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Abstract—The inverse kinematics problem for
manipulators having lightweight flexible links is
considered in this work. This consists in find-
ing the joint and deflection variables for a given
tip position. The solution algorithm is based on
the well-known Closed-Loop Inverse Kinematics
|CLIK) scheme using the Jacobian transpose de-
veloped for rigid manipulators. The Jacobian to
be used in the algorithm is obtained by correct-
ing the equivalent rigid manipulator Jacobian
with a term accounting for the steady-state de-

flections under arm gravity and tip load. The
. scheme 1s tested in two case studies on a planar

two-link arm.

1. Introeduction

- The deflections induced by the lightweight nature of
~ fexible link manipulatars represent a serious problem
- {ot modelling. trajectary planming and control of such
mechanical systems. The main issue to tackle is that
the configuration of the system is deseribed by an aug-
mented number of variables. compared to the case of
fipid manipuiaters where the joint variables suffice to
describe the system configuration.

Modelling of flexible link manipulators has to be con-
sidered an assessed topic, Kinematics is derived by
ising suitable frame transformation matrices describ-
ng both rigid and flexible displacements.[1]. Dynam-
ics can be derived by resorting to different approaches
ibat basically allow obtaining finite-dimensional models

 that approximate an inherent infinite-dimensional sys-

L em. ez, [2.3.4].

Control of flexible link vibrations has been a chal-
- eaging research topic in the latest decade. The tracking
problem can be suceessfully solved when the controlled
Ciariables are the joints. e.g. [5.6,7]. The problem be-
wmes considerably tougher when it is desiced to track
Cinon-collocated up trajectory with collocated joint ac-
!illalors. if inversion-based controller are adopted then
| instability may arise along the motion [8.9].

On the other hand the regulation problem can be
Ciolved at both jeint and up level. Any desired joint con-
Sfuration can be asvmptatically reached under a joint
Pl = constant gravity compensation control [10]. If

the desired configuration is specified [or the tip. an in-
verse kinematics problem anses: namely. find the joimt
and deflection variables that place the tip at the desired
posture. When gravitational effects are present due 1o
arm weight and eventually to a 1ip load. it is expected
that the joint variables differ from the configuration of .
the equivalent rigid arm and should compensate far the
steady-state deflections due to graviry.

The inverse kinematics problem can he formulated in
differential terms by deriving a suitakle Jacobian that
relates the joint and deflection rates to the tip rate. Pre-:
vious approaches [11.12] are based on the Jacobian in-
verse and utilize the Newton-Raphson method to find
numerical solutions in an iterative fashion.

The present work proposes an inverse kinematics so-
lution algorithm hased on the well-known Closed-Laop
Inverse Kinematics | CLIK) scheme previously developed
for rigid manipulators [13.14]. Differemtly from above.
the transpose of the Jaccbian is required that naturaily
allows handling of singularities and redundancies [13].
Also the closed-loop fashion of the method ensures con-
vergence of the solution. as can be proved via a simple
Lyapuncv argument, Further. if a slowlv-varving tra-
Jectory is imposed on the tip. instead of a constant set
point, the resulting joint and defiection trajectories can
be used as the reference inputs to some contral scheme
for quasi-static mation of the arm tp.

A planar two-link flexible arm under gravity is consid-
ered to develop two case studies. The numerical results
both with a constant and a ume-varyving tip position
canfirm the good performance of the scheme anticipated
in theary.

2. Modelling

Without loss of generality we restrict our attention 1o
planar n-link flexible arms with revolute joints subject
only to bending deformations in the plane of motion.
te. torsional effects aree neglected. A skewch of a two-
link arm is shown in Figure 1 with roordinate frame
assignment. The ngid maotion 15 deseribed by the join
angles &, while w,(z,) denotes the transveresal deflactian

of link rat z;,. 0 < x5 < £, being £; the link length.

Let pi(z,) = :1'- u.-L[J:'L]]T be the position of a paoiat
along the deflected link § with respect to frame (X, 1))




and p; be the position of the same point in the base with #,, = p!(f;). Since the links are assumed un |

frame. Alsolet vl = p}(f;) be the pesition of the origin extensible (£; = 0}, then pi{z;) = [0 wiiz;)]T. The
of frame {X,41, ¥; 41 ) with respect to frame (X, ¥7), and computation of (7} takes advantage of the recursions
r; its position in the base frame.
The jaint (rigid) rotation matrix A; and the rotation Wi =W, R+ wc_]ﬁ., W = W.E, + W.E,. (8]
matrix E; of the {fexible) link at the end point are,
respectively, Also, note that
o _ |vosfy —sind; -~ _ 1 —ui, k . 3 0 —1 '
= [Sinﬁ. cos f; Ei= [LL'EE l } - Ri = SRi#;, Ei = Suy,, i [1 0 ] '15'|

where w!, = (duy fﬂr,]|z =¢,, and the amall deflection
appmxlma.tmn arctan w], = w;, has been made. Hence

e —

the ahove absolute position vectors can be expressed as

In view of (5), it is not difficult to show that the tip
veloeity can be expressed as

pi=ri+ Wi, mai=r Wi, (2) p=Jal0.5)0 + J5(0,8)8. (1]

where W, is the global transformation matrix from the

base frame to to (X;,¥;) given by the recursive equation The above kinermatics description is at the busigly

the dynamic modelling of the flexible arm using the La

W; = Wi Ei R; = W, Ry, Wo=1. (3) grange approach that requires computation of kineti
- and potential energy [2]. In a static situation the deflec
On the basis of the above relations, the kinematics of tions are seen to satisfy the equation [10]
any point along the arm is completely specified as a
function of joint and link deflection. gelf)+ Ké =10 (1]

A finite-dimensional model (of arder my) of link fexi-
bility can be obtained by the assumed modes technique.
'Exploiting separability in time and space of solutions to
the Euler-Bernoulli equation for flexible beams

where g5 is the gravity vector in the Aexible dynams
equations that is only a function of # and K is the lnk
stiffness matrix

il xg, 1 Az, ) ; K =diaglky, .. kimyoooocknne kam, ) (12
(£, — d" '+p|;—-m2—:ﬂ, b=1....n i
(4} with / |
where p; is the uniform density and (ET); is the con- by = f.I[EI'lt-.;:'?’ AV 0
stant flexural rigidity of link 1, the link drﬂectmn Can 0 i '

be expressed as
From (11) the deflection variables can be computed

a8

ik Ed?” s ool ¢ C b= —K g0, (1
For later use in the inverse kinematics scheme. differen-

'h &yl the time-varyi 1 i e : i ]
where &;(t] are the time-varying variables associated tiating (13) with respect to time gives

with the assumed spatial mode shapes &,,(z,) of link i.
The mode shapes have to satisfy proper boundary con-
ditions at the base {clamped) and at the end of each link
[1mass)

f==R~"J,(8)0 (131

¥ where J, = do/d?. Plugging (15) into (10) vields
In view of (3), a direct kinematics equation can

be derived expressing the position of the arm tip p=Ju(6.6)8 (18]
point as a function of the joint variable vector 8 =
;"i‘] R ]T and the deflection '.ra.rig:.hie vector & = wrkiara .
|_-'.l"','|_ s D, . s it énl il énm"] . e, _,ir:p: Ir‘__”rﬁh'—'llfp [l?}
p=k(d 4). (&) is the overall Jacobian matrix relating joint velocity o
tip velecity. Notice that the Jacobian in (17} is obe
For later use in the inverse kinematics scheme, also tained b}' Illcdir}’ing the rigid-bud.}' Jacobian Jg with a |
the differential kinematics is needed. The absolute linear term that accounts for th_e deflections induced by grav-
velocity of an arm point is ity. The differential kinematics [16) is the basic model
o that 15 used below to derive an inverse kinemaltics solu-
pi =1+ Wipl + Wpl, (7] tion scheme.
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3. Inverse kinematics scheme

The inverse kinematics problem for a flexible manipula-
tor can be formulated as follows: Given a desired con-
stant tip position, find the corresponding joint variables
and deflertion variables that place the arm tip under
gravity at the given position.

The attractive feature of the differential kinematics
equation {16) is its formal analogy with the differential
kinematics equation for a rigid manipulator. Therefore
anv Jacohian-based inverse kinematics scheme can hbe
adopted in principle. In this respect, one of the most
sffective schemes remains the CLIK scheme [13.14] that
reformulates the inverse kinematics problem in terms of
the convergence of a suitable closed-loop dynamic sys-
tem.

Let py denote the desired constant tip position. A tip
error can be defined as
ep=pi—p (18)
where p can be computed as in (6). Differentiating (18)
with respect Lo time gives

ép = —=Jul0,6)0 (19)

where (16),(17) have been used. Consider the Lyapunav
function
V=

rlFTffFE? =10 (20}

a-e
with K symmeiric and positive definite.  The time
derivative of (20} along the trajectories of the system
19} is

V= —el KyJy(8,6)8. (21)
The Jacobian transpose joint velocity law
6= JF(8, 6 Kpep (22) .
- :
V= —ef KpJp(0,8)17(8,6)Kpe, <0 (23)

Hence, as long as the vector K e, is outside the null
space of JJT. the tip position error e, asymptotically
tends to zero, i.e. p tends to the desired position pa.
In practical implementation of the algorithm, a suitable
thoiee of the matrix K, can be made to avoid that the
algorithm gets stuck with e, # 0 and 8 = 0.

It should be remarked that no inverse of the Jacobian
is required by the above algorithm and thus the scheme
warks well also in the neighbourhood of singularities of
the matrix J. Also, if the arm possesses redundant de-
grees of freedom (n > 2), the Jacobian transpose scheme
i the same and no pseudo-inverse of the Jacobian is re-
quired as instead in resolved rate schemes [15).

Finally, if the desired tip position is time-varying, a
similar Lyapunov argument can be worked out to show

I
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that the tracking error can be made arbitranly small by
augmenting the feedback gains in the matrix i, whereas
at steady state asymptotic convergence is still obtained.
In practical implementation of the algorithm, bounds
exist on the largest values of the gains in A, depend-
ing on the sampling time at which the algorithm is dis-
cretized [16].

4, Case studies

In order to test the proposed inverse kinematics scheme,
a planar twe-link flexible arm [Fig. 1) under gravity was
considered: 8 = (8, #:]T.

The following parameters were set up for the links
and a paylead which is assumed to be placed at the arm
tip

g1 = pz = L0 kg/m (link uniform density)

f1 = #2 = 0.5 m (link length)

dy = d7 = 0.25 m (link center of mass)

my = ma = 0.3 m (link mass)

mep = maz = 1 kg (hub mass)

mp = 0.1 kg (payload mass)

{EIy =(EDN=2 = 10 Nm? (flexural link rigidity).

An expansion with two clamped-mass assumed modes
was taken for each link: & = [f1y 62 du Fa ]
The resulting natural frequencies of vibration are:

1.40 He
5.21 He

Jr;1=
fa1 =

fi2 =510 Hz
fgg = 32"15 HZ

The stiffness coefficients of the diagenal matrix K in
{13) are:

53609 N ko = 20792.09 N.

k'l.] =

":'21 =

The link #énd-point deflections and their spatial deriva-
tives can be expressed as

Wi = My LB+ Bro e fro

Wie = @1 o00 + Pz b .
b l.’i‘ ¢ & I-Jz:H

Wi, = ¥y 411 +"'“'12.¢ 1z

wh, = @y Hay 4 g 22

where the constants are:

or1e =039 2. = 0.36
Groa =13 dly, = —L38
da1e =149  @az. = —-073

Ne = 4.30 '5":']3_5 = —15.4%




The tip position is expressed by

p=Ry(0)(rz(811. 812) + Ev(é11, 812} Ra(82)r3 (821 622))

(23]
where the position vectors and the rotation matrices can
be computed as illustrated in Section 2.

The Jacobians as in (10} resulting from (25) are:

Ji = [%g—lur‘: + E1Rard) Ry (&%{%f%)] (26)

el fidng O g dr: | dE 5
Ji= | R "».a"f'r'.!_ + Eﬁzra) fy (HEG-* E‘;ﬁ;ﬁ?"n

] ]
RERIL RE R (27)
haq o

where the required derivatives are easy to compute,

The following coefficients are also needed for the grav-
Ity lerm

'rl
Vi g ‘:[ ,CJ,I;'.'IL".'[.I'[]-dI{ TI_? = 1,2 [ER]
With the above data, they take an the values:

Ti1 = D-{:‘ﬁg

Vg = HES

o = 0.12
vea = (.30,

The resulting gravity term is (standard abbreviations
are used for sine and cosine):

we=0m 92 93 g4)F (29)
with
1 = g1cy + gracys
g2 = ga1cy + gzuciz

(30}
g3 = gmtz
fa = g41C12,
where the constant coefficients are:
911 = gol{ma + maz + mp)dyy . + vy
12 = golmads + mpfz)é), ,
921 = gol{mz + myg + Mpl@1a,. + v12) (31)
g2z = golmeds + mpba)el, ,

ga1 = gal{mpda . + vay)
F41 = golmgdas . + vz ),

being go the gravity acceleration. [t 15 worth noticing
that g; is only a function of #, as anticipated.

The Jacobian as in {15} resulting from (20 is

—fu sy = qes1r =281

.,-’,, — | T8 = gassyy —gaasn (32)
—Jay 81z —fga 8y2
—Hqr812 Q41512

v

=

With the expressions in (26),(27),(32) the overall Jars
bian as in (17} can be computed.

In the first case study the arm was placed in the verticl
equilibrium configuration

p=[0 —1]7 [m]

The desired tip position was chosen as constant:
pe=[1/v2 —1/v2]T [m].

The feedback gain matrix in (22) was chosen as
Ky = diag(50.50)

and the algorithm was discretized at a sampling time o
5 ms.

The resulting time history of joint angles, norm of tip
error and link deflections are reported in Figure 2. [tis
easy 1o see that the desired position is reached in abon
0.1 5. The final armi configuration is characterized by

§=[—46.66 25.28]T [deg]

§=[-01755 -0.0048 —00073 —0.0001]T [m]
confirming the intuition that, because of gravity, the
arm has to bend to properly reach the desired tip pe
sition. Actually the bending is much larger an the firt

link as it was natural to expect (the links have the same
parameters).

It is important to point out that, for this particular
case, the arm is initially placed in a configuration st
which the Jacobian in (17) is singular. This does oot
affect the performance of the algorithm since the ermar
¢p does have a component outside the null space of J,,
On the other hand an inverse Jacobian-based algorithm
could have not been applied in this case.

In the second case study a Sth-degree polynomial tra-
jectory is imposed from the initial to the final configura-
tion with a duration of 1 5. The feedback gain matrices
and algorithm sampling time are the same as above. The
resulting time history of jeint angles, norm of tip error
and link deflections are reported in Figure 3. A tracking
error arises in this case along the trajectory but the final
position is reached soon after the end of the trajectary.

It 1s clear that larger gains can be tolerated if the
sampling time is further reduced, leading to faster con-
vergence in the first case study and 1o smaller tracking
errors in the second case study. respectively.

5. Conclusions

An kinematies scheme has been proposed for flexible
manipulators. The solution is based on the transpose
of a suitably modified arm Jacobian =0 as to aceount

[




for the static effects of gravity. Convergence of the al-
gonithm is ensured by its closed-loop fashion, as it has
been formally proved via a Lyapunev argument.

The scheme is very useful for the regulation control
problem. In fact, for a given constant tip position. the
corresponding joint and deflection displacements can he
computed, as shown in the first numerical case study.
These can be used as the set points for a joint PD +
constant gravity compensation, thus achieving a true
lip regulation with a joint space cantroller.

The scheme has a potential also for the quasi-static
mation tracking control problem. In fact, a slowly-
varying tip trajectory can be assigned for the tip and
the resulting joint and deflection variables, as shown in
the second numerical case study. These could be used
as the reference inputs to some dynamic model-based
Joint space controller.

The impact of the proposed inverse kinematics
stheme on the performance of various control schemes
that operate on joint {and deflection) reference values is
currently under investigation and will be the sul:r_]f‘l:'t. af
future papers.
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Fig. 1.

A planar two-link flexible arm.
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norm of tip error and link deflections for the first case study.
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