentand a fast component where the former is aimed at controlling rigid body and joint
compliance modes, while the latter is devoted to stabilizing the link compliance modes,

A considerablebody of literature has been devoted to the control of manipulatorswith flexible links, and recently
the problem of controlling manipulators with compliant joints has been addressed seriously. To date however, with the
exception of the dynamic modelling results presented by Yang and Donath [3], the authors are unaware of investigations
where these two effects are considered together. The literatureon flexible link manipulatorsis quite extensive, however
we cite some recent developments that are relevant to the present investigation. Siciliano and Book [4] have developed
a general singular perturbation approach with application to control of a single-link flexible manipulator. The slow
subsystem, consisted of the rigid model of the manipulator. This work was eventually extended to multiple-link flexible
arms [5]. Yang and Huang [6] use a singular perturbationapproach to separalte the time scales of a single-link flexible
manipulatoron a translatingbase. In this case a Lyapunov-baseddesign is used 1o stabilize the non-linear fast subsystem.
Siciliano, et.al [7] have also considered a time-scale separation for a single-link flexible arm which produces a slow
model subsystem comprised of the rigid body and first flexure modes. The control design employed optimal output
feedback compensators. Furthermore, to achieve more accurate tracking control for the slow subsystem, an integral
manifold approach was applied in [8].

A survey of investigations pertaining to the control of flexible joint robots has been compiled by Spong [9]-
In the conventional robotics literature, manipulators are represented as open kinematic chains of rigid bodies. Such
structures allow the use of exact feedback linearization [10] techniques, among others, to achicve robust closcd loop
systems. However, for flexible joint manipulators, Spong pointed out that fecdback lincarization is possible only for
certain $imple configurations [11). DeLuca [12] showed that if dynamic state feedback is considered, any flexible
joint (rigid link) manipulator can also be feedback lincarized, Since the slow subsystem derived in this paper consists
of a rigid manipulator with flexible joints, the latter results can be employed to design a feedback linearizing control for
the slow subsystem.

Modelling
In this paper we consider a flexible manipualtor with joint flexibility. The joint flexibility represents the gear
train compliance exhibited by many manipulators. In the represntationconsidered here, each link subsystem consists of
an actuator inertia connected to a flexible link through a torsional spring. These components of a typical link are
illustrated in Figure 1. The dynamic model can derived using Lagrange’s equations with the link deflections being
modelled by the assumed modes method. For an n-link serial manipulatorwith n flexible joints the equations of motion
are cast into the standard form:
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where
M is a mass/inertia matrix,
qg = [J%]T is the vector of joint variables q - [6‘l 6‘2 sse 9" ]:r and actuator variables
T
L e [8‘11 8::2'” 8@1] :
§ = [8,,8,,0 61'_":631 aee 5,,,., ses 5,,% 17 is the vector of deflection variables §; representing the

i link’s j™ mode and m, is the number of modes representinglink i,
Ji and f, are vectors containing gravitational (only in J1), Coriolis and centrifugal terms; f; is the same as it would
be in the rigid link model,
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g; and g, are vectors which account for the interaction of the joint variables and their time derivatives with the
link deflection variables and their time derivatives,
K, is a joint stiffness matrix

K, -K,

a

-k, Ka

where K = diag (K, K, =« K,) is a diagonal matrix of the constant joint stiffness coefficients,

K, = dap(ly oo Ky, By ves Kana*** Kmy) is a diagonal matrix of the constant flexural stiffness
coefficients,
U = [7,.7, 000 ‘rn]T is a control vector of generalized forces applied 1o the n joints.

Since the inertia matrix M is always positive definite, it can be inverted and denoted by H, which can be
partitioned as follows: :
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where it = my + my + eee +m, . Then equation (1) becomes
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Singularly Perturbed Model
A singularly perturbed model of the system can be obtained using the procedureof Siciliano and Book [4]. Due
to the dynamic nature of the system of present interesl, the time scale separation is considered to occur between the
flexible joint mode and the first flexure mode. Let it = 1/k define a perturbationparameterwher k is the smallest beam
flexure spring constant; accordingly, the matrix K, becomes '

K, = kK,

The system (3) can now be described in terms of the vector of elastic forces { associated with link flexure defined
as ¢ = kK,§ . With this change, equations (3)a and (3)b become

g = _Hn(q“uC)[fl(qv&) + 31(4»‘}-”;1#?)- + Klq - u] (4)a
_ Hu(‘;‘»ﬂf)b’z(?-‘}) + gz(qvéﬂf’ﬂf) +6 ]

B¢ = -KH(@.B8) U (0.0) + 8(0.088.88) + Kg - u) (4)b
= RH (a1 ) 5(0:0) + 8008 BE) + ¢
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which represent singularly perturbed model of the system under consideration. Notice that the right hand side of (4b)

is scalcd by the factor K. Letting =0, (4a) yields the equations for a manipulatorwith rigid links and flexiblc joints.
If onc formally sets jt = 0, (4b) can be solved for { to obtain the steady-statesolution

C = -Hy @OHGO)(79) + £(74.00) + K7 ~ u) )
*'fz(E'EJ e 8;(3‘5-0'0)

where the overbars indicate indicate that the system is analyzed in the slow time scale. Now letting §t = 0, replacing
¢ in (4a) with  as given by (5), and recognizing that by the definition of the terms g; and g, they are zcro in the -
absence of link flexure, one obtains

g = [ -H(70)~ H,(@0)H;(7.0)H(3.0)]1/,(74) + K3 - u) )

- MU@ L@ + KT - u)

The fast subsystem or boundary layer is derived by introducing a fast time scale 7 = /€, where € = Y&t . Then,
rclative 1o this time scale, the system (4b) becomes:

dh _ = o -
e KH,(3,0)n + KH,(3.0)(u - &) ™
T
where 7 = { — { isa new set of fast variables. Note that the fast subsystem s a linear system parameterizedin the
slow variables g, which appear constant with respect to the fast time scale.

Control Design
The problem is now to design a composite control for the system described by equations (6) and (7), namely

L5 : 8
= G(GT) +ulen,n) &

with the mnstraimu',@ ,0,0) = 0, so that upis inactive along the solution (5).
For the slow control, the control techniques established by DeLuca [12] and Spong [9] for flexible joint

manipulatorsare applicable. These techniquesare in the general category of feedback linearizing controls which can be
expressed as

S =i = 9
u(g,q) = fi(3.9) + K;g + M (v ©)
which reduces the system (6) to the form
o 10
i oy (10)
so that v is a new input to the system which can be chosen to achicvea prescribed model behaviorin the slow subsystem.
The control v is typically selected to cause the system (10) to follow a prescribed linear decou pled model of the form

g +2Z0G+0% -u &)
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where ) is a diagonal matrix of the prescribed closed loop natural frequencies, Z is a diagonal matrix of the prescribed
closed loop damping ratios and u, is an appropriately defined reference input [13] to ensure global decoupling of the
closed loop system.

The fast control must be selected to ensure that the boundary layer system (7) is uniformly stable along the

equilibrium trajectory T as given by (5). This can be accomplished provided that the pair

0 1 0
B =

S o Oh (12)
-KH,(3.0) 0 KoH(9:0)

is uniformly stabilizable for any slow trajectory g(f) Assuming that this holds, the boundary layer system (7) can be
stabilizedto n = 0 (§ = ) using a fast state feedback control of the type

u(@,n.n ) = K@n + K @n s
Single-Link Case Study
A single link case study is 10 be performed to illustrate the procedure. The system considered is a single-axis,
single-link arm with compliance in both the boom and the joint. The system is parameterized to resemble the actual
dynamics of the second boom of the RMS with the joint being the RMS elbow pitch joint and the tip payload being the
wrist hardware. This system retains the fundamental two-time-scale character of the full multi-link RMS model. Since
we are considering space manipulators, the influence gravity is not considered. As such, the slow subsystemin this case,
which is a single-link rigid manipulator with joint compliance, is a linear system. This means that for the case study,
feedback lincarization is not required as it would be for the multi-link case. :
The model derivation for the single link arm is outlined here. Two coordinate frames are considered, the fixed
incrtial frame x,, ypand the x;, y; frame which rotates with the root of the flexible arm. Lettingu, denote the deflection
of a differential mass dm from the x; axis, the absolute position vector ry,of the differential mass is given by:

Gl cosf -sind||x, x,cos —u sinf (1)
Fam = R‘ Fam = " = St [/} g
sinf  cosf ul leln +u’1(.‘05
Let u;gdenote the displacementof the arm’s endpoint from the x; axis. Then letting the position vector of the tip mass
be denoted as ry, the velocity of the tip mass follows from equation A.1 as:

) ~8Lsin ~uj,sin6 - O u cosf (15)
™" | fLcosl 12,0860 —u 0sind

The kinetic energy of the systemis T = Tp .+ T, + T, .. where
T S -192 24 + X ladim+ 6 'd;m+]92 udm (16)
[ OO A S Hyom 2 e > 1
nk nk ink nk
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The potential energy is similarly P = P + P nao¥here
L 2
P Ymgtaine & 2 [ B oy dx
e gmetaind + 3 [ |
and
1 2
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(17

(18)

(19)

(20)

The modal expansion is truncated at m; = 2, and the mode shapes employed ¢, are the orthonormal eigenfunctions for

a clamped free beam with a point mass at the distal end.
The matrix coefficients of the equation of motion are given as:

-

[y1 Mg Mys My,

Y1y My, N,y M1y,
Mg, 6) =
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my=Jo+ ML + M($ .6, + 6,.6,)
nmy,=0
myy= MLp + w
m= MLG . + w,
My =J,
My = My = 0
2
My =m + M¢w2+ JM¢;€
/
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The resulting model has two oscillatory modes associated primarily with boom flexure and an additional mode due to
joint compliance.
Summary

This paper considers the control of manipulators with flexible links and joints, and particularly the case where
the modes due to joint compliance are substantially lower in frequency than the boom flexure dominated modes. We
have considered singular perturbationapproach, in which time-scale separation produces a slow subsystem model which
is cquivalent to that of a manipulatorwith rigid links and flexible joints. In this case, existing results for flexible joint
manipulators can be applied to control the slow subsystem. At the time of this writing, simulation results are not
available, however that work is currently in progress. It is interesting that some practical examples have a joint
oscillation frequency that is relatively close to the first boom flexure frequency. In such a case it may be appropriate
to consider a slow subsystem which includes the first boom flexure mode as well as the joint compliance mode. In this
case the slow subsystem control design would be more difficult, as the results pertaining to flexible joint, rigid link
manipulators do not apply directly. Finally, we point out that a potentially attractive approach would be to rely on
designed-in passive damping [14, 15] for stabilization, of the fast subsystem. Such approaches can provide
stabilization which is quite robust to model frequency uncertainty,which is of particular concern in the case of flexible
manipulators since the frequencies are configuration dependent. '
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Appendix - Tables of Symbols and Parameter Values

L = boom length
boom mass
M = payload mass
Jp = boom inertia about joint (including hub inertia)
J; = actuator inertia (as if on gearbox output side)
A
E
I

I

m

]

boom cross scctional area
Young’s modulus
boom areca moment of inertia

]

fi = frequency of i mode :
p = boom density
K = joint stiffness

The parameters chosen represent an idealized model of the sccond tubular graphite fiber compositc boom of the RMS,
The joint considered is the clbow pitch joint. The compliance of the gearbox and its housing arc modclied as a single
discrete torsional spring. Other gearbox dynamics are not represented. The payload mass M correspondsto that of the
RMS wrist joints and end cffector hardware, as if they were a point mass rigidly distal end of the boom. According to
this model, the values uscd for the above parameters are the following.

L =278 in
m = 0.499 Ibf.s%in
M = 0.569 IbLs¥in

Jo = 12,855 Ibfs%in

J, = 66,400 Ibf.s%n

EIl = 9.93 x 10° Ibf.in?

fi = 2261 Hz.
f,=2472Hz
pA = 0.0018 Ibfs¥in®

K = 9.45 x 10% in.Ibf./rad
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