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Abstract. A Cayley map for the special Euclidean group SE(3) is in-
troduced to relate, for a soft continuum robot, the Lie algebra of inter-
nal deformations with the Lie group of rigid–body motions. This Cayley
map is used for approximated and exact kinematic shape reconstruction
of soft continuum robots, under the hypothesis of constant deformations.
This map could be used for deriving computationally efficient interpo-
lation schemes for soft robots, since it does not involve transcendental
functions as those introduced by the exponential parametrization of soft
robot kinematics.
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1 Introduction

A soft continuum robot is a continuously deformable robot with an internal
elastic structure [1]. Over the recent years, several geometrically exact models
which do not involve approximation on kinematic variables have been proposed
for describing their mechanics [2–9]. Despite their proven accuracy, they are
still computationally inefficient for real–time simulation or control; indeed, re-
cent model–based controllers for soft continuum robots still use approximated
models [10, 11].

In this work, we propose to use the Cayley map on SE(3) for kinematic
parametrization and shape reconstruction of soft robots. Previous models have
used the exponential map on SE(3) to provide exact reconstruction of the kine-
matics of soft robots under the hypothesis of constant deformations [5–9]. The
Cayley map is appealing from the computational point of view since it offers
rational non–linearities, as opposed to the trascendental non–linearities of the
exponential map.

The Cayley map for the group of rigid–body motions SE(3) has been intro-
duced in [12]. In the references [5–9] the authors have shown that rigid–body
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Fig. 1. Geometric description of the reference curve of a soft continuum arm.

transformations govern the three–dimensional motion of a soft arm through its
internal deformations. This means that rigid–body motions still play a relevant
role even for soft robots. As the Cayley map can be used for parametrization of
motions [13, 14], here we will show that the Cayley map can be either used for
kinematic reconstruction of low deformation robotic arms or for exact kinematic
reconstruction of robots with generic internal deformations. In the literature,
there is no evidence of using the Cayley map for local parametrization of soft
robot kinematics.

2 Cayley transform

The Cayley transform is a function which relates a Lie group with its Lie algebra,
as the exponential map. It is formally defined as

cay(ã) = (I + ã)(I − ã)−1 =

= (I − ã)−1(I + ã) = A
(1)

where A denotes an element belonging to a Lie group G and ã ∈ g is its corre-
sponding Lie algebra, while I is the identity matrix.

3 Kinematics of soft robots using the Cayley transform

Let a curve Γ parametrized by the material abscissa α ∈ [0, L] be the reference
curve of a continuum arm (see, e.g. Fig. 1). Let u(α) ∈ R3 be the position
vector of a point P belonging to Γ . The unit tangent vector t(α) ∈ R3, the unit
normal vector n(α) ∈ R3 and the unit binormal vector b(α) ∈ R3 constitute a
local triad on the reference curve. Therefore, a rotation matrixR ∈ SO(3) can be
introduced asR(α) = [t(α) n(α) b(α)] for representation of its orientation. The
configuration (i.e., position and orientation) along the curve can be described by
using the 4× 4 homogeneous matrix H ∈ SE(3) as

H(α) = H(R(α),u(α)) =

[
R(α) u(α)
01×3 1

]
(2)
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The homogeneous matrix in (2) evolves along the material abscissa α according
to the differential kinematic relationship

H ′(α) = H(α)f̃(α) (3)

where (·)′ denotes the derivative with respect to α. The invariant vector field

f̃(α) ∈ se(3) is called deformation twist [7, 9], and it is given by

f̃(α) =

[
f̃ω(α) fu(α)
01×3 0

]
(4)

where f̃ω ∈ so(3) is a 3 × 3 skew–symmetric matrix of angular deformations
(torsion and bending deformations) and fu ∈ R3 is the 3 × 1 vector of linear
deformations (axial and shear deformations). The deformation twist is a Lie
algebra element belonging to se(3); by using the isomorphism se(3) ' R6, we

associate an axial vector f ∈ R6 to f̃ ∈ se(3), and we refer to it as the six–
dimensional deformation vector.

When f does not depend on α (i.e., in case of constant deformations), the
differential kinematics in (3) can be integrated exactly by applying the expo-

nential map operator on SE(3) to the deformation twist f̃ [7, 9]. As a matter
of fact, the exponential map introduces a local parametrization that allows to
describe the behavior of elements belonging to a nonlinear space, namely the Lie
group SE(3), with an element belonging to a linear space, the Lie algebra se(3).

According to (1), also the Cayley map can be used to relate a Lie group to
its Lie algebra. Therefore, in the following we will see how to use the Cayley
map for deformation–based kinematic reconstruction of soft robotic arms.

3.1 Deformation–based kinematic reconstruction using the Cayley
map on SE(3)

Differently from the exponential map operator, the Cayley map depends on the
representation of SE(3), i.e. there exist different Cayley maps for the 4 × 4
representation and the 6× 6 adjoint representation of SE(3) [12]. In this work,
we use the Cayley map for the 4× 4 representation of SE(3).

By applying f̃ in (4) to (1) for α ∈ [0, L], and by introducing a scalar value
κ (which can have only two values, κ = 1 and κ = 1/2), we obtain the Cayley
transform on SE(3) which maps the deformations to rigid–body motions as

caySE(3)(αf̃) = (I4×4 −
1

2κ
αf̃)−1(I4×4 +

1

2κ
αf̃) = M(α) ∈ SE(3) (5)

where I4×4 is the 4× 4 identity matrix. Notice that the formal definition of the
Cayley map in (1) is recovered by using κ = 1/2. The reason for introducing the
scalar value κ will be clear in Sec. 3.2. As the exponential map, the Cayley map on
SE(3) returns an element belonging to SE(3); however, while the exponential
map applied to the deformation twist returns exactly the element H(α), the
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Cayley map applied to the deformation twist returns a different element, namely
M(α). We can express (5) in a compact form as

caySE(3)(f̃) =

[
caySO(3)(f̃ω) dcaySO(3)(f̃ω)fu)

01×3 1

]
(6)

which has a shape similar to the exponential map on SE(3) (see [7], Eq. 10). In
(6), caySO(3)(·) is the Cayley map on SO(3), the group of rotation matrices: this

map can be obtained by introducing f̃ω in (1); by considering again the scalar
κ as done in (5), we have

caySO(3)(αf̃ω) = (I3×3 −
1

2κ
αf̃ω)−1(I3×3 +

1

2κ
αf̃ω) = B(α) ∈ SO(3) (7)

where I3×3 is the 3 × 3 identity matrix. Again, B(α) in (7) is different from

R(α), which is obtained by applying the exponential map on SO(3) to f̃ω. The

inverse of (I3×3−α/2κf̃ω) in (7) can be expressed through the Neumann series

(I3×3 −
1

2κ
αf̃ω)−1 =

∞∑
i=0

1

2κ
αf̃

i

ω (8)

Let us remember that all 3× 3 skew–symmetric matrices satisfy the cubic equa-
tion

f̃
3

ω = −||fω||2f̃ω (9)

where ||fω|| is the norm of the vector fω ∈ R3 associated to the Lie algebra

f̃ω ∈ so(3). By developing (8) with the relationship (9), and by inserting the
result in (7), the Cayley map on SO(3) takes the form

caySO(3)(αf̃ω) = I3×3 +
4κ

4κ2 + ||fω||2
(αf̃ω + αf̃

2

ω) (10)

Being quadratic in f̃ω, this expression can be seen as the Cayley counterpart of
the Rodrigues’ formula for the exponential map on SO(3) (see [7], Eq. 11); with
respect to the latter, (10) does not involve trascendental functions: this is a great
advantage from the computational point of view. Furthermore, dcaySO(3)(·) in
(6) also involves only rational non–linearities, as it is given by

dcaySO(3)(αf̃ω) = caySO(3)(αf̃ω) + I3×3 (11)

While the exponential map operator on SE(3) applied to the deformation
twist returns the exact shape of the robot in case of constant deformations, the
Cayley map on SE(3) applied to the deformation twist returns a matrix M
which is different from H: the point is to understand when the Cayley map,
which offers computational advantages, can be used in place of the exponential
map.



The Cayley parametrization of soft robot kinematics 5

3.2 Geometric interpretation

Let us consider a matrix E, and let exp(E) denotes its matrix exponential as

exp(E) =

∞∑
i=0

Ei

i!
(12)

If ||E|| is not too large, a good approximation of (12) is given by the (1,1)
diagonal Padè approximants [15] equals to

appr(1,1)(E) = (I − 1

2
E)−1(I +

1

2
E) (13)

By comparing (13) with (1), we observe that the Cayley transform is, except
for a scalar coefficient, the (1,1) diagonal Padè approximation of the exponen-
tial map. In order to have an exact correspondence between the Cayley map
and the diagonal Padè approximation of the exponential map, often the Cay-
ley map in (1) is defined with the coefficient 1/2. This is the reason why we
have introduced the scalar factor κ in (5) and (7). In the following, we use this
nomenclature for the Cayley transform:

– κ = 1/2: standard Cayley transform
– κ = 1 : modified Cayley transform (coincident with the Padè approximants)

Coming back to the kinematics of a soft continuum arm, we can state that
the Cayley transforms can be used for approximating the position and orienta-
tion fields of the arm when ||f̃ || is not too large, i.e. in case of low, yet finite
deformations of the arm. Under this hypothesis, M in (5) gives a good approx-
imation of H in (2), and the approximated solution better reflects the exact
solution of the kinematics when the deformed configuration of the arm is closer
to the reference configuration (as caySE(3)(·)→ expSE(3)(·) when || · || → 0).

In summary, the Cayley map can be seen as a second–order approximation of
the exponential map. However, being related to the diagonal Padè approximants,
this gives a better approximation of the function than truncating its Taylor series
in (12) to the second order.

As the exponential map has been used for interpolation schemes of soft robots
when the exact kinematics need to be reconstructed, the Cayley map could be
used instead for interpolation schemes of soft robots in case of low, yet finite
deformations. Since the Cayley map is rational, meaning that it does not involve
trascendental functions, it could be advantageous in numerical applications as
computing trascendental functions is more time consuming.

3.3 Relationship between Cayley and exponential discretization

Does it exist a twist matrix ζ̃ ∈ se(3) such that its use as argument of the Cayley
map in (6) returns the exact kinematics H(α) in case of constant deformations?

Such twist matrix ζ̃ should verify the equality caySE(3)(ζ̃) = expSE(3)(f̃).



6 Stanislao Grazioso et al.

Bauchau and Choi in [14] found the Cayley vector of parameters which pro-
duce the same rigid body motion of the exponential parametrization. We apply
this results to deformation vectors as[

ζu
ζω

]
=

[
λI3×3 τλ

′I3×3
03×3 λI3×3

] [
fu

fω

]
(14)

with

λ = 2κ
tan(||fω||/2)

||fω||
τ = ufω = T T

SO(3)(fω)fufω

(15)

where T SO(3)(·) is the tangent operator on SO(3), obtained as the transpose of
the derivative of exponential map on SO(3) (see [7], Eq. 13).

Therefore, the matrix ζ̃ can be interpreted as a pseudo–deformation twist,
whose application to the Cayley map (6) returns H(α), i.e. the exact integration
of the kinematics is achieved.

From (14) it is also clear that, for small values of ||f ||, ||ζ|| → κ||f ||. When
the modified Cayley transform is used (κ = 1), the pseudo–deformation twist ap-
proaches the deformation twist. This is another reason why the modified Cayley
transform would be preferable over the standard Cayley transform.

Equation (14) can be regarded as a change of coordinates between physics–
based coordinates and pseudo–physics coordinates. It can be useful for practical
implementation of soft robot models. Indeed, the recently proposed deformation–
based approaches can be used to reconstruct the shape of a soft continuum arm
from the internal (and measurable) deformations. The use of the exponential
mapping here is a natural way for recovering the kinematics, even if it involves
the computation of multiple trascendental functions. An alternative approach
would be as follows: (i) measuring the internal deformations f ; (ii) computing the
pseudo–vector of deformations ζ using (14); (iii) reconstructing the kinematics
using (6). This approach involves an additional step, but it uses trascendental
functions only in the change of coordinates.

4 Examples

In this section we consider two illustrative examples of soft continuum arms
taken from [7]. For each example, we reconstruct the kinematic shape using the
modified Cayley transform applied to the deformation twist and we compare the
kinematic reconstruction with respect to the one obtained using the exponential
mapping. The output of each example is an error e which defines the position
distance between the two reconstructions as

e(α) =

√√√√ 3∑
i=1

(ui,cay(α)− ui,exp(α))2 (16)

Obviously, for both the examples, computing the pseudo–deformation twist us-
ing (14) and applying it to (6) returns the exponential reconstruction.
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Fig. 2. Errors between the Cayley and the exponential shape reconstructions of soft
continuum arms with constant curvature. 1: K = π/10 m−1;. . . ; 10: K = πm−1.

4.1 Planar bending motion

The planar bending motion is achieved by a continuum arm with constant cur-
vature, i.e. a mechanical arm which has internal deformation equals to f =
[1 0 0 0 0 K]T , being K the degree of curvature. We consider a mechanical
arm of length L = 0.5 m and varying curvature K = π/10 : π/10 : π m−1. The
error plot is given in Fig. 2. The maximum distance between the two models
occurs, as expected, for the maximum curvature considered (K = πm−1); the
maximum error occurs at the tip of the arm, and it is approximately equal to
e = 0.08 m, which is about 16% of the total length of the robot. However, till
the sixth value of curvature, the maximum error at the tip is less than 10%, if
compared to the total length of the robot. We can consider this value as a bar-
rier threshold beyond which the Cayley discretization using deformation twists
would not be acceptable.

4.2 Spatial helical motion

A continuum arm subject to constant curvature and torsion produces spatial
helical motions. In this case, the internal deformation vector is equal to f =
[1 0 0 T 0 K]T , being T the degree of torsion and K the degree of curvature as
before. We consider again a mechanical arm of length L= 0.5 m. The deformation
parameters are: fixed torsion T = 3 m−1 and varying curvature K = 0 : π/2 : 2π
m−1. The error plot is given in Fig. 3. Again, the errors increase as the norms of
the deformation vectors increase, and higher errors happen at the tip of the robot.
Compared to before, having here spatial motions, we observe greater errors. In
this example, only the first two simulations are under the barrier threshold of
tip error below 10% of the total length of the robot.
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Fig. 3. Errors between the Cayley and the exponential shape reconstructions of soft
continuum arms with constant curvature and torsion. 1: T = 3 m−1 and K = 0;. . . ; 5:
T = 3 m−1 and K = 2πm−1.

5 Conclusions

In this paper we have presented an initial idea of using the Cayley transform
for parametrization of soft robot kinematics. We have shown that the Cayley
map can be seen as a second–order approximation of the exponential map, and
it can result useful when dealing with low deformations robots. Neverthless, an
appropriate change of deformation coordinates allows to use the Cayley map
for exact reconstruction of soft robot shapes. Thus, the Cayley map could be
potentially used also as an alternative to the exponential map to recover the exact
kinematics, with the advantage of reducing the use of trascendental functions.

The kinematic model of compound continuum robots will arise naturally from
this modeling framework, through the product of n composite Cayley transforms
as caySE(3)(ζ̃) = caySE(3)(ζ̃1)·· · ··caySE(3)(ζ̃n). Indeed, we know that successive
rigid–body transformations can be described by successive exponentials of twists
(i.e. Product of exponential formula) [16]. In the same way, since the Cayley map
is a second–order approximation of the exponential map, Cayley transforms of
twists can be used to describe successive rigid–body transformations, but with
low, yet finite variations. There is no evidence of a ”Product of Cayley” formula
for rigid robotics as the joint twists usually undergone large motions, and thus the
exponential parametrization is required. For soft robotics, indeed, we consider
the rigid body transformations of the cross–sections: if the deformations are
low, the cross sections do not undergone large motions, and thus, the kinematics
can be recovered with the Cayley map. Hence, this map can be used as shape
function of efficient finite element methods for soft robots. Furthermore, the
Cayley map could also offer computational advantages for time integration of
soft robot dynamics.
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