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Abstract

This paper is aimed at presenting a survey on
a class of parallel force/position control schemes
which have been proposed in the latest five years
by the author and co-workers. Several control
schemes have been devised under this framework
for the case of contact with a compliant planar
surface. A common feature of such schemes is
that, at the equilibrium, the force can be shown
to be regulated to a desired constant value at the
expense of a position error which depends on envi-
ronment stiffness. If tracking of end-effector posi-
tion along the unconstrained task space directions
is desired, a passivity-based control scheme can be
used which can be naturally made adaptive with
respect to manipulator dynamic parameters. On
the other hand, if only regulation of position is
desired, a simple PID control can be used which
can be made adaptive as well in the case of im-
perfect gravity compensation, and can even avoid
velocity measurements.

1 State-of-Art

Control of interaction between a robot manipula-
tor and the environment is crucial for successful
execution of a number of practical tasks where
the robot’s end effector has to manipulate an ob-
Jject or perform some operation on a surface. The
specific feature of robot tasks such as polishing,
deburring, or assembly, demands control also of
the exchanged forces at the contact. The contact
force is thus the quantity describing the state of
interaction in the most complete fashion, and the
interaction control problem [47] has attracted a
wide number of researchers in the last decade.
Interaction control strategies can be grouped in
two categories; those performing open-loop force

control and those performing direct closed-loop
force control. The main difference between the
two categories is that the former achieve indi-
rect force control via closed-loop position control,
without explicit closure of a force feedback loop;
the latter, instead, offer the possibility of control-
ling the contact force to a desired value, thanks
to the closure of a force feedback loop.

To the first category belong compliance (or
stiffness) control [31, 33] and impedance control
schemes [18, 20], where the position error is re-
lated to the contact force through a mechanical
stiffness or impedance of adjustable parameters.
A robot manipulator under impedance control is
described by an equivalent mass-spring-damper
system with the contact force as input. The re-
sulting impedance may be linear or nonlinear, de-
pending on the fact whether force feedback is used
or not.

The most common strategy belonging to the
second category is the hybrid position/force con-
trol which aims at controlling position along the
unconstrained task space directions and force
along the constrained task space directions. A
selection matrix acting on both desired and feed-
back quantities serves this purpose for typically
planar contact surfaces [32], whereas the explicit
constraint equations have to be taken into ac-
count for general curved contact surfaces [50, 25,
26, 14, 2, 49).

An alternative strategy still in the second cat-
egory is the inner/outer position/force control
where, along each constrained task space direc-
tion, an outer force control loop is closed around
the inner position control loop which is typically
available in a robot manipulator [15]. By a suit-
able design of the force control action (typically
an integral term), it is possible to achieve regula-
tion of the contact force to a desired value. The




inclusion of an integral action in the force control
loop, in fact, guarantees removal of the steady-
state force error {46] and may provide robustness
with respect to force measurement delays [45, 48].

A new strategy has been recently proposed,
that is, the so-called parallel force/position con-
trol [8]. The key concept of this strategy is
to combine the simplicity and robustness of the
impedance and inner/outer position/force con-
trol schemes with the ability of controlling both
position and force typical of the hybrid control
schemes. In order to embed the possibility of
controlling motion along the unconstrained task
space directions, a desired position can be input
to the inner loop of an inner/outer position/force
control scheme. The result is two control actions,
working in parallel; namely, a force control ac-
tion and a position control action. In order to
ensure force control along the constrained task
space directions, the force action is designed so
as to dominate the position action [6].

2 Modeling

2.1 Manipulator Dynamics

In order to study interaction with the environ-
ment, it is worth considering the dynamic model
of a robot manipulator in the task (operational)
space. This can be written in the form

B(z)e +C(z, )z +g(z)=u-f, (1)

where z is the (m x 1) vector of end-effector lo-
cation, B is the (m x m) symmetric and positive
definite inertia matrix, C is the (m x 1) vector
of Coriolis and centrifugal generalized forces, g
is the (m x 1) vector of gravitational generalized
forces, u is the (m x 1) vector of driving general-
ized forces, and f is the (m x 1) vector of contact
generalized forces exerted by the end effector on
the environment: all task space quantities are ex-
pressed in a common reference frame.

The end-effector direct and differential kine-
matics are defined by

z = k(q) @
&= 9%%}‘32@ = Jala)d 3)

where g is the (n x 1) vector of joint variables and
J 4 is the (m x n) manipulator analytical Jacobian
matrix [34]. The (nx1) vector T of joint actuating
generalized forces is computed as

T =J1(gu. (4)
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When m = n and the manipulator moves in a
singularity-free region of the workspace, the vec-
tor of operational variables z constitutes a set
of Lagrangian generalized coordinates and B as-
sumes the meaning of a true inertia matrix. In-
stead, in the case of kinematically redundant ma-
nipulators (m < n), B is only a pseudo inertia
matrix [22].

The following notable properties of the task
space dynamic model (1) can be established from
similar properties of the joint space dynamic
model.

1. The matrix B is symmetric and positive defi-
nite. If A, (Aas) denotes the minimum (max-
imum) eigenvalue of B, then

O < Anl < B(z) < Ay, (5)

where I is the (m x m) identity matrix; in
the case of all revolute joints, it is Ay < oo.

2. There exists a choice of the matrix C such
that the matrix

N(z,%) = B(z,z) - 2C(z,z) (6)

is skew-symmetric [23, 41). This also implies
that

B(z,%) = C(x,2) + CT(z,2). (7)

Further, the matrix C is upper-bounded in =
and linear in ; hence, a constant 0 < k¢ <
oo exists such that

IC (=, &)l < kclizll- (8)

3. The gravity force vector g can be thought of
as given by

_ (=)

g(x) = a2 (9)
where U(z) is the gravitational energy in the
task space that is bounded for any . A help-
ful property of the gravity term is that g has
bounded partial derivatives [44], i.e.,

dg(z)
I oz <y (10)

for some 1 > 0. This also implies that

llg(z1) — g(@)ll < Wllzy —zafl (1)

for any x, and z;.

H
'r



80

4. The dynamic model (1) is linear in terms of a
suitable set of manipulator and load constant
parameters [28], i.e.,

B(z)Z + C(z, &)z + g(z) = Y (=, &, &)x

(12)
where Y (x, &, &) is an (m X p) matrix and
7 is a (p x 1) vector of parameters which de-
pend on link masses, first moments of inertia
and inertia tensors. With specific reference
to the gravity term, the vector g in (1) can
be written in the form

9(z) = G(x)6 (13)

where G(z) is an (m x r) matrix and 8 is
an (r x 1) vector of manipulator and load
parameters; the dimension r is smaller than
p, since the gravity term depends only on link
masses and first moments of inertia.

The above properties will be used to derive
parallel force/position control schemes other than
the basic inverse dynamics parallel control.

In the remainder, the attention is restricted to
the case of nonredundant nonsingular manipula-
tors with m = n = 3, i.e., only translational mo-
tion and force components are considered; then,
x denotes the end-effector position.

2.2 Environment

Accurate modeling of the contact between the
manipulator and the environment is usually diffi-
cult to obtain in analytic form, due to complexity
of the physical phenomena involved during the in-
teraction. It is then reasonable to resort to a sim-
ple but significant model, relying on the robust-
ness of the control system in order to absorb the
effects of inaccurate modeling. Following these
guidelines, the case of an environment constituted
by a frictionless and elastically compliant plane is
analyzed. The choice of a planar surface is moti-
vated by noticing that it is locally a good approx-
imation to surfaces of regular curvature [7]. The
total elasticity, due to end-effector force sensor
and environment, is accounted through the com-
pliance of the plane. Friction effects are neglected
within the operational range of interest.

With the above assumptions, the model of the
contact force considered takes on the simple form

f=K(z - z), (14)

where « is the position of the contact point, =g is
a point of the plane at rest, and K is the (3 x 3)

%
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constant symmetric stiffness matrix of rank 1; ¥

note that Eq. (14) holds only when the end ef-

fector is in contact with the environment and all

quantities are expressed in the common reference .

frame. It is worth considering the rotation matrix -

expressing the orientation of the contact frame
with respect to the reference frame
R=(t; t; n) (15)
where n is the unit vector normal to the contact
plane, and t;,t; are two orthogonal unit vectors
lying in the plane. In view of (15), the stiffness
matrix can be written as
K = Rdiag{0,0,k}RT = knnT, (16)
where k > 0 is the stiffness coefficient.

The elastic contact model (14) and (16) sug-
gests that a null force error can be obtained only
if f4 = fan. If no information about the ge-
ometry of the environment is available, i.e., the
direction of n is unknown, the null vector can be
assigned to fy that is anyhow in the range space
of any matrix K. Analogously, it can be recog-
nized that null position errors can be obtained
only on the contact plane, while the component
of = along n has to accommodate the force re-
quirement specified by f4; thus, 4 can be freely
reached only in the null space of K, i.e., along
the unconstrained directions of the task space.

3 Parallel Control

The underlying philosophy of the parallel control
approach is to combine the simplicity and robust-
ness of the impedance control and the inner/outer
position/force control with the capability of con-
trolling both force and position of the hybrid con-
trol. This is realized by designing two control
loops —one in position and one in force— act-
ing in parallel along each task space direction.
Conflicts between position and force actions are
handled through a rule-based priority strategy.
A physical analysis of the interaction leads to
recognizing that dominance of the force control
loop over the position control loop should be
achieved so as to accommodate unplanned con-
tact forces in any situation. The most natural
way to implement the sought dominance is to
use a PI force control loop working in parallel
to a PD position control loop. In this respect,

the scheme can be regarded as an extension of .
an impedance control scheme (with added direct :




force control capabilities) and an inner/outer po-
sition/force control scheme (with improved posi-
tion control capabilities). At the same time, force
and position controlled directions are not estab-
lished a priori in the parallel control, as instead in
the hybrid control; full sensor measurements can
thus be exploited without any task-based filtering
action.

The task planning provides force or position
references along suitable task space directions, as
in the hybrid control case. A perfect planning
obviously makes the task successful, but contact
is safely handled by the parallel control even in
the case of planning errors. Recovery from im-
perfect planning is made possible thanks to the
force dominance rule.

3.1 Inverse Dynamics

According to an inverse dynamics concept with
contact force sensor measurements, the vector of
driving forces in (1) can be synthesized as

u = B(z)a + C(z, &)z + §(z) + f, 17)

where the hats denote the available estimates of
the dynamic terms B, C, g, and f is the mea-
sured contact force. Substituting control (17) into
model (1), under the assumption of perfect dy-
namic compensation and exact force cancellation,
gives

E=a (18)
that is a linear decoupled system expressing a re-
solved acceleration.

Let &4 and fz denote the desired values of po-
sition and force, respectively. According to the
parallel control approach, the new control input
is designed as the sum of a position control action
and a force control action; namely, as [6]

a=a;+ay (19)
where

a. = &4+ m; kpAz +m7'kpAz (20)
t

a; =m; krAf +m;'k;| Afdoe  (21)
0

where Az = x4 — x is the position error, Af =
fa— f is the force error, mg is a desired mass, and
kp.kp,kr, k1 > 0 are suitable feedback gains.
Substituting (19) with (20) and (21) in (18) yields

t
m¢Ai+kDAi+kpAa:+kpA,f+k1/ Afdo =0
0
(22)
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which reveals that, thanks to the integral action,
Af is allowed to prevail over Az at steady state.

Assuming that the desired force is aligned with
the normal to the contact plane and contact is not
lost, the stability analysis of the system (1) under
the inverse dynamics parallel control (17), (19),
(20) and (21) with the environment (14) and (16)
can be developed according to classical linear sys-
tems theory. In detail, plugging (14) in (22) gives

mai+kpa+(kpI + kpknnT)x

t
+k1knnT/ zdo (23)

0
= myEq+kpzat+kpxq

t
+kp(fa+k ﬂﬂTﬂ:o)+k;f(.fd + knnTxo)do
0

which represents a third-order linear system,
whose stability can be analyzed by referring to
the unforced system, i.e., by setting to zero the
right-hand side of (23). According to (15), pro-
jection of the position vector on the contact frame

yields
I
RTz = | z, (24)
In

which leads to the system of three scalar decou-
pled equations

mayi) +kpt;+kpz1 =0 (25)

mais + kpis + kpxa =0 (26)
Myl + kDin. + (kP + kpk)l:n (27)

t
+k;k[ Tndr =0
0

revealing that a stable behavior is ensured by a
proper choice of the feedback gains kp,kp, kr, kr
for the third equation. The following remarks are
in order [10}:

o Stability is obtained independently of the ac-
tual normal direction to the plane; this es-
sential feature of the parallel approach allows
designing the controller based on the contact
stiffness coefficient while the actual contact
geometry is taken into account only at the
planning level.

¢ The decoupled dynamics of the system (23)
derives from structural properties of the par-
allel control scheme by virtue of the contact
force measurement; this is different from the
hybrid approach where a decoupled dynam-
ics is imposed by the control law on the basis
of the environment model.
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4 Force Regulation and
Position Tracking

The above parallel force/position control scheme
is based on an inverse dynamics concept and, as
such, is sensitive to the effects of unmodelled dy-
namics or disturbances.

4.1 Passivity-based control

For the motion control problem, it has been ar-
gued that passivity-based controllers are expected
to have enhanced robustness with respect to in-
verse dynamics controllers, since they do not rely
on the exact cancellation of nonlinear terms [1].

In the following, a passivity-based parallel con-
trol scheme is presented where, like in the case of
motion control, the resulting control law is com-
posed of a nonlinear model-based term and a lin-
ear compensator action. A functional expression
of the reference vector is established to be used
in the controller which is related both to the end-
effector position error and to the contact force
error. This is conceptually different from pre-
vious passivity-based hybrid force/position con-
trollers [24] where each component of the refer-
ence vector is related either to a position error
or to a force error in respect of the task space
selection mechanism.

Consider the following control law

u = B(z)i + C(z,&)r +§(z) - kp(& —r) + f,
' (28)
where the hats denote the estimates, r is a (3 x 1)
reference vector, and kp > 0.
Assuming that B, C, g have the same func-
tional form of B, C, g, the control law (28) can
be rewritten, in view of (12), as

u=Y(z,z,r, )% —kp(z-r)+ f. (29)
Setting

r=x-e (30)

r=&-—e (31)

where e is a suitable error vector, and combining
(1) with (29) gives
B(z)e + C(z,z)e + kpe =Y ()& (32)
where ¥ = 7 — 7 is the parameter error vector.
From passivity theory and the skew symmetry
of the matrix in (6), it is well known that if the
mapping —e + Y (-)¥ is passive and Y ()7 is

bounded, then e — 0 as ¢ — oo [29]. Thus, the °
key point is to find an error vector e related to
the force and position errors, so that the force and
position errors are the outputs of an exponentially .
stable, strictly proper filter whose input is e [16].

Let then z,; denote the time-varying desired
end-effector position with bounded derivatives up
to the second order, and f; denote the constant
desired force. Imposing a constant force is not a
limitation from a practical viewpoint, since typi-
cal contact tasks require force regulation to a de-
sired amount.

A keen choice for the error vector in (32) is

e=(s+kz(s)) Az + s~ ks(s)Af (33)
where s is the Laplace variable and k. (s), ky(s)
denote the transfer functions of the position and
force compensators to be designed. It is worth
pointing out that, in view of (30) and (31),
k:(s) and ky(s) in (33) must have relative degree
greater than or equal to 0 for the implementation
of the control law (28) with only measurements
of position, velocity and force.

The first term on the right-hand side of (33) is
the same as in typical passivity-based motion con-
trol schemes. The presence of an integral action
in the second term is motivated by the desire to
achieve a null steady-state force error at the ex-
pense of a finite steady-state position error along
the constrained task space direction, on condition
that a suitable choice of k.(s) and k(s) is made.
It is assumed that k.(s) does not have poles at
the origin.

By virtue of (14) and (16), Eq. (33) can be ef-
fectively decomposed into the component along n
and the components on the contact plane. Hence,
the analysis is reduced to the following three (one
+ two) equations:

en = (8 + kz(8))Azn + 57 ks (s)Afn (34)
e = (8 + k2(3))Ame — s ks (s)fae, (35)

where, with obvious notation, Eq. (34) involves
the normal components of the force and position
vectors, while Eq. (35) involves the components
on the plane. Notice that the contact model (14)
and (16) implies f; = 0; hence it is reasonable to
choose f4s = 0. As emphasized in the previous
section, if the direction of n is unknown, then it
is advisable to choose f; = 0.
The position along the normal direction is given
by
Tn =k Afpn + k7 fan + 2on.

(36)




From (34) and (36), it follows that
Afn = k(9(s)en+h(s)(Tan—k " fin—20,)) (37)

where
8

9() = F7 k=(s)s + kks(s) (38)
_ (s + kz(3))
M) = kv k) @Y
Further, Eq. (35) with f4; = 0 gives
A:Bg = met‘ (40)

Notice that, since k.(s) and k;(s) have rela-
tive degree greater than or equal to 0, both g(s)
and 1/(s + kz(s)) have relative degree 1, whereas
h(s) is proper. Therefore, k.(s) and ks(s) must
be chosen so that the transfer functions g(s) and
1/(s + kz(s)) are both exponentially stable. In
that case, from (39), also h(s) is exponentially
stable.

On the other hand, the second term on the
right-hand side of (37) plays the role of a distur-
bance on the force error along the normal. Since
h(s) possesses at least a zero at the origin, the
effect of a constant disturbance is rejected.

It can be demonstrated that, in the known pa-
rameter case (T = 0), if k-(s) and ky(s) are cho-
sen so that both g(s) and 1/(s + k. (s)) are expo-
nentially stable and the poles of k. (s) and sk¢(s)

- have all negative real parts, then Az;, Az, — 0

as { ~ oo and all signals in the system remain
bounded. Further, if 4, is a constant, then
Afn — 0 as t — oco. The proof can be found
in [39] and is based on typical passivity argu-
ments.

On the other hand, in the unknown parameter
case (7 # 0), it is sufficient to add to the control
law (28), the parameter adaptive law

#=-I'YT()e (41)

where I' is a (p x p) symmetric, positive definite
matrix. It can be shown that the same result is
recovered as in the known parameter case.

The above results are based on a suitable choice
of k:(s) and ks(s). The simplest choice is to
take them as constants, ie., k.(s) = A; and
ks(s) = A2 [37]) with A;,A2 > 0. This ensures
that the transfer functions (38) and (39) are al-
ways exponentially stable independently of k, al-
though the actual value of the stiffness coefficient
affects the performance of the system. By virtue
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of this choice, from (30) and (31) the reference
vector r and its derivative become

t
r=:i:—e=:i:d—AlAz—Angfda (42)

0
rF=E—-é=%4- N\ Az — M Af. (43)

It can be shown that the control law (28)
with (42) and (43) leads to the following equi-
librium trajectory

z, =(I—- nnT)a:.; +nnT (k_l_fd + zg) (44)

z. = (I -nnT)ig =4 - (45)
g, = (I —nnT)z, = @4 (46)
fe = knnT(z, - zp) = fa. (47)

on condition that z4, is a constant. A Lyapunov
stability proof of the closed-loop system around
the above trajectory can be found in [38]. Notice
that the above trajectory is the same that can be
obtained with an inverse dynamics control with
perfect dynamic compensation.

Notice that the above expressions (42) and (43)
are similar in nature to the reference trajecto-
ries proposed in [42] and [2] which were derived
in the joint space, though. Differently from
those works, however, here no selection between
force-controlled and position-controlled compo-
nents of r and 7 is accomplished by the con-
trol law (28). Interestingly enough, the control
law (28) with (42) and (43) can be regarded as
an extension of the impedance controller in [21]
in that a desired force f; different from zero can
be specified.

Another simple choice for the force action is
ks(8) = A2+ A3/s which determines an additional
zero of h(s) at the origin and thus ensures a null
steady-state force error along the normal in case
of a constant #4,. Nevertheless, the presence of
a double integrator on the force error may lead
to an oscillatory behavior in the force response.
More complex choices for k.(s) and k;(s) are fea-
sible if suitable filtering actions on the position
and force errors are sought. In such cases more
accurate estimates of the stiffness coefficient are
required to tune the coefficients of the compen-
sators.

In summary, both in the known and in the un-
known parameter case, it is possible to design
a passivity-based control scheme (with adaptive
law) which guarantees tracking of the end-effector
position along the unconstrained directions with
regulation of the contact force along the con-
strained direction.
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5 Force and Position
Regulation

The parallel control scheme presented in the
above section requires complete knowledge of the
manipulator dynamic model in order to ensure
tracking of the desired end-effector position along
the constrained task space directions. Neverthe-
less, if the actual motion along the contact surface
is not relevant but only a desired contact force is
to be maintained, a computationally lighter con-
trol scheme can be devised which ensures force
regulation along the constrained task space di-
rections and position regulation along the uncon-
strained task space directions.

5.1 PID control

Consider the constant set points 4 and fq4 =
fan, and the control law

t
u= kpAz—sz':+§(m)+f¢+kFAf+k1f Afdo
]

(48)
where kp,kp,kr,kr > 0. This controller corre-
sponds to position PD action + gravity compen-
sation + desired force feedforward + force PI ac-
tion. Notice that the use of gravity compensation
is the only model-based requirement and is inher-
ited from ordinary PD position control to recover
steady-state position errors [43]. _

Remarkably, it can be shown that in the case
of perfect gravity compensation (g = g) the equi-
librium for the system (1) under control (48) is
described by the same position in (44) and force
in (47) [9].

The study of stability for the force/position
regulation case requires methods from nonlinear
systems theory. To this purpose, an energy-based
argument inspired by the kind of Lyapunov func-
tions used for stability of PID position control (3]
can be pursued. It should be emphasized that
the Lyapunov method is used only as a means to
prove stability of the closed-loop system, and not
to derive the control law in a constructive man-
ner; the control law, in fact, has been postulated
above on the basis of physical considerations re-
lated to the parallel approach in a problem of
interaction with an elastically compliant planar
surface.

The key point is to find a state description for
the system which is suitably augmented to take
into account the interaction force in respect of
the constraints imposed by the contact. Such a

description should lead to a Lyapunov function
composed of a potential energy term related to
the deviation from the equilibrium contact posi-
tion, a kinetic energy term related to the system
rate of motion, as well as a term related to the
energy stored along the normal direction to the
plane due to the integral force action. This is ac-
complished by considering the (7 x 1) state vec-
tor [11)].

T

T w),

z=(zT € (49)

where

e=x,—xz=Ax+dn (50)

w=k'nT (j:Afdo - kpk;‘dn) . (51)

with

d= k#lfd + Zon — Tdn (52)

being a constant quantity taking into account
the effects of the environment contact force and
the desired force set point along the constrained
task space direction. It is important to remark
that z = O corresponds to the equilibrium (44)
and (47), as can be easily verified. Also, note
that the following relations hold:

nTe = k'nTAf (53)
é=-% (54)
w=nTe (55)

The augmented system described by (1), (54),
and (55) under the control (48) with g = g can
be written in the standard compact homogeneous
form

z=Fz (56)
where
—-B~Y(C + kpI) B *(kpI + k}-knnT}
F = -I (8}
oT nT
kikB~ln
0 ) (57)
0

with k& = 1+ k. Notice that some handy re
ductions —using the structural properties of K
in (16) and the definition of w in (51)— have been
performed to derive (57).

On the basis of the above augmented state
space description, suitable Lyapunov function
candidates can be constructed to derive local sta-
bility results around the origin of the state space




in (49). The key feature of such functions is
the introduction of off-diagonal terms and posi-
tive constants which are remarkably not used by
the control law. These constants serve as addi-
tional degrees of freedom to satisfy conditions on
the feedback gains guaranteeing stability of the
system (56) and (57). Two major results can be
established.

o Local asymptotic stability can be demon-
strated by choosing the following Lyapunov
function:

V= Ez.'fp,,;, (58)

where

B —-pB
P = | —pB (kp + pkp)I + kiknnT
oT krknT

0
k,lm) (59)
pkrk

with p > 0.

® Local exponential stability can be demon-
strated by choosing the following Lyapunov

function: )
W= ~2—zTQz, (60)

where

B -8B
Q= ( -8B (kp + 6kp)I + kipknnT
-—‘ynTB (krk + ~vkp) nT

—yBn
(krk +~vkp)n ) , (61)
Skrk + v(kp + kipk)

with 8,7 > 0.

The stability proof exploits the skew symme-
try of the matrix in (6) and the properties (5),
(7) and (8). Technical details are omitted for
brevity and can be found in [12]. It is worth re-
porting here that kp is not involved by the con-
ditions on the feedback gains that guarantee lo-
cal asymptotic stability, and then is available to
meet further design requirements during the un-
constrained phase of the task. On the other hand,
local exponential stability is more demanding and
in fact leads to more complex conditions on the
feedback gains involving also kp. Ensuring expo-
nential stability, though, provides a performance

85

measure of the system rate of convergence to the
equilibrium.

In the case of imperfect gravity compensation
(@ # 9), the equations of the system (1) under
control (48) become

t=Fz+p (62)
with z as in (49), F as in (57), and

(~B-1G(m)§)
B = 0 (63)
0

where 6 = 6 — 8 is the parameter error vector
in (13).

Remarkably, local asymptotic stability holds
also in the case of imperfect gravity compensa-
tion [35], and the proof exploits the properties
in (9), (10), and (11). It can be shown that a dif-
ferent equilibrium is reached for the system (1)
under the control (48) with g # g, i.e.,

Z, = k7 nn" (f4 + kxo) (64)
+(I = nnT)(zq - k5 (g(Z.) - 3(Z.))
fe= fa. (65)

In this case, the force set point is still attained
while a different end-effector equilibrium position
is reached compared to the case of perfect gravity
compensation. More specifically, a comparison
between (44) and (64) reveals that the compo-
nents of « along the constrained task space direc-
tion n coincide, while the imperfect gravity com-
pensation only affects the components of = along
the unconstrained task space directions t;, t,.

In order to counteract imperfect estimation of
the gravity term, the control law (48) can be made
adaptive with respect to the vector of parameters
in (13) by adding the parameter estimate update
law

. t
6= —lGT(z) (a: - 6(Aa: + k;k;lf Aqu))
v 0
(66)
with v > 0.

Local asymptotic stability around the original
equilibrium (44) and (47) can be proven {36]. It
is worth mentioning here that the proof is based
on the Lyapunov function candidate

W = -;-zTQz + %ué"ﬁ, (67)

in which noticeably Q is the same as in (61).
Differently from the local exponential stability
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case, 7 is not available to satisfy conditions on
the feedback gains but it is keenly chosen to ren-
der the adaptation law a function of physically
measurable quantities already used in the control
law (48), i.e., position, velocity and force mea-
surements.

5.2 OQutput feedback

The implementation of the control law (48) re-
quires joint velocity measurements for the com-
putation of the end-effector velocity vector =
through the differential kinematics equation (3).
A number of robot manipulators are endowed
with joint position sensors (encoders or resolvers)
only, and joint velocities have to be reconstructed.
Hence, it is worth considering the problem of de-
signing a stable force/position regulator without
velocity measurements.

The regulator presented above can be enhanced
in an output feedback setting by relaxing the re-
quirement of joint velocity measurements. Veloc-
ity can be reconstructed through a suitable linear
filtering action, similarly to the case of motion
controllers in [4, 30], on condition that an extra
term is introduced in the control law.

It can be shown that the system remains
asymptotically stable around the equilibrium (44)
and (47) even if & in the control law (48) is re-
placed with a vector v obtained by filtering the
position vector z, i.e.,

o Bs
v = diag { st a x, |
where o, 3 > 0 and s is the Laplace variable.
Consider the control law

(68)

u = kpAz — kpv + g(z) (69)
t
+fi+krAf + k1| Afdo — ke
0

where kg > 0 and ¢ is obtained as

qb:diag{sfa}df.

Assuming v(0) = 0 in (68) and ¢(0) = BAS(0)
in (70), by virtue of (14), the following equality
holds

(70)

& = -Kv. (71)

In order to study stability of the system (1)
with (14) and (68)-(71), the same error vector
as in (50) can be considered. Substituting (69)
into (1), and accounting for (50) and (54), gives

B(x)é + C(z,z)é + kpe — kpv +yn =0 (72)

where

t
y:ﬂT (k}ﬂf—i-kf/ Afdo‘—k¢,¢+kpdﬂ) .
0

(73)
Differentiating (73) with respect to time, and tak-
ing into account (53), (54), (71), and (16), gives

(74)

In view of (54), the time domain equivalent of (68)
is

'j:knT( 7€+ kre + kgv).

v=—av-— ¢

P a—

(75)

Eqgs. (72), (74), and (75) provide a state space :

representation of the closed-loop system (1), (68),
(69), and (71) in terms of the (10 x 1) state vector
z = (T T oT y)T. (76)

The system equations can be rewritten in the
standard compact homogeneous form:

¥=H2 (77)
with
—-B-C —kpB! kpB™! —-B"'n
I o o 0
H=
-BI o ~al 0
kkenT  kkynT  kkgnT 0

(78)

Local asymptotic stability of the system (77) ;

and (78) around the origin of the state space can ’

be demonstrated by choosing the following Lya-
punov function: -

V' = %z'TSz' (79)
where
B mB ppB 0
S= mB  kpl o 0
" | pmB O BkpI O
oT oT 0T (kpk)!
(80)
with
p1 = k5t kr (81)
p2 = kptkp. (82)

As in the previous case of full state feedback,
the stability proof exploits the skew symmetry
of the matrix in (6) and the properties (5), (7)
and (8); in particular, the gain of the additional
term in (69) is to be chosen as

k¢ = pzk[ = k;lk‘pk;.

) _
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Technical details are omitted for brevity and can
be found in [40]. It is worth reporting here that
the the conditions on the feedback gains that
guarantee local asymptotic stability can be sat-
isfied independently of the value of the environ-
ment stiffness k.

6 Future Work

This paper has surveyed a number of force/posi-
tion control schemes for a robot manipulator in-
teracting with a compliant planar surface. The
schemes have been developed in the so-called par-
allel framework which exploits full force and po-
sition measurements. Contact force regulation
along the constrained task space directions and
either regulation or tracking of end-effector posi-
tion along the unconstrained task space directions
can be achieved.

It is worth pointing out that the advantageous
feature of the presented schemes consists in the
simplicity of the control laws which do not con-
tain explicit information on the environment. It
should be clear, however, that the geometry and
the mechanical characteristics of the environment
influence the performance of the manipulator dur-
ing the contact under such kind of controllers.
Extensive simulation results can be found in the
papers in the list of References. On the other
hand, initial experimental results of parallel con-
trol have been performed and will be described in
forthcoming papers, e.g., in [13].

Two existing limitations of the approach, which
anyhow are common also to the majority of
force/position control schemes, are:

e All control schemes have been derived on
the assumption that the manipulator’s end
effector has already come in contact with
the environment and, once contact is estab-
lished, it is not lost. Impact phenomena
may occur which deserve careful considera-
tion [19], and there is a need for global anal-
ysis of control schemes including the transi-
tion from non-contact into contact and vice
versa, e.g., [27, 5]

e Only translational motion and linear force
have been considered. Hence, there is a need
of extending the control schemes to the full-
dimensional task space. Preliminary results
on a stability analysis of 6-degree-of-freedom
parallel force/position control can be found
in [17].
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