
Visual Tracking of Multiple Objects Using Binary
Space Partitioning Trees

Fabrizio Caccavale, Vincenzo Lippiello, Bruno Siciliano, and Luigi Villani

PRISMA Lab
Dipartimento di Informatica e Sistemistica
Universit̀a degli Studi di Napoli Federico II
Via Claudio 21, 80125 Napoli, Italy
http://www.prisma.unina.it

Abstract. The use of visual sensors may have high impact in robotic applications where it
is required to measure the pose (position and orientation) and the visual features of objects
moving in unstructured environments. In this paper, the problem of real-time estimation of
the position and orientation of of multiple objects is considered. Special emphasis is devoted
to the case when two or more objects overlap with respect to the visual system causing
occlusion. The algorithm is based on the Kalman filtering and Binary Space Partition (BSP)
tree representations of the objects geometry. The real-time implementation of the algorithm
is experimentally tested for the case of visual tracking of two objects using two cameras.

1 Introduction and State-of-Art

In the last decade the research on visual sensing has received a new impulse because
digital signal processing hardware with high computational capability is becoming
available at low cost. In fact, visual sensors offer the possibility to extract a great
variety of information from a scene in a noninvasive manner, that can be used by
automatic systems either at high level, e.g., for recognition and planning tasks, and
at low-level, e.g., for autonomous guidance of vehicles, or robot visual servoing.

A typical problem in robotic vision is the real-time estimation of the position and
orientation of moving objects of known geometry [1]. To this purpose, the visual
system is in charge to measure some features of the objects, like the position of
suitable points. Estimation accuracy grows when more cameras are used to guarantee
different objects views and capture a larger number of feature points.

One of the major problems to cope with is represented by the noise affecting the
visual measurements, due to temporal and spatial sampling and quantization of the
image signal, lens distortion, etc., which may produce large estimation errors. The
extended Kalman filter may improve the accuracy of visual tracking algorithms [2];
moreover, the prediction capability of the filter allows setting up a dynamic window-
ing technique of the image plane which may sensibly reduce processing time.

Another critical issue is that some feature points may be occluded to the visual
system by the object itself (self occlusion) or may exit from the visual space,
especially when a fixed-camera system is used. Moreover, during the execution of
tasks like grasping or assembling, the feature points of an object may be occluded
by another object (mutual occlusion).

In this paper, the extended Kalman filter is adopted to estimate the pose of moving
objects using a fixed stereo camera system. The systematic procedure presented
in [3] is used to compute the pose of the objects, combined to an efficient method
of selection of the visible feature points [4]. This work is mainly focused on the
selection procedure for multiple objects, based on Binary Space Partition (BSP)
trees technique for real-time rendering of CAD models [5]. In detail, the prediction
of the objects pose provided by Kalman filters is used to build a BSP tree of the
whole system and to guide a visit of the tree which allows identifying all the feature
points visible at the next sample time. Two different versions of the algorithm are
presented: a simplified version that can be used for the case of objects with non
interposing parts and a general version to be used for objects with interposing parts,
e.g., a gripper grasping a tool. Complex situations can be handled in real time thanks
to the computational low cost of BSP tree visit algorithms, whose complexity grows
linearly with the number of feature points.

Particular emphasis is devoted to the presentation of experimental tests realized
on a system of two cameras, for the case of two objects. The results confirm the
effectiveness of the proposed approach.

2 Kalman filter

The position and orientation of a moving object can be estimated via an extended
Kalman filter, using a system ofn video cameras fixed in the workspace.

The object position and orientation with respect to a base frame is specified by
defining a frameOo–xoyozo attached to the object and considering the coordinate
vector of the originoo = [xo yo zo]T and the rotation matrixRo(ϕo), where
ϕo = [φo αo ψo]T is the vector of the Roll, Pitch and Yaw angles.

Assuming that a CAD model of the object is available,m feature points are
considered. The vectorsoo andϕo can be computed from the measurements of the
position of the feature points in the image planes of the cameras using the extended
Kalman filter, based on a suitable model of the object motion. The recursive form of
the equations for the problem at issue is reported in [3].

The accuracy of the estimate provided by the Kalman filter depends on the num-
ber of the available feature points. Inclusion of extra points improves the estimation
accuracy but increases the computational cost. It has been shown that a number of
five or six feature points, if properly chosen, represent a good trade-off [6]; to this
purpose, suitable selection algorithms have been developed [7]. It should be pointed
out, however, that the complexity of the selection algorithms grows at factorial rate.
Hence, for objects with a large number of feature points, it is crucial to perform a
pre-selection of the points that are visible to the cameras at each sample time.

3 Pre-selection algorithm

The pre-selection technique proposed in this paper is based on Binary Space Parti-
tioning (BSP) trees. A BSP tree is a data structure that can be effectively adopted to

BSP-tree Partition
plane

p

Surfaces laid
on the

partition plane

S1 S2

S3

Front and Back
sub-tree link

BSP-node

Fig. 1. BSP-tree structure and BSP-node composition.

represent the 3D CAD geometry of a set of objects [8]. In order to build the tree, each
object has to be modelled as a set of planar polygons; each polygon is characterized
by a set of feature points (the vertices of the polygon) and by the vector normal to
the plane leaving from the object. Without loss of generality, the case of one object
is considered.

A node of the BSP tree is composed by four elements (see Figure 1): the partition
plane, the set of surfaces laid on the partition plane, the link to the front sub-tree, the
link to the back sub-tree.

The partition plane is used to divide the3-dimensional space into two sub-spaces;
it is characterized by a point on the plane and by the unit vector normal to the plane.
The sub-space containing the normal vector is named front sub-space, while the
other is named back sub-space. To the purpose of this work, the partition plane
must be chosen in the set of the planes containing the polygons corresponding to the
object surfaces; hence, it contains at least one polygon of the object. Each node is the
root of two subtrees: the front subtree corresponding to a subset of polygons lying
entirely in the front sub-space, and the back sub-tree, corresponding to a subset of
polygons lying entirely in the back sub-space.

The BSP tree can be built using a recursive procedure described in the following
Pascal-like code:
procedure Build BSP tree(node:BSP tree;polygons:polygon list);

var poly = polygon;
var front surfaces,back surfaces = polygon list;

begin
{get a surface from the list }

poly:= get polygon(polygons);
{add poly to the list of surfaces of the current node }

add to list(node->surfaces,poly);
{evaluate the partition plane }

node->partition plane:= get plane(poly);
{classify remaining polygons with respect to the partition plane }

poly:=get polygon(polygons);
while (poly NOT NULL) do

case classify polygon(poly,node->partition plane)
COINCIDENT:

add to list(node->surfaces,poly);
IN FRONTOF:

add to list(front sufaces,poly);
IN BACKOF:

add to list(back sufaces,poly);
SPANNING:

split polygon(poly,node->partition plane,front surfaces,back surfaces);
end {case }
poly:=get polygon(polygons);

end {while }
if front surfaces NOT EMPTY then

{build front sub-tree }
node->front link:= allocate node();
Build BSP tree(node->front link;front surfaces);

end {if }
if back surfaces NOT EMPTY then

{build back sub-tree }
node->back link:= allocate node();
Build BSP tree(node->back link;back surfaces);

end {if }
end

The functionget polygon() extracts a polygon from the input list of polygons;
the first extracted polygon is used to compute the partition plane (so that it contains
the polygon). Notice that a policy of choice of the partition plane can be imposed
by suitably pre-sorting the list of polygons; the criteria may vary depending on the
application of interest, e.g., achieve a balanced tree. To the purpose of this work, the
partition planes have been chosen so that they do not intersect the remaining polygons
of the list. The functionget plane() computes the equation of the partition
plane for the current node. The functionclassify polygon() determines if the
current polygon is coincident, in front of, in back of, or intersect the partition plane,
in order to complete the list of polygons of the current node and generate the lists of
polygons of the front sub-tree and of the back-subtree. When a polygon intersects the
partition plane, it is split into two polygons using the proceduresplit polygon()
and the resulting parts are added to the corresponding lists. The procedure is recursive
and ends when all the polygons and their parts are placed in a node of the tree.

Once that a BSP tree representation of an object is available, it is possible to
select the feature points of the object that can be visible from a given camera position
and orientation by implementing a suitable visit algorithm of the tree. The algorithm
can be applied recursively to all the nodes of the tree, starting from the root node, as
detailed in the following Pascal-like recursive procedure:
procedure pre-selection(node:BSP tree;view:point;visible points:point list);
begin

if node NOT EMPTYthen
case classify point(view,node->partition plane)

ONTHE PLANE:
pre-selection(node->front link,view,visible points);
pre-selection(node->back link,view,visible points);

IN FRONTOF:
pre-selection(node->back link,view,visible points);
process polygons(node->surfaces,view,visible points);
pre-selection(node->front link,view,visible points);

IN BACKOF:
pre-selection(node->front link,view,visible points);
process polygons(node->surfaces,view,visible points);
pre-selection(node->back link,view,visible points);

end {case }
end

The input variableview is the point of view (corresponding to the image plane
of the camera) from which the current set of visible feature points of the object is
evaluated. The visible points are listed in the variablevisible points , which
contains also the projections of these points on the image plane of the camera.
The functionclassify point() evaluates the position of the point of view with
respect to the partition plane. The core of the pre-selection algorithm is the procedure
process polygons() , which updates the current set of visible points by adding
all the feature points of the polygons of the current node and by eliminating all the
feature points that are hidden by the polygons of the current node.

The procedure is recursive and ends when all the nodes of the tree have been
visited; at the end, the current set of visible points will contain all and only the
points visible from the point of view. Notice that construction of the set proceeds
so that the polygons are added in a sequence corresponding to their distance with
respect to the point of view from the background to the foreground. Moreover, the
code implementing the whole algorithm (visit of the tree and polygons processing)
exhibits a complexityO(N), whereN is the number of polygons of the object [8].

4 Selection algorithm

The pre-selection algorithm does not guarantee that all the visible points are “well”
localizable, i.e., their positions can be effectively measured with a given accuracy.
Moreover, the number of the well localizable feature points may be larger than the
optimal number of points ensuring the best pose estimation accuracy.

To this purpose, a windowing test is adopted first to select the projections of
the feature points that can be well localized. Then, an optimal set of feature points
is identified by using an optimal cost function based on a combination of suitable
quality indices. These must be able to provide accuracy, robustness and to minimize
the oscillations in the pose estimation variables. To achieve this goal it is necessary
to ensure an optimal spatial distribution of the projections of the feature points on
the image plane and to avoid chattering events between different optimal subsets
of feature points chosen during the object motion. Moreover, in order to exploit
the potentialities of a multi-camera system, it is important to achieve an optimal
distribution of the feature points among the different cameras. In this work, the
following indices are considered:

• Spatial distribution index:

Qsi =
1
qi

qi∑

k=1

min
j ∈ {1, . . . , qi}

j 6= k

∥∥pj − pk

∥∥ ,

whereqi is a subset of selected points for thei-th camera,i = 1, 2.

• Angular distribution index:

Qai = 1−
qi∑

k=1

∣∣∣∣
αk

2π
− 1

qi

∣∣∣∣ ,

whereqi is a subset of selected points for thei-th camera,i = 1, 2, αk is the
angle between the vectorpk+1 − pCi and the vectorpk − pCi, beingpCi the
central gravity point of the whole subset of feature points. Theqi points of the
subset are considered in a counter-clockwise ordered sequence with respect to
pCi, with pqi+1 = p1.

• Anti-chattering index:

Qh =
{

1 + ε if Γ = Γopt

1 otherwise

whereε is a positive constant andΓ (Γopt) is the optimal set of points at the
actual (previous) sample time.

• Point distribution indices:

Qe = 1 +
2
q

(
2
q
− 1

) ∣∣∣q1 − q

2

∣∣∣

Qd =
q1/d1 + q2/d2

q/ min{d1, d2} ,

whereqi is the number of points assigned to thei-th camera, anddi is the
distance of thei-th camera form the object,i = 1, 2. The first index ensures
an equal distribution of points among the cameras; the second index takes into
account the distance of the cameras from the object.

The cost function is chosen as

Q = Qh
QeQd

q

(
q1Qs1Qa1 + q2Qs2Qa2

)

and must be evaluated for all the possible combinations of the visible points on
q positions. To determine the optimal set at each sample time, the initial optimal
combination of points is first evaluated off-line. Then, only the combinations that
modify at most one point for camera with respect to the current optimal combination
are tested on line, thus achieving a considerable reduction of processing time.

5 Visual tracking of multiple objects

The visual tracking algorithm for the case of a single moving object is reported
and experimentally tested in [4]. The estimation procedure assumes that a BSP tree
representation of the object is built off-line from the CAD model. This procedure
can be extended to the case of multiple moving objects of known geometry. In
fact, the algorithm can handle in an effective way both self occlusions and mutual
occlusions. To this purpose, two different situations shall be considered: the case of
objects whose parts cannot be interposed, and the case of objects with interposing
parts (e.g., a gripper grasping an object).

1 2

1 2

Pose of Object n

Pose of Object 1

Kalman filter

Vision and

camera system

Features

extraction

Feature points

selection

BSP tree build
(off line)

CAD models

1-2

1 2

Pose of Object n

Pose of Object 1

Kalman filter

Vision and

camera system

Features

extraction

Feature points

selection

BSP tree build
(on line)

CAD models

Fig. 2. Estimation procedure. Left: non interposing objects. Right: interposing objects.

In the first case (see Fig. 2 (left)), it is assumed that a BSP tree representation
of each object is built off-line from the CAD model. A different Kalman filter is
required for each object to estimate the corresponding pose with respect to the base
frame at the next sample time. The procedure for feature points selection has to
modified as follows:
• Step 1:For each camera, an ordered sequence of BSP trees is built, according

to the estimated distance of the objects from the camera, from the farthest to the
nearest.

• Step 2: For each camera, a visit algorithm is applied to each BSP tree of the
sequence to find the set of all the feature points that are visible from the camera.
In particular, for each BSP tree of the sequence, a current set of visible points
is updated, by discarding the feature points of the previous objects occluded by
the current object and by adding the visible feature points of the current object.

• Step 3:For each object, the resulting set of visible points is input to an algorithm
for the selection of the optimal set of feature pointsΓopt for then-camera system.

• Step 4: For each camera and each object, the location of the optimal feature
points in the image plane at the next sample time is computed.

• Step 5:For each camera, a dynamic windowing algorithm is applied to select
the parts of the image plane to be input to the feature extraction algorithm.

At this point, all the image windows of the optimal selected points are elaborated
using a feature extraction algorithm. The computed coordinates of the points in the
image plane, for each object, are input to the corresponding Kalman filter which
provides the estimate of the actual object pose and the predicted pose at the next
sample time used in Steps 1-2.

In the case of multiple objects with interposing parts, the above procedure may
fail because the objects cannot be correctly ordered with respect to the distance from

Fig. 3. COMAU Smart3-S robot carrying the moving object (left); fixed object (right).

the camera. This problem can be overcome, at the expense of computation time
though, by adopting the solution represented in the functional chart of Fig. 2 (right).
As before, a Kalman filter is used for each object to estimate the corresponding
pose with respect to the base frame at the next sample time. Differently form the
previous case, a unique BSP tree representation of all the objects is built on line,
using the CAD model and the estimation provided by the Kalman filters. Hence, for
each camera, the visit algorithm of the tree is applied once to find the set of all the
visible points. Then, Steps 3, 4, and 5 follow. The procedures described above can
be applied also to the case of objects moving among obstacles of known geometry.

6 Experiment

The experimental set-up is composed by a PC with Pentium IV 1.7GHz processor
equipped with two MATROX Genesis boards, two SONY 8500CE B/W cameras,
and a COMAU Smart3-S robot. The robot is used to move one object in the visual
space of the cameras (see Fig. 3 left), while the object on the right of Fig. 3 is
placed on a known position of the workspace; hence the “true” position and the
orientation of the moving object, with respect to the base frame of the robot, can
be computed from joint position measurements via the direct kinematic equation.
The feature points are the corners of the objects, which can be extracted with high
robustness in various environmental conditions; the object carried by the robot has
40 corners while the other has26 corners. The cameras (disposed as in Fig. 3) have
been calibrated with respect to the base frame of the robot. The resolution of each
camera is576× 763 pixels and the nominal focal length of the lenses is16 mm. The
estimation sampling time is limited by the camera frame rate, which is about26 fps.

0 10 20 30 40 50
−0.02

−0.01

0

0.01

0.02

time [sec]

[m
]

0 10 20 30 40 50
−10

−5

0

5

10

time [sec]

[d
eg

]

x

y

z

roll

pitch

yaw

Fig. 4. Estimation errors for the moving object. Top: Position. Bottom: Orientation.

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

Time [sec]

[P
oi

nt
 ID

]

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

Time [sec]

[P
oi

nt
 ID

]

Fig. 5. Visible and selected points of the moving object for camera 1 (left) and 2 (right).

To evaluate the capability of the proposed algorithm in coping with occlusions,
an experimental test has been realized where the fixed object temporarily occludes
the moving object. The trajectory of the moving object has a maximum linear
velocity of about3 cm/s and a maximum angular velocity of about3 deg/s; the fixed
object (see Fig. 3 left) is placed in the pose (oo = [1.102 −0.504 0.794]Tm,
ϕo = [−85.7 59.2 48.7]Tdeg).

The time history of the estimation errors for the moving object is shown in
Fig. 4. Notice that the error is small also in the presence of occlusions; moreover,
the errors components remain of the same order of magnitude, thanks to the use of
two cameras. In Fig. 5 the output of the selection algorithm, for the two cameras,
is reported. For each of the40 feature points of the moving object, two horizontal
lines are considered: a point on the bottom line indicates that the feature point was
classified as visible by the pre-selection algorithm at a particular sample time; a point
on the top line indicates that the visible feature point was chosen by the selection
algorithm. In Fig. 6 the total number of the visible, selected and localized points
of the moving object are shown. Notice that

∑
i qi = 8 feature points are selected

0 10 20 30 40 50
0

5

10

15

20

25

30

Time [sec]

[n
um

be
r]

0 10 20 30 40 50
0

5

10

15

20

25

30

35

Time [sec]

[n
um

be
r]

Fig. 6. Number of visible (blue), selected (green) and localized (red) points of the moving
object for camera 1 (left) and 2 (right).

at each sample time, in order to guarantee at least five or six measurements in the
case of fault of the extraction algorithm for some of the points. Both Figs. 5 and 6
evidence the presence of occlusions in the first and in the last part of the experiment.

7 Conclusion and Research Perspective

The algorithm presented in this paper may represent a starting point to solve an
important open issue for robotic applications: the visual tracking of objects in an
unstructured and dynamic environments. A typical application may be the grasping
of a moving object guided by a fixed visual system. For this scenario, the proposed
methodology may be used to develop a new strategy of automatic detection of the
occlusions that happen during the grasp execution, which can improve the task
reliability. Similar problems may arise in cooperative robots applications.

References
1. S. Hutchinson, G.D. Hager, and P.I. Corke, “A tutorial on visual servo control,”IEEE

Trans. on Robotics and Automation, vol. 12, pp. 651–670, 1996.
2. J.W. Wilson, C.W. Hulls, and G. Bell, “Relative end-effector control using cartesian

position based visual servoing,”IEEE Trans. on Rob. and Aut., vol. 12, pp. 684–696, 1996.
3. V. Lippiello, B. Siciliano, and L. Villani, “Position and orientation estimation based on

Kalman filtering of stereo images,”IEEE Conf. on Control Applications, pp. 702–707, 2001.
4. V. Lippiello, B. Siciliano, and L. Villani, “Objects motion estimation via BSP tree modeling

and Kalman filtering of stereo images,”IEEE Conf. on Rob. and Aut., pp. 2968–2973, 2002.
5. T.W. Drummond and R. Cipolla, “Real-time tracking of complex structures with on-line

camera calibration,”British Machine Vision Conf., pp. 574–583, 1999.
6. J. Wang and J.W. Wilson, “3D relative position and orientation estimation using Kalman

filter for robot control,”IEEE Conf. on Robotics and Automation, pp. 2638–2645, 1992.
7. F. Janabi-Sharifi and W.J. Wilson, “Automatic selection of image features for visual ser-

voing,” IEEE Trans. on Robotics and Automation, vol. 13, pp. 890-903, 1997.
8. M. Paterson and F. Yao, “Efficient binary space partitions for hidden-surface removal and

solid modeling,”Discrete and Computational Geometry, vol. 5, pp. 485-503, 1990.

