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Abstract

Industrial robot manipulators typically have high gear ratios and are required to
move at low operational speed. It is commonly assumed that the nonlinear coupling
dynamic terms can be neglected so that conventional linear controllers at each in-
dependent joint can be employed. This paper is aimed at presenting independent
joint control schemes that are capable to guarantee satisfactory tracking capabilities
in spite of disturbance due to dynamic coupling and parameter variations. Three dif-
ferent schemes are analyzed: position feedback, position + velocity feedback, position
+ velocity + acceleration feedback. The basic idea is to adopt a PI action for the
inmost feedback loop, so as to get perfect steady-state disturbance torque rejection. It
is shown that the third scheme achieves the best performance in terms of disturbance
rejection ratio and recovery time during the transients. Acceleration is reconstructed
by means of a suitable state variable filter. Enhanced tracking is obtained by resorting
to a linear feedforward action.

1. Introduction

The problem of motion control of an articulated mechanical system is to determine
the time history of the generalized forces (forces or torques) to be developed at the
actuators of the controlled axes of motion so as to guarantee the execution of the
commanded task while satisfying given transient and steady-state requirements.

Several methodologies can be employed for controlling this kind of system. The tech-
nique followed as well as the way it is implemented may have a significant influence on
the system performance and then on the possible range of applications. For instance,
the need for trajectory tracking control may lead to hardware/software implementa-
tions which differ from those allowing a point-to-point control where only reaching of
the final position, and not of the actual trajectory followed, is of concern.

On the other hand, the mechanical design has an influence on the kind of control
scheme utilized. In other terms, a mechatronic trade-off has to be sought between the
mechanical structure of the system and the architecture of the control unit.

As a classical paradigm to illustrate the effects of mechanical design on the motion
control problem, consider a robot manipulator for which the driving system has an
effect on the type of control strategy used. If the manipulator is actuated with DC
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motors and gear train drives with high gear ratios, it typically has a nearly decoupled
dynamics which simplifies the control action. The price to pay, however, is the oc-
currence of joint friction, elasticity and backlash that may limit system performance.
On the other hand, a manipulator actuated with direct drives eliminates the above
drawbacks but usually requires a more complex control action to account for those
terms in the model playing a relevant role at considerable operational speeds and
accelerations.

It is known that, in the case of direct-drive manipulators, the dynamic terms play
a significant role for high-speed motions [1). A large number of model-based con-
trol schemes were proposed [2,3], including adaptive control algorithms [4,5,6]. More
recently, however, it was demonstrated that also for industrial robot manipulators
with high gear ratios dynamic compensation yields significant reduction of tracking
errors [7,8]. Nevertheless, we still believe that decentralized control schemes of indus-
trial type can perform well in a wide number of applications.

The present work is based on the results in [9,10,11] and proposes independent joint
control schemes which are shown to guarantee satisfactory tracking capabilities in
spite of inertia and load variations. Three different schemes are proposed: position
feedback, position + velocity feedback, position + velocity + acceleration feedback,
The basic idea is to adopt a PI action for the inmost feedback loop, so as to get
perfect steady-state rejection of constant disturbance torques. It is shown that the
third scheme achieves the best performance in terms of disturbance rejection ratio
and recovery time during the transients. The problem of lack of direct acceleration
measurements is solved by using a state variable filter to reconstruct them. Further, it
is shown how linear feedforward compensation confers enhanced tracking capabilities
to the schemes in case of good model accuracy.

2. Independent Joint Control

It is well known that the dynamic model of an n-degree-of-freedom robot manipulator
in free space is given by

B(q)§+C(9.9)i+g9(g) =7 (1)

where g is the (n x 1) vector of joint variables, B is the (n x n) positive definite
symmetric inertia matrix, C§ is the (n x 1) vector of Coriolis and centrifugal forces,
g is the (n x 1) vector of gravitational forces, and T is the (n x 1) vector of joint
driving forces.

To control the motion of the manipulator means to determine the forces T that allow
the execution of a motion g(t) such that

q(t) = qu(t)

2s closely as possible, where g4(t) indicates the vector of refefenoe joint variables.

Focusing on the case of gear-driven robots, the joint forces are provided by the ac-
tuators via kinematic transmissions that perform a motion transformation from the
motors to the links. If gy, is the (n x 1) vector of actuator displacements, the following
relation is obtained

K.q=gqm 2
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Figure 1: Block scheme of the dynamics of a gear-driven industrial robot manipulator

where K, is an (n x n) diagonal matrix whose elements are usually much greater than
unity.

Due to the presence of gear reductions, the vector of actuator driving forces T is
given by

Tm = ImGm + Fn@m +K,-lf (3)
where I,, and F,, are diagonal matrices whose elements are the inertias and viscous

friction coefficients of the gear reduction motors, and K17 is the vector of required
joint torques resulting at the actuator axes.

At this point, observing that the diagonal elements of B(g) contain inertia moments
i that do not depend on the joint configuration and configuration-dependent terms of
sinusoidal functions, the inertia matrix can be decomposed as

B(q)= B+ AB(g) 4)

e

where B is a diagonal matrix whose constant elements represent the average values
of joint inertias. Plugging (2—4) into (1) gives

Tm =(Im+Kr_lBK:l)&m + F@m + TNL (5)
: where
: ' e = K 'AB(Q)K 'gm + K C(q, ) K gm + K[ ' 9(q). (6)

As evidenced by the block scheme of Fig. 1, the system of the manipulator structure
and the mechanical part of the gear reductions is actually composed of two subsys-
tems; one with 7, as input and ¢, as output, the other with gm, §m, §m as input
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Figure 2: Block scheme of the dynamics of an individual manipulator joint

and rn_ as output. The former is linear and decoupled; each component of Tm af-
fects the corresponding component of gm. The latter is nonlinear and coupled, since
it accounts for all those nonlinear and interacting contributions stemming from the
joint coupled dynamics.

On the basis of the above scheme, Ti can be regarded as a vector of disturbance forces
for the joint servos. This corresponds to a decentralized structure of the controller,
i.e. an independent joint conirol can be designed.

3. Disturbance Rejection

It is desired to find a control structure that allows satisfactory tracking of the output
reference variable with suitable reduction of disturbance effects; hence, the two goals
of the design are disturbance rejection and trajectory tracking. Consider first the
problem of disturbance rejection.

The system to control is the servo of the ith joint of the manipulator. If a voltage-
controlled motor is assumed, the servo has the block scheme of Fig. 2 which is logically
derived from the scheme in Fig. 1. In detail, the ith motor is characterized by the
average inertia
I; = Inmi + k2bis,

the resistance of the armature circuit R,; (the inductance has been neglected), and
the torque and voltage constants k,; and k,;, respectively. Further, G,; indicates the
voltage gain of the power amplifier that usually preceeds the motor. Consequently,
the input to the system is not the armature voltage v,;, but the input voltage vc; of
the amplifier. The scheme of Fig. 2 evidences the presence of the disturbance input
d; that turns out to be the ith component of the torque vector T in (6), i.e.

di= Y k) bieb — k70l + 3k kR canbs + kg )
= =1

where b;; is the average, constant value of inertia at the ith joint, and k,; is the
gear ratio of the ith joint. Notice that in the scheme of Fig. 2, the viscous friction
coefficient F; has been assumed negligible with respect to the equivalent electrical
friction coefficient kyiki;/Rai. Moreover, the following positions are made:

RyilIri
kyike

1
kmi = k_.: ITni=
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Figure 3: Block scheme of the position + velocity + acceleration feedback control
system

where kpn; and T,,; are respectively the gain and time constants of the motor; G;
is considered to be included in the controller gain. Hence, the motor is described by
the voltage to position transfer function —dropping, from now on, the subscript i for
notation compactness—

k

= —— 8
M) = ety (8)

An effective rejection of the disturbance d is ensured by:
¢ a large value of the power amplifier gain,

e an integral action in the controller so that the effect of the gravitational compo-
nent on the output @ is annihilated at steady-state.

This clearly suggests the use of a PI action for the controller whose transfer function
is
C(s) = K. 1+ 5T, .

this yields zero error at steady-state for a step d.lsturbanee. and the presence of the
real zero in s = —1/T, offers a stabilizing function.

Besides the closure of a position feedback loop, the most general solution is obtained
by closing inner feedback loops on the velocity and acceleration. This leads to the
scheme in Fig. 3, where Cp(s), Cy(s), Ca(s) represent respectively the position, ve-
locity, acceleration controllers, krp, kTv, kra are the relative transducer costants,
and the amplifier gain constant has been embedded in the gain constant of the in-
most controller. Notice also that the disturbance torque D has been sppropnately
transformed into a disturbance voltage by the factor R, /k:.

In the following, the three particular solutions deriving from the general scheme of
Fig. 3 are presented; at this stage, the eventual issue arising from measurement of
physical variables is not considered yet.
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Figure 4: Root loci for the position feedback scheme

3.1. Position Feedback

In this case:
Cr(s) = Kp> *:T” . Cv(s)=1, Cals)=1
krv =kra=0.

Root locus analysis can be performed as the gain of the position loop varies. Three
situations are evidenced for the closed-loop poles (Fig. 4). The stability of the closed-
loopfeedbad:systemimpooamemnstnintsonthed:oiceoftbepumetmo{
the PI regulator: If Tp < T,., the system is inherently unstable (Fig. 42). Then,
it must be Tp > T,, (Fig. 4b). As Tp increases, however, the absolute value of the
real part of the two roots of the locus tending towards the asymptotes increases too,
and the system has faster time response. Hence, it is convenient to render Tp > T.
(Fig. 4c). In any case, the real part of the couples of dominant poles cannot be less
than -T,, /2.

The closed-loop input/output transfer function is

o) _ 773
Bi(s) 14 8*(1 4 sT,, '
Inxrrtrpil +5Tp)

)
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while the closed-loop disturbance/output transfer function is
sR

6(s) _ _ EKpkrp(1+ sTp)
D(s) az! 14 3Tm) )
Al = pkrp(l+3slp
It can be recognized that the term Kpkrp is the reduction factor imposed by the

feedback gain on the amplitude of the output due to the disturbance; then, the quan-
tity

(10)

Xgr = Kpkrp (11)

can be interpreted as the disturbance rejection factor. However, it is not appropriate
to increase Kp too much, because small damping ratios would result leading to un-
acceptable oscillations of the output. Further, for large values of Kp, the third root
on the real axis is almost cancelled by the neighbouring zero. On the other hand, it
can be noticed in (10) that also the closed-loop zero in s = —1/Tp is cancelled by
the pole at denominator; thus, the closed-loop pole close to the zero is not cancelled
anymore and then determines the dynamics of the disturbance, which is quite slow.
A characterization of the recovery time to the disturbance is then given by the time
constant

Tr = Tp. (12)

3.2. Position 4 Velocity Feedback

In this case: 14T
8
Cr(s) =Kp, Cv(s)=Ky—; Y., Ca(s)=1

kra=0.

Root locus analysis can be performed as the gain of the velocity loop varies. The
most convenient choice is to utilize the zero of the regulator in s = —1/Tv to cancel
the effects of the real pole of the motor in s = —1/T. By setting

TV = Tlln

the poles of the closed-loop system move on the root locus as the gain of the velocity
loop varies (Fig. 5). The increase of Kp allows to move the roots towards regions
of the left-half complex plane characterized by large values of the real part, if an
opportune choice of Ky is made.

The closed-loop input/output transfer function is
ols) _ B
Bi(s) ’kfk' s i
1+ PRTP + Im]EPE;:P];V
which can be compared with the typical transfer function of a second-order system

(13)

W(s)= —gc_?_f (14)
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Figure 5: Root locus for the position + velocity feedback scheme

It can be recognized that, with a suitable choice of the gains, it {s possible to get all
the values of natural frequency w, and damping ratio (. Hence, if w, and ( are given
as design requirements, the following relations can be established:

Kvkry = 2£w., (15)
m
wa
KpkrpKy = e (16)
m

Once Ky and kry have been chosen to satisfy (15), the values of Kp and krp are
obtained from (16).

Further, the closed-loop disturbance/output transfer function is
sR
6(s) _ __ kRpkrpKyv(1+sTv)
D(s) sk s ’
1+ R?ﬁ? + E-KpkrrKy
which shows that the disturbance rejection factor is
Xr = KpkrpKv (18)

and is fixed, once Kp and Ky have been chosen via (15,16). Concerning the distur-
bance dynamics, the presence of a zero in the origin introduced by the PI and of
three poles having real parts —1/Tv, —(wa, —{wn should be noticed. Hence, in this
case, an estimate of the disturbance recovery time is given by the time constant

an

Tr = max{Tm, (%}, (19)

which reveals an improvement with respect to the previous case in (11), since Tm <
Tp.
3.3. Position + Velocity + Acceleration Feedback

In this case:
14T,

Cp(s)=Kp, Cv(s)=Ky, Ca(s)=Ka
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Figure 6: Root locus for the position + velocity + acceleration feedback scheme

Differently form the previous case, the presence of the acceleration feedback does
not allow to define the motor transfer function as in (8). It is necessary, in fact, to
perform some handy manipulation of the block scheme in Fig. 3, so as to report the
acceleration loop in parallel to the velocity loop of the motor. It can be shown that,
also in this case, an opportune cancellation can be performed by setting

TA=Tm

kmKakTATA > T kmKakra > 1.

The two solutions are essentially the same, as far as the dynamic features of the control
system are concerned. In both cases, in fact, the closed-loop poles are constrained on
the root locus in Fig. 6. This turns out to be analogous to the one in Fig. 5, having
assimilated the system to a second-order one.

The closed-loop input/output transfer function is

8) _ E:"; : (20)
6i(s) +ﬁ§{_¥; +4 mjl -:k,,.:ﬁ:r,:‘!
Moreover, the closed-loop disturbance/output transfer function is
sR,
6(s) _ _ T RKpkrpRvEA( +5T4) @1)

- D(s) 14+ 2k +32!1+kaAkTA!-
pkrp | EmRpkTPRvAaA

The resulting disturbance rejection factor and recovery time are respectively given by

Xgr = KpkrpEvKa (22)
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Figure 9: Block scheme of position + velocity feedback control with decentralized
feedforward compensation

position trajectories with high valucs of speed and acccleration, the tracking capabil-
ities of the scheme in Fig. 3 may become quite poor.

A computationally chcap remedy to the above inconvenicnt can be obtained via the
well-known technique of feedforward canccllation of the plant dynamics. In particular,
it is quite straightforward to recognize that if the reference inputs to the three control
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Figure 7: Block scheme of the state variable filter
and N
TR = max{TA, -C_‘-'-’:} . (23)

where T4 can be made less than Tps.

With reference to the transfer function in (14), the following relations can be estab-
lished for design purposes:

2KpkTp _ Wn

poiudad shad K 58 24

v ¢ (24)
kmXR

14+ kmKakra = pr (25)

KpkrpKvKa = Xkg. (26)

Once Kp, krp and kry have been chosen to satisfy (24), Ka and kr, are chosen
to satisfy (25), and then Ky is obtained from (26). Therefore, with respect to the
previous case, now the acceleration feedback remarkably allows not only to achieve
any desired dynamic behaviour, but also to p ;be the disturbance rejection factor.

In deriving the above three control schemes, the issue of measurement of feedback
variables was not considered explicitly. With reference to the typical position control
servos that are implemented in industrial practice, there is no problem to measure
position and velocity, while a direct measurement of acceleration in general either is
not available or is too expensive to get. Therefore, fof the general scheme of Fig. 3 with
position + velocity + acceleration feedback, an indirect measure is to be obtained,
that is the acceleration measurement is reconstructed from the position measurement
by means of a state variable filter (Fig. 7). The filter is characterized by a natural
frequency wny = VEF; and by a damping ratio ¢ = (1/2)V ki [ka. Choosing the
filter bandwidth to be larger than the joint servo bandwidth —at least a decade off to
the right— the effects due to measurement lags between 8y and 0 are not appreciable,
and then it is feasible to take the filter outputs as the quantities to feed back.

4. Trajectory Tracking

The aboveschemuhnvebwndaivedncwrdingtothepurposeofmhievinggood
disturbance rejection. When the joint control servos are required to track reference

-
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Figure 10: Block scheme of position + velocity + acceleration feedback control with
decentralized feedforward compensation

structures analyzed in the previous section are modified respectively into

_ $2(1 + sTw)
6, = (l"rp + Ko sTp)) 6, (27)
_ ak'rv 32
o, = (kn- PR KV) 6. (28)
_ skrv . (1 + kmKakra)s?
sr = (kTP + KP + ka.PKVKA 6‘: (29)

perfect tracking of the desired joint position trajectory is achieved. Incidentally,
computing derivatives of the desired trajectory 4(t) is not 2 problem, once that is
known analytically. The tracking control schemes resulting from simple manipulation
of Eqs. (27,28,29) are reported respectively in Figs. 8,9,10, where M(s) indicates the
voltage-to-position motor transfer function in (8).

All the solutions allow perfect tracking of the input trajectory within the range of
validity and linearity of the employed models. Deviations from the ideal values cause a
performance degradation that must be analyzed case by case. It is interesting to notice
that, as the number of nested feedback loops increases, less knowledge of system model
is required to perform feedforward compensation. In fact, T and k., are required to
close a position loop, only k. is required for the position + velocity loops, and km
again —but with reduced weight— for the position + velocity + acceleration loops.

The schemes of Figs. 8-10 reveal also the presence of saturation blocks. These are
to be intended as intentional nonlinearities whose function is that to limit relevant
physical quantities during the transients; the greater the pumber of feedback loops,
the greater the number of quantities that can be limited (velocity, acceleration and
motor voltage). To this purpose, notice that trajectory tracking is lost when any of
the above quantities saturates.

After simple block reduction on the above schemes, it is possible to determine equiva-
lent control structures that utilize position feedback only and regulators with standard
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Figure 12: Equivalent control scheme of PID type

dynamic actions. It should be emphasized that the two solutions are equivalent in
terms of disturbance rejection and trajectory tracking. However, setting of regula-
tor parameters is less straightforward and the elimination of inner feedback loops
prevents the possibility of setting saturations on velocity and/or acceleration. The
control structures equivalent to those of Figs. 8,9,10 are illustrated in Figs. 11,12,13,
respectively; control actions of PI, PID, PI DD? type are evidenced which are equiv-
alent to the control schemes of position, position + velocity, position + velocity +
acceleration type, respectively.
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Figure 13: Equivalent control scheme of PIDD? type

The above schemes can incorporate the typical structure of the controllers actually
implemented in the control units of industrial robots. In these systems it is important
to choose the largest possible gains so that model inaccuracy and interaction terms
do not appreciably affect the positions of the single joints. As pointed out above, the
upper limit on the gains is imposed by all those factors that have not been modeled,
such as implementation of discrete-time controllers in lieu of the continuous-time
controllers analyzed in theory, presence of finite sampling time, neglected dynamic
effects (joint elasticity, structural resonance, finite transducer bandwidth, etc.), sensor
noise. In fact, the presence of such factors in implementing the above controllers may
cause a severe system performance degradation for much too large values of feedback

5. Conclusions

The design of independent joint controllers for industrial robot manipulators has been
discussed in this paper as a still valid alternative to model-based control algorithms of
second-order mechanical systems with highly coupled dynamics. Three schemes have
been analyzed using classical linear control techniques. In particular, the scheme
that adopts position + wvelocity + acceleration feedback, with the use of a state
variable filter to reconstruct acceleration, guarantees excellent disturbance rejection
performance. The addition of linear feedforward actions has been shown to enhance
the tracking performance of the schemes.

The theoretical conclusions have been confirmed by both simulation and experimental
results. Numerical simulations were carried out in a number of case studies for a single-
"joint drive system [11] as well as for a three-joint industrial robot [9]; practical effects
such as discrete time control, saturations and parameter variations were included. The
results encouraged us to conduct experimental tests on a parallel robot prototype
which typically performs high-speed and high-acceleration motions [10,11]; results
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with different sampling rates demonstrated improved performance of the scheme with
acceleration feedback over the conventional PID scheme and comparable performance
with that obtained with a model-based control scheme.
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