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Abstract. Design of high-performance control systems for a robot manipulator having flexible links
heavily relies on an accurate dynamic model of the system. Discretization of an inherently distributed-
parameter system into a finite-dimensional model plays a relevant role both for control design and sim-
ulation of the system. This work is aimed at studying the sensitivity of inverse dynamics control laws
for a single-link flexible arm to the number of modes included into the analysis. Simulation results are
presented.

1. INTRODUCTION

The potential for successful utilization of robot manipulators having lightweight flexible links reposes
trust in the effectiveness of controllers which are capable to reduce the vibrations naturally induced along
the motion of such systems. Currently used flexible manipulators move at very low speeds to limit the
excitement of vibration; for instance, the structure of the telemanipulator used on the Space Shuttle has
very low resonant frequencies (0.04+0.35 Hz) and operates at an average speed of 0.5 deg/s [1].

Mechanical flexibility becomes important for relatively fast speed motions. The design of enhanced
controllers must consider the effects of flexibility and then it relies upon the availability of an accurate
dynamic model of the system. Due to the distributed nature of flexibility, the approach used to discretize
the system as well as the order of approximation plays a relevant role for control design. Nonetheless, also
for testing the performance of the controlled system it is important to model the system as accurately as
possible in order to simulate a situation as close as to physical reality.

This work reports a study on sensitivity of control laws for a single-link flexible arm to the number
of modes included in the model of the system. This is obtained through the usual Lagrangian approach
combined with the assumed modes method for modelling distributed flexibility [2,3]. Inverse dynamics
control laws (4] are considered with both types of collocated and non-collocated outputs [5]. The numerical
results obtained in simulation tests are presented and discussed.

2. DYNAMIC MODEL
A single-link flexible arm can be modelled as an Euler-Bernoulli beam. Under the usual assumptions

that only planar bending occurs and deflections are small, the dynamic model can be derived using the
Lagrangian approach combined with the assumed modes method [2,3] leading to
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where @ is the joint angle, § = (6; ... 6y ) is the vector of modal deflection variables, J is the total

inertia at the joint, u is a vector describing the inertial coupling between rigid body and flexible body
motion and is a function of the mode shapes, p is the arm linear mass density, £ is the arm length, I is the
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identity matrix of proper dimensions, D and K are respectively the link damping and stiffness diagonal
matrices, g¢ and gs are the gravity torques, and u is the joint driving torque; it has been assumed that
the arm is clamped at the joint location and then the joint torque enters directly only in the rigid-body
equation [6]. As can be easily seen the only nonlinearity in the model (1) is due to gravity, and in
particular the gravity torque in the flexible dynamics equations is only a function of the joint angle [7].

3. INVERSE DYNAMICS CONTROL

The equations of model (1) can be rewritten as

JO+pT6+96(6,6) = u (2
ub + pts + D6 + K6 + g5(8) = 0. (3)

The flexible accelerations can be extracted from (3) as

. 1 . .
b= (wé + D6+K6+9a(9)) (4)
and substituted in (2), yielding
T T
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An inverse dynamics control law can be designed as

(J - ;“) a- ‘-:?#T (Da' + KJ) +96(0,6) - ’-‘%ﬂ (6)

where a denotes a new input acceleration. Under control (6), the equations of the system become

f=a M

.. 1 .
b= (wa+ Dé + K5 + g5(0)) (8)
where (7) is the linear system of a double integrator and (8) describes the internal zero dynamics left
into the system. If 84(t) denotes a desired smooth joint trajectory, the well-known resolved acceleration
linear control can be adopted ~ . .

a=04+kp(8a—0)+kp(6a—90) (9)

where kp,kp are suitable positive gains that shape the response of the system and guarantee that the
Joint trajectory is exactly reproduced. Regarding the internal dynamics, a simple Lyapunov argument
can be used to show that the so-called zero dynamics (9 0) is globally asymptotically stable [4] which
is a sufficient condition for the overall system to be stable.

Notice that control (6) requires full state feedback. There is no problem to measure the joint position
and velocity as well as to reconstruct the flexible variables from strain gauge measurements. In order to
overcome the drawback of lack of flexible rates measurements, it is possible to implement the control law
by resorting to a feedforward strategy. For the given joint trajectory 64(t), the dynamic equations (4)
can be forward integrated over time with suitable initial conditions (usually null) to provide the time
history of 64(t),64(t). As a consequence, control (6),(9) can be modified into

u = ug + kp (84 — 6) + kp(64 — ) (10)
where
T T
_ BB 1, 1 gs(6a)
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and
T T
k;,:( —’—‘p—zg)kp kb:( —fp—g"—‘)kp. (12)
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It can be shown that robustness of the system to imperfect model compensation as in (11) is satisfactory
in most practical cases [4].

The above inverse dynamics control law (6) globally linearizes the system with respect to a collocated
output taken at the joint level. A more challenging task is to track a non-collocated output taken at the
arm level. In detail consider a point at location z along the arm; the angle a = 8 + arctg(y(z)/z) can be
considered as a parametrized output, where y(z) = ¢T(z)é expresses the deflection as a function of the
mode shapes at that point and the flexible variables. Proceeding as above, it is not difficult to show that
the inverse dynamics control —in the case of zero gravity without loss of generality—

1
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(13)
transforms the system into
y=a (14)
" 1 -1 .
b= — (pu + ;,w"‘(z)) (pa + Dé+ K&) , (15)
where, similarly to (9), a can be chosen as
a = ja+kp(ya — y) + kp(ya — v)- (16)

The stability of the zero dynamics that can be obtained from (15) by setting y = 0 depends on the sign
of the function [5]
¢ (z)p

INz)=1- bz

(17)
When z = 0 (joint output) it is T'(0) = 1 and the system is always stable. At an z where I'(z) becomes
negative the system goes unstable (equivalent phenomenon to nonminimum-phase linear systems).

4. MODEL SENSITIVITY

The actual arm considered in this work has the following data: length of 0.5 m, linear mass density
of 0.2 kg/m, flexural rigidity of 1 Nm?, joint+actuator inertia of 0.1083 kg/m?, tip payload mass of 0.1 kg
and inertia of 0.0005 kgm?; the arm inertia is negligible with respect to the joint+actuator inertia, so
that constrained mode shapes can be used to model deflections [8]. With these data the first four natural
frequencies are 2.1784, 15.9145, 40.1008, 92.6093 Hz which have been used in the simulated model of the
flexible arm with a sampling time of 1 ms. The elements of the damping matrix D; have been chosen as
0.1K;,i=1,4

In the first case study, a joint trajectory of 90 deg has been assigned and three types of control
laws have been simulated: e joint PD control + gravity compensation [PD+] with kp = 12,kp = 1,
e full state inverse dynamics control [ID] with kp = 100,kp = 20, e inverse dynamics control with
feedforward of flexible states [FID] and same gains. Notice that the first kind of control does not ensure
exact tracking but at least guarantees globally asymptotic regulation of the final joint position [7]. The
following table summarizes the results obtained with the above control laws and a variable number of
modes in terms of the maximum joint and tip tracking errors.

control | # modes [ max error [deg] | max error [mm)]
PD+ 0 3.0793 5.8811
ID 1 0.090461 5.7483
ID 2 0.089988 5.7452
ID 3 0.089953 5.7440
FID 1 0.092417 5.7484
FID 2 0.092057 5.7452
FID 3 0.092054 5.7440
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In the second case study, a trajectory of 90 deg has been assigned to the angular output associated
to an arm point. The full state inverse dynamics control has been simulated with the same gains as
above. The following two tables summarize the results obtained with a variable distance from the joint
location and a variable number of modes: in the left table the arm point z* at which I' changes sign is
reported as a function of the number of modes, whereas in the right table the maximum joint and tip
tracking errors are reported for stable outputs.

z [m]|# modes | max error [deg] |max error [mm]
# modes | z* [m] 020 | 1 0.0922 0.6900
1 0.480 0.20 2 0.0910 0.6900
2 0.352 0.20 3 0.0902 0.6896
3 0.212 0.34 2 0.0900 0.6758
4 0.148 0.47 1 0.0901 0.6696

5. DISCUSSION

The foregoing numerical results indicate the following facts:

e As expected, the inverse dynamics control has better tracking performance than the PD control +
gravity compensation.

o For the joint output tracking case, there is no appreciable reduction in the error tracking (both at
joint and at tip level) as the number of modes used in the controller is increased.

e The inverse dynamics control with feedforward of flexible states behaves as well as the full state
inverse dynamics control.

e The range of arm points for which stable tracking can be obtained decreases as the number of modes
increases; if only one mode is used it is possible to control nearly all the points along the arm.

e Compared to the case of joint control, the angular tracking error is about the same but remarkably
the tip tracking error is reduced by an order of magnitude.
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