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This chapter deals with fundamental control problems in robotic manipulation. The
motion control problem is surveyed as the basis for more advanced algorithms de-
signed for controlling lightweight robots with non-negligible joint elasticity as well
as complex robotics systems with a large number of degrees offreedom. The prob-
lem of controlling the physical interaction of robots with the environment or a human
is addressed as well.

5.1 INTRODUCTION

The early years of robotics—prior to the 1980s—were largely focused on manipula-
tor arms and simple factory automation tasks: materials handling, welding, painting.
Cost of computation, lack of good sensors, and lack of fundamental understanding
of robot control were the primary barriers to progress.

Robotics today is a much richer field with far-ranging applications. Also, the def-
inition of what constitutes a robot has broadened dramatically. A key role in this
evolution was played by the synergy of robotics and control.On the one hand, tech-
nological advancements in sensors, computation, and actuators have motivated the
development of new control algorithms. On the other hand, advancements in control
have enabled solutions to challenging problems in robotics.
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82 Mechatronics and Robotics

The purpose of this chapter is to focus on fundamental control problems in
robotics with special emphasis on robotic manipulation. The motion control prob-
lem is surveyed as the basis for more advanced algorithms designed for controlling
lightweight robots with non-negligible joint elasticity as well as complex robotics
systems with a large number of degrees of freedom (DOF), ableto execute multiple
tasks at the same time. Moreover, the problem of controllingthe physical interac-
tion of robots with the environment or a human is addressed. Future directions are
sketched at the end of the chapter, where a list of recommended reading is provided.

5.2 MOTION CONTROL

According to the Robot Institute of America, a robot manipulator is fundamentally a
positioning device designed to move material, parts, tools, or specialized devices
through variable programmed motions for the performance ofa variety of tasks.
Thus, the motion control is a fundamental issue for the execution of manipulation
tasks.

The problem of motion control is to determine the time behavior of the control
inputs to achieve a desired motion. The control inputs are usually the motor currents
but can be translated into torques or velocities for the purpose of control design.
The desired motion is typically given by a reference trajectory generated by suitable
motion planning algorithms. This problem is quite complex,since a manipulator is
an articulated system, and, as such, the motion of one link influences the motion
of the others. Moreover, the presence of non-negligible mechanical flexibility in the
joints (and/or the links) of multi-DOF robots poses challenging control problems due
to the possible excitation of vibrational phenomena.

In this section, we provide an overview of the main motion control techniques
for rigid robot manipulators. Some hints about the control of robots with flexibility
concentrated in the robot joints, which is a common situation in lightweight manip-
ulators designed to work close to humans, are provided. Finally, a control approach
based on coordinates suitable for specifying robotic tasks, i.e., the so-called task-
space control, is presented.

5.2.1 JOINT SPACE CONTROL

The simplest control strategy for an-DOF manipulator is to treat each robot joint as
a single-input/single-output (SISO) system and design thecontrollers independently
for each joint. Proportional, integral, derivative (PID) control is the most common
method employed in this case. The objective of each joint controller is to ensure
that the motor angleqm(t) follows a desired valueqmd(t). Coupling effects between
joints due to varying configurations during motion are treated as disturbance inputs.
This approach, known asindependent joint control, works well for highly geared
manipulators moving at relatively low speeds, since the large gear reduction and low
speed tend to reduce the coupling effects.

Suitable linear decentralized feedforward compensation terms can be used to im-
prove the tracking capability of desired trajectories withhigh values of speed and
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acceleration. To further improve performance, the interaction between the joints can
be compensated by anonlinear centralized feedforwardaction. This solution still
consists ofn independent joint control servos; each joint controller elaborates ref-
erences and measurements that refer to the single joint. Thedisturbance torque due
to the interaction between the various joints is compensated by a centralized feed-
forward action that depends on the manipulator dynamic model computed using the
joint desired positions, velocities, and accelerations.

Advanced control methods for robots generally aim to take into account the dy-
namic coupling between joints by using complete or partial knowledge of the dy-
namic model of the manipulator in thefeedback controlaction.

By neglecting friction, elasticity in the joints or links, and other effects, the dy-
namic model of an-link robot manipulator can be written in the so-called Euler–
Lagrange form as

B(q)q̈+C(q, q̇)q̇+g(q) = τ (5.1)

whereq is then×1 joint vector,B(q) is n×n inertia matrix,C(q, q̇)q̇ is then×1
vector of Coriolis and centrifugal torques,g(q) is then×1 vector of the gravitational
torques, andτ is then×1 vector of control torques.

The Euler–Lagrange equations fulfil a number of properties that can be suitably
exploited for control design, namely:

1. Matrix B(q) is symmetric and positive definite.
2. Matrix C(q, q̇) can be chosen so that matrixḂ(q)−2C(q, q̇) is skew sym-

metric.
3. Equation 5.1 can be cast in a linear form with respect to a suitable p× 1

vectorπ of dynamic parameters asY(q, q̇, q̈)π = τ

An intuitive method of control, which ensurestrackingof a desired time-varying
joint trajectoryqd(t), is the so-calledinverse dynamics, or feedback linearization
method, which computes the control torqueτ as

τ = B(q)r +C(q, q̇)q̇+g(q) (5.2)

r = q̈d +Kd(q̇d − q̇)+Kp(qd −q) (5.3)

In view of Property 1, the closed loop equation in terms of thetracking errore(t) =
qd(t)−q(t) satisfies the linear equation

ë+Kdė+Kpe= 0

and therefore, the tracking error converges exponentiallyto zero for positive definite
matrix gainsKd andKp.

An interesting feature of the robot’s dynamic model relatedto Property 2 is the
so-calledpassivityproperty. Namely, the power supplied to the system ˙qTτ is either
stored as mechanical energyE(t) or dissipated, which means that

q̇Tτ ≥ Ė(t)
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This property can be exploited to design control laws with higher robustness in the
presence of uncertainties in the dynamic model.

A first alternative to the inverse dynamics control law is theso-calledPD+ control

τ = B(q)q̈d +C(q, q̇)q̇d +g(q)+Kd(q̇d − q̇)+Kp(qd −q) (5.4)

containing a linear proportional derivative control action, which leads to a nonlinear
closed loop equation. In this case, the global asymptotic convergence of the tracking
errore(t) can be proven by using the second Lyapunov stability method and exploits
Properties 1 and 2. The advantage of the aforementioned control law is that in the
case ofregulationto a constant desired joint positionqd, Equation 5.4 reduces to

τ = g(q)−Kdq̇+Kp(qd −q) (5.5)

with positive definite matricesKP andKD, which is known asPD control with gravity
compensation.

Another passivity-based motion tracking control law is theso-calledSlotine and
Lie control, defined by the equation

τ = B(q)q̈r +C(q, q̇)q̇r +g(q)+KDσ =Y(q, q̇, q̇r q̈r)π +KDσ (5.6)

where
q̇r = q̇d +Λee σ = q̇r − q̇,

with diagonal positive definite matricesKD andΛe.
If the vector of the robot’s dynamic parametersπ is uncertain, it can be replaced

by an estimatêπ.
The tracking capabilities of the control law (Equation 5.6)can be improved by

adopting arobust controlalgorithm, where the estimatêπ is chosen aŝπ = π0+δπ,
with

Yδπ =







−ρ
YTσ
‖YTσ‖ , if ‖YTσ‖> ε

−ρ
YTσ

ε
, if ‖YTσ‖ ≤ ε

whereρ > 0 is a bound on the parameter’s uncertainty. In this case, uniform ultimate
boundedness of the tracking errore(t) can be proven, where the size of the ultimate
boundedness set depends onε > 0.

Alternatively anadaptive controllaw can be adopted, where the estimateπ̂ can
be computed by using the update law

˙̂π = KπYT(q, q̇, q̇r q̈r)σ

with Kπ positive definite matrix gain. Global convergence of the tracking errors to
zero and boundedness of the parameter estimates can be proven using a Lyapunov
analysis. Moreover, if the desired trajectory satisfies a suitable condition ofpersis-
tency of excitation, the estimated parameters converge to the true parameters.
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5.2.2 CONTROL OF ROBOTS WITH ELASTIC JOINTS

The assumption that robot manipulators are rigid multi-body mechanical systems
simplifies the control design but in some cases, may lead to performance degrada-
tion and even unstable behavior, if mechanical flexibility cannot be neglected. In
dynamic modeling, flexibility can be assumed to be concentrated at the robot joints
or distributed along the robot links. In this chapter, we consider only the case of
manipulators with elastic joints, which is a common situation of many lightweight
robots designed to work close to humans.

A robot with elastic joints can be modeled in the Euler–Lagrange form as

B(q)q̈+C(q, q̇)q̇+g(q)+K(q−θ) = 0 (5.7)

Mθ̈ +K(θ −q) = τ (5.8)

whereq is then×1 vector of the link angular positions andθ is then×1 vector of
the motor angular positions. The quantityτJ = K(θ −q) is the vector of the elastic
torques due to joint deformations, withK positive definite, diagonal joint stiffness
matrix. Equation 5.7 is the so-called link equation describing the rigid multi-link
dynamics, analogously to Equation 5.1. Equation 5.8 is the motor equation, whereM
is the positive definite, diagonal matrix of motor inertias (reflected through the gear
ratio) andτ is the vector of the motor torques.

In the absence of gravity, the basic robotic task of moving between two arbitrary
equilibrium configurations can be realized by using a simpledecentralized PD con-
trol law using only feedback from themotor variables

τ =−Kdθ̇ +Kp(θ d −θ) (5.9)

with diagonal positive definite matricesKP andKD. In this case the equilibrium state
is q̇= θ̇ = 0, andq= qd, θ = θ d = qd, i.e., with no joint deflection at steady state.
Global asymptotic stability of the equilibrium can be proven as a consequence of the
passivity of the system.

In the presence of gravity, the equilibrium position of the motor associated to
a desired link positionqd is θ d = qd +K−1g(qd). In this case, global asymptotic
stability is obtained by adding an extra gravity-dependenttermτg to the PD control
law (Equation 5.9). This term must match the gravity loadg(qd) at steady state, and
the following choices are possible, with progressively better transient performance,
in the hypothesis that the joint elastic torque dominates the gravity torque:

• Constantcompensationτg = g(qd), ensuring global regulation for large
enoughKp

• On-linecompensationτg = g(θ̃), θ̃ = θ −K−1g(qd), which allows approx-
imate compensation of the gravity effects on the links during the transient

• Quasi-staticcompensationτg = ḡ(θ), whereḡ(θ) is the numerical solution
of the equationg(q)+K(q−θ) = 0, which allows the lower bound onKp

to be removed.
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It is important to notice that due to the presence of the jointelasticity, the state of
the system is represented by four variables for each joint: the motor position and ve-
locity, and the link position and velocity, i.e., quantities that are measured before and
after the joint deformation. The use of the full state(q, q̇,θ , θ̇) in the feedback con-
trol laws allows, of course, faster and damped transient performance to be achieved.
On the other hand, the use of controllers with a reduced set ofmeasurements is par-
ticularly attractive. For this purpose, it can be shown thatthe only convenient partial
feedback solution is that considered earlier, i.e.,feedback of the motor variables.
The other solutions, i.e. feedback of the link variables alone or the combination of
motor positions and link velocities, and vice versa, must beavoided. The reason is
related to the fact that the link variables and the control actuation are not physically
co-located.

If joint torque sensorsable to measure the elastic torqueτJ are available, the
following torque feedback law can be used:

τ = MM−1
θ u+(I −MM−1

θ )τJ (5.10)

whereMθ is a diagonal positive definite matrix andu is a new control input. Using
Equation 5.10, the motor equation (5.8) becomes

Mθ θ̈ +K(θ −q) = u

where the matrixMθ represents an apparent motor inertia that can be arbitrarily set.
It can be easily understood that the smallerMθ with relatively largeK, the smaller
the deviation from the rigid joint dynamics. In turn, torquefeedback allows to neglect
joint elasticity, and the control inputu can be set as for a rigid robot withθ = q.

5.2.3 TASK SPACE CONTROL

While the motion control problem for a robot manipulator is naturally formulated in
terms of then joint variables, i.e., in the joint space defined by then×1 vectorq, the
robot’s taskis conveniently specified in terms of a vector ofm coordinatesx, which
typically define the location of the manipulator’s end effector or sometimes, of other
points of interest of the robot’s body. Typically, one hasn ≥ m, so that the joints
can provide at least the DOF required for the end-effector task. If n> m strictly, the
manipulator is kinematicallyredundant. The mappings

x = k(q) (5.11)

ẋ = J(q)q̇ (5.12)

where Equation 5.12 can be obtained by differentiating Equation 5.11 with respect
to time, are known as direct kinematics and differential kinematics, respectively. The
matrixJ is them×n task Jacobian.

In the presence of redundant DOF, the same task can be executed with different
joint motions, giving the possibility of better exploitingthe workspace of the manip-
ulator and ultimately resulting in a more versatile roboticarm.
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In order to accomplish a given task, two kinds of control approaches can be con-
sidered, namely, joint space control and a task space control.

Thejoint space controlapproach is actually articulated in two subproblems. First,
the manipulator inverse kinematics is solved to transform the desire taskxd into the
corresponding joint motionqd. Then, a joint space control scheme is designed that
allows the actual motionq to trackqd.

In the task space controlapproach, the control torques are computed on the basis
of the comparison between the desired task vectorxd and actual task vectorx, and
some kind of kinematic inversion is embedded in the feedbackcontrol loop. This
implies that the algorithmic complexity of task space control schemes is usually
higher than that of joint space control schemes, especiallyin the case of redundant
robots.

Task space control approaches are usually preferred when the manipulator’s task,
usually defined in terms of end effector coordinates, may be subject to online modifi-
cations to accomodate unexpected events or to respond to sensor inputs. In particular,
they are essential when physical interaction of the manipulator with the environment
is of concern.

Task space control schemes can be split into two main categories: acceleration-
based control and force-based control.

Acceleration-based controlschemes start from the the second-order kinematics
equation

ẍ= J(q)q̈+ J̇(q)q̇

which can be solved in terms of the joint space acceleration ¨q as

q̈= J†(ẍ− J̇(q)q̇)+Nη (5.13)

where
J†(q) =W−1JT(JW−1JT)

−1

is any n× m right generalized inverse ofJ with symmetric and positive definite
weight matrixW and

N = I −J†J

is a n× n matrix, which projects the arbitrary vectorη to the null space ofJ. The
last term of Equation 5.13 provides the null-space accelerations corresponding to the
joint motions that produce a change in the configuration of the manipulator without
affecting its task accelerations.

In view of Equation 5.13, a simple task space inverse dynamics control can be
defined by using control law (Equation 5.2) with vectorr chosen as

r = q̈task+ q̈null (5.14)

with
q̈task= J†(a− J̇(q)q̇), q̈null = Nη (5.15)
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where
a= ẍd +Kd(ẋd − ẋ)+Kp(xd −x) (5.16)

andη can be set to assign a null space task, i.e., a task set to satisfy an additional
goal, besides the main task, projected in the null space of the main task through
matrixN.

In the casen = m, the closed loop dynamics can be written in terms of the task
space tracking error∆x(t) = xd(t)−x(t) as

∆ẍ+Kd∆ẋ+Kp∆x= 0 (5.17)

and the task space error converges exponentially to zero forpositive definite matrix
gainsKd andKp.

In the casen > m, the aforementioned equation describes only the task space
dynamics, while the stability of the closed loop dynamics depends also on the null
space dynamics

N(q̈−η) = 0

The stability analysis for the null space dynamics is not easy, and different choices of
the vectorη can be made, depending on how redundancy is used. A practicalchoice
just aimed at stabilizing the internal motions isη =−kφ q̇, with kφ > 0.

Torque-based controlschemes define the control torque as the sum

τ = τ task+ τnull (5.18)

with τ task andτnull usually set as

τ task= JThc+C(q, q̇)q̇+g(q), τnull = PTγ (5.19)

whereP = I − J#J is a null space projector matrix andJ# the dynamically consis-
tent generalized inverse ofJ, obtained by settingW = B(q). Vectorhc is a control
generalized force acting on the task variables, whilePTγ is a torque in charge of
controlling the null-space motion.

The role ofhc and γ can be better understood by plugging Equation 5.18 into
Equation 5.1 and multiplying both sides of the resulting equation once byJ#T and
once byPT . The resulting equations are, respectively, the task spacedynamics

Λx(q)Jq̈= hc

with Λx = (JB−1JT)−1, and the null space dynamics

PT(B(q)q̈− γ) = 0

Therefore, by choosing
hc = Λx(q)(a− J̇(q)q̇)

with a as in Equation 5.16, the exponentially stable closed loop dynamics (Equa-
tion 5.17) is recovered. It is worth observing that the matrix Λx(q) represents the
inertia of the robot reflected in the task space.
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It is not difficult to show that the torque-based control law is equal to the
acceleration-based control law written using the inertia-weighted generalized in-
verse. Anyway, each of the two formulations has pros and cons, which are still de-
bated in the robotics literature.

In the case of regulation to a constant desired task vectorxd, a simpler torque-
based control law can be adopted by choosingτtask in Equation 5.18 as

τ task= JTKp(xd −x)−Kdq̇+g(q) (5.20)

which is a proportional derivative (PD) control with gravity compensation in task
space.

A drawback common to both the control approaches is that the stability of the
null space dynamicscannot be determined easily. One of the reasons is that differ-
ently from the task space dynamics, the null space dynamics is not expressed by a
minimum number of equations, which should ber = n−m. This problem can be
overcome by considering an× r matrix Z(q), such thatJZ= O, and introducing a
r ×1 velocity vectorν , such that

q̇n = Nq̇= Zν (5.21)

A convenient choice ofν is given by left inertia-weighted generalized inverse
ν = Z#q̇ = (ZTMZ)

−1
ZTMq̇. By this choice, the extended Jacobian matrixJE(q)

defined as
(

ẋ

ν

)

= JE(q)q̇=

(

J(q)

Z#(q)

)

q̇ (5.22)

is non-singular for full rank matrixJ, and the inverse isJ−1
E (q) =

[
J#(q) Z(q)

]
.

Because of the unique relationship between the task space and the null space vari-
ables with the joint space variables given by Equation 5.22,it is possible to rewrite
the dynamics equation of the robot in the new variables as

ΛE(q)

(

ẍ

ν̇

)

+ µE(q, q̇)

(

ẋ

ν

)

+gE(q) = J−T
E τ (5.23)

where the quantitiesΛE, µE, andgE have the same physical meaning of the corre-
sponding quantities of the dynamic model in the joint space (Equation 5.1) and fulfil
the noticeable properties of the Euler–Lagrange equations.

Therefore, control schemes similar to the joint space algorithms presented in Sec-
tion 5.2.1 can be adopted. This approach is known asextended task space control. It
can be shown that thanks to the particular choice of the weighted generalised inverses
J# andZ#, the inertial matrixΛE is block diagonal, i.e.,

ΛE(q) = J−T
E MJ−1

E =

(
Λx 0
0 Λν

)

(5.24)
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with Λx(q) = (JM−1JT)
−1

andΛν(q) = ZTMZ; thus, the task space dynamics and
the null space dynamics are inertially decoupled. Moreover, the matriceṡΛx−2µx
andΛ̇ν −2µν are skew symmetric, with

µE =

[
µx µxν

−µT
xν µν

]

5.2.4 MULTIPRIORITY CONTROL

The common feature of the task space control approaches considered here is that
they allow the execution of a main task together with an additional goal projected
in the null space of the main task. Thisnull space projectionguarantees that the
additional goal has a lower priority with respect to the maintask; i.e., the main task
is fully executed while the additional goal is fulfilled onlyto the extent that it does
not conflict with the main task.

In conventional manipulation structures, these additional goals orsecondary tasks
are typically used to improve the value of performance criteria during motion. The
most frequently considered performance objective for trajectory tracking tasks is
singularity avoidance, i.e., joint configurations where the Jacobian matrix is rank
deficient. In these configurations, it is impossible to generate task velocities or accel-
erations in certain directions. Moreover, since task spacecontrol algorithms involve
the inversion of the Jacobian matrix, very high joint velocities are produced in the
vicinity of these configurations, which therefore, must be avoided. Another useful
secondary task is that of keeping the robot away from joint limits, or from undesired
regions of the workspace, due to the presence of obstacles.

For highly redundant systems, like humanoids or multi-legged robots, multiple
tasks could be arranged in priority in order to try to fulfil most of them, hopefully
all of them, simultaneously. For example, in the case of humanoid robots, we may
want to give higher priority to the task of respecting joint limit constraints over the
task of controlling the robot’s center of gravity for balance and in the end, the task
of controlling the hands’ motion.

The priority order among the tasks can be guaranteed by usingprojection ma-
trices, like those used in the previous subsection. In fact,all the task space control
approaches presented earlier can be extended to handle a task hierarchy, although the
generalization is not straightforward.

In the case of acceleration-based control, letxk be themk×1 vector defining thek-
th priority task, wheremk < n andẋk = Jk(q)q̇, for k= 1, . . . ,L are the corresponding
differential kinematics equations. The task hierarchy is defined such thatk= 1 is top
priority, andka < kb implies thatka is located higher in the priority order thankb.

A multi-priority control can be designed by using control law (Equation 5.2) with
vectorr defined as

r =
L

∑
k=1

q̈k, q̈k = J̄†
k(ak− J̇kq̇−bk) (5.25)
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with ak = ẍk,d +Kk,d(ẋk,d − ẋk)+Kk,p(xk,d −xk), xk,d being the desired value ofxk.
The quantitiesbk andJ̄k are chosen so that the tasksx j , with j ≥ k, do not generate
accelerations in the space of all higher-priority tasks. Indetail,

bk = Jk

k−1

∑
i=1

q̈i

J̄k = JkNk−1

Nk =
k

∏
j=1

(I − J̄†
j J̄ j)

with b1 = 0 andN0 = I .
It can be verified that any symmetric positive definite weightmatrixW can be used

for the computation of the generalized inverseJ̄†
k. Moreover, if the inertia-weighted

generalized inverse is used, the acceleration-based multi-priority control becomes
equivalent to a torque-based multi-priority control. Similarly, the extended task space
formulation generalized to the case of multiple priority tasks results in an inertially
decoupled dynamic system, as in Equation 5.24.

5.3 FORCE CONTROL

Control of the physical interaction between a robot manipulator and the environment
is crucial for the successful execution of a number of practical tasks in both indus-
trial and service robotics. Typical examples in industrialsettings include polishing,
deburring, machining, and assembly. A variety of examples can be found also in ser-
vice robotics, as the case of a humanoid robot opening a door or pulling out a drawer
or of a rehabilitative robot performing assisted training of patients with movement
disorders.

During contact, the environment may set constraints on the geometric paths that
can be followed by the robot’s end effector (kinematic constraints), as in the case
of cleaning a window or turning a door handle. In other situations, the interaction
occurs with a dynamic environment, as in the case of collaboration with a human. In
all cases, a pure motion control strategy is not recommended.

In the presence of interaction, the higher the environment stiffness and position
control accuracy are, the more easily the contact forces mayrise and reach unsafe val-
ues. This drawback can be overcome by introducing compliance, either in a passive
or in an active fashion, to accommodate the robot motion in response to interaction
forces.

Passive compliance may be due to the structural compliance of the links, joints, or
end effector or to the compliance of the position servo. Softrobot arms with elastic
joints or links are purposely designed for intrinsically safe interaction with humans.
In contrast, active compliance is entrusted to the control system, denotedinteraction
control or force control. In same cases, the measurement of the contact force and
moment is required, which is fed back to the controller and used to modify or even
generate online the desired motion of the robot.
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The passive solution is faster than active reaction commanded by a computer con-
trol algorithm. However, the use of passive compliance alone lacks flexibility and
cannot guarantee that high contact forces will never occur.Hence, the most effective
solution is to use active force control (with or without force feedback) in combination
with some degree of passive compliance.

Often, a force/torque sensoris mounted at the robot wrist to measure the ex-
changed forces, but other possibilities exist; for example, force sensors can be placed
on the fingertips of robotic hands; also, external forces andmoments can be estimated
via shaft torque measurements of joint torque sensors or from the currents of the joint
actuators.

The force control strategies can be grouped into two categories: those performing
direct force control and those performing indirect force control. The main difference
between the two categories is that the former offer the possibility of controlling the
contact force and moment to a desired value, thanks to the closure of a force feedback
loop; the latter instead achieve interaction control via motion control without explicit
closure of a force feedback loop.

5.3.1 INTERACTION OF THE END EFFECTOR WITH THE ENVIRONMENT

The case of interaction of the end effector of a robot manipulator with the environ-
ment is considered first, which is the most common situation in the applications.

The end effector pose can be represented by the position vector pe and the rotation
matrix Re, corresponding to the position and orientation of a frame attached to the
end effector with respect to a fixed base frame.

The end effector velocity is denoted by the 6× 1 twist vector ve =
(
ṗT

e ωT
e

)
T ,

where ṗe is the translational velocity andωe the angular velocity, and can be com-
puted from the joint velocity vector ˙q using the linear mapping

ve = Je(q)q̇

The matrixJe is the end effector Jacobian, also known asgeometric Jacobian.
The forcef e and momentme applied by the end effector to the environment are the

components of thewrenchvectorhe=
(

f T
e mT

e

)
T . The joint torquesτe corresponding

to he can be computed as
τe = Je(q)

The

These torques contribute to the manipulator dynamics, which can be rewritten as

B(q)q̈+C(q, q̇)q̇+g(q) = τ −Je(q)
The (5.26)

To control the interaction of the end-effector with the environment, it is useful
to define the control torqueτ in terms of generalized control forces acting on the
end-effector and for redundant robots, control torques that do not contribute to the
end-effector motion. Namely, the torque-based control scheme (Equation 5.18) can
be adopted, with

τ = JT
e hc+PT

e γ (5.27)
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wherePe is the dynamically consistent null space projection matrix. Replacing Equa-
tion 5.27 in Equation 5.26 and multiplying both sides of the resulting equation byJ#T

e
gives

Λe(q)v̇e+µe(q, q̇)ve+ηe(q) = hc−he (5.28)

known as dynamic model in theoperational space, whereΛe(q) = (JeM−1JT
e )

−1 is
the 6×6 equivalent inertia matrix seen by the end-effector,µe(q, q̇)ve is the wrench
including centrifugal and Coriolis effects, andηe(q) is the wrench of the gravita-
tional effects.

Equation 5.28 can be seen as a representation of the Newton’sSecond Law of
Motion where all the generalized forces acting on the jointsof the robot are reported
at the end-effector. In the case of redundant robots, this equation does not represent
the overall robot dynamics but must be completed by the equations of the null space
dynamics.

Moreover, the full specification of the system dynamics would require also the
analytic description of the interaction force and momenthe. This is a very demanding
task from a modeling viewpoint.

The design of the interaction control and the performance analysis are usually
carried out under simplifying assumptions. The following two cases are considered:

1. The robot and the environment are perfectly rigid, and purely kinemat-
ics constraints are imposed by the environment, known asholonomic con-
straints.

2. the robot—rigid or elastic—interacts with a passive environment.

It is obvious that these situations are only ideal. However,the robustness of the con-
trol should be able to cope with situations where some of the ideal assumptions are
relaxed. In that case, the control laws may be adapted to dealwith nonideal charac-
teristics.

5.3.2 HOLONOMIC CONSTRAINTS

In this subsection, for simplicity, only the case of non-redundant robots, with square
and non-singular geometric Jacobian matrixJe, is considered.

It is assumed that the environment is rigid and frictionlessand imposes kinematic
constraints to the robot’s end-effector motion. These holonomic constraints reduce
the dimension of the space of the feasible end-effector velocities and of the contact
forces and moments. In detail, in the presence ofm independent constraints (m< 6),
the end-effector velocity belongs to a subspace of dimension 6−m, while the end-
effector wrench belongs to a subspace of dimension, and can be expressed in the form

ve = Sv(q)ν , he = Sf (q)λ

whereν is a suitable(6−m)×1 vector andλ is a suitablem×1 vector. Moreover,
the subspaces of forces and velocity arereciprocal, i.e.,

hT
e ve = 0, ST

f (q)Sv(q) = 0
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The concept of reciprocity expresses the physical fact thatin the hypothesis of rigid
and frictionless contact, the wrench does not cause any workagainst the twist.

An interaction task can be assigned in terms of a desired end-effector twistvD and
wrenchhD that are computed as

vD = SvνD, hD = Sf λ D

by specifying vectorsλ D andνD.
In many robotic tasks, it is possible to set an orthogonal reference frame, usually

referred as atask frame, in which the matricesSv and Sf are constant. The task
frame can be chosen to be attached either to the end-effectoror to the environment.
Moreover, the interaction task is specified by assigning a desired force/torque or
a desired linear/angular velocity along/about each of the frame axes.

In more complex and general situations, the matricesSv and Sf can be found
analytically, starting from the analytic expression of theholonomic constraints in the
joint space

φ(q) = 0 (5.29)

whereφ is an m× 1 twice differentiable vector function, whose components are
linearly independent at least locally in a neighborhood of the operating point. Con-
straints of the form in Equation 5.29 involving only the generalized coordinates of
the system, are known asholonomic constraints.

Differentiation of Equation 5.29 yields

Jφ (q)q̇= 0 (5.30)

whereJφ (q) is them×6 constraint Jacobian. In the absence of friction, the general-
ized interaction forces are represented by a reaction wrench that tends to violate the
constraints. This end-effector wrench produces reaction torques at the joints that can
be computed using the principle of virtual work as

τe = JT
φ (q)λ

whereλ is anm×1 vector ofLagrange multipliers. The end-effector wrench corre-
sponding toτe can be computed as

he = J−T
e (q)τe = Sf (q)λ (5.31)

where
Sf = J−T

e (q)J−T
φ (q) (5.32)

Using Equations 5.31 and 5.32, Equation 5.30 can be rewritten in the form

Jφ (q)J
−1
e (q)Je(q)q̇= ST

f ve = 0 (5.33)

which, by virtue of Equation 5.31, is equivalent to the reciprocity conditionhT
e ve. At

this point, matrixSv can be computed from the equalityST
f (q)Sv(q) = 0.
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5.3.3 HYBRID FORCE/MOTION CONTROL

The reciprocity of the velocity and force subspaces naturally leads to a control ap-
proach, known ashybrid force/motion control, aimed at controlling simultaneously
both the contact force and the end-effector motion in two reciprocal subspaces.

In the presence of holonomic constraints, the external wrench can be written in
the formhe = Sf λ , and it is possible to compute the dynamics of the constrained
system in terms of 6−msecond-order equations

Λv(q)ν̇ = ST
v

[
hc−β e(q, q̇)

]

whereΛv = ST
v ΛeSv andβ e(q, q̇) = µe(q, q̇)ve+ηe(q), assuming constant matrices

Sv andSf . Moreover, the vectorλ can be computed as

λ = S†
f (q)

[
hc−β e(q, q̇)

]

S†
f being a suitable pseudoinverse of matrixSf . The aforementioned equation reveals

that the contact force is a constraint force, which instantaneously depends on the
applied input wrenchhc.

An inverse dynamics inner control loop can be designed by choosing the control
wrenchhc as

hc = Λe(q)Svαv+Sf f λ +β e(q, q̇)

whereαv and f λ are properly designed control inputs, which leads to the equations

ν̇ = αν , λ = f λ

showing a complete decoupling between motion control and force control.
Then, the desired forceλ D(t) can be achieved by setting

f λ = λ D(t)

but this choice is very sensitive to disturbance forces, since it contains no force feed-
back. Alternative choices are

f λ = λ D(t)+KPλ
[
λ D(t)−λ (t)

]

or

f λ = λ D(t)+KIλ

∫ t

0

[
λ D(τ)−λ (τ)

]
dτ

whereKPλ andKIλ are suitable positive-definite matrix gains. The proportional feed-
back is able to reduce the force error due to disturbance forces, while the integral
action is able to compensate for constant bias disturbances.

Motion control is achieved by setting

αν = ν̇D(t)+KPν
[
νD(t)−ν(t)

]
+KIν

∫ t

0

[
νD(τ)−ν(τ)

]
dτ
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where KPν and KIν are suitable matrix gains. It is straightforward to show that
asymptotic tracking ofνD(t) and ν̇D(t) is ensured with exponential convergence
for any choice of positive definite matricesKPν andKIν .

Notice that the implementation of force feedback requires the computation of
vectorλ from the measurement of the end-effector wrenchhe asS†

f ve. Analogously,

vector ν can be computed fromve as S†
vve, S†

v being a suitable pseudoinverse of
matrixSv.

The hypothesis of rigid contact can be removed, and this implies that along some
directions, both motion and force are allowed, although they are not independent.
Hybrid force/motion control schemes can be defined also in this case.

5.3.4 IMPEDANCE CONTROL

The interaction force of the ideal situation considered in the previous subsection,
being a constraint reaction force, is not a state variable ofthe system. In that case,
the stability of the controlled system can be analyzed by considering only the robot
dynamics and the kinematic constrains.

In more general situations, the environment is a dynamic system itself, and the
overall coupled robot–environment dynamics must be considered for stability analy-
sis and control design.

A physical interaction can be modeled as an exchange of mechanical power at an
interaction portin the formp(t) = hTv, h being the generalized interaction force and
v the generalized velocity at the port.

In this perspective, a mechanicalimpedanceat an interaction port can be defined
as a dynamic operator that determines an output force in response to an input velocity
at the same port. Vice versa, a mechanicaladmittanceis a dynamic operator that
determines an output velocity in response to an input force.

For linear systems, admittance is the inverse of impedance,and both can be repre-
sented as transfer functions in Laplace domain. Moreover, impedance (admittance)
is analogous to electrical impedance (admittance) if we replace force with voltage
and velocity with current.

In modeling the physical interaction between the robot and the environment, if one
system is modeled as an impedance, the other must be modeled as an admittance, and
vice versa. The roles of impedance and admittance are interchangeable, with some
exceptions.

It is important to notice that the value of the two port variables characterizing the
interaction, i.e, the forceh and the velocityv, depends on both robot and environment
dynamics, as can be easily verified considering the electriccircuit analogy. On the
other hand, a given impedance (or admittance) dynamic behavior can be imposed
on the robot by the control independently of the dynamics of the other interacting
system.

The aim ofimpedance controlis to control neither the force nor the velocity dur-
ing the interaction, but the dynamic relationship between force and velocity, namely,
the robot’s impedance or admittance.
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Therefore, a successful impedance control must satisfy thefollowing goals:

• Robust stabilityregardless of the environment dynamics, or for a certain
class of environments

• Performance, i.e., minimal deviation of the actual robot impedance (or ad-
mittance) from the desired one.

Concerning the first goal, from the passive control theory, it is known that if the
dynamics of the environment is passive, the stability of theinteraction can be guar-
anteed, provided that the dynamics imposed on the robot is passive as well. This
property, which derives from the Nyquist stability criterion for feedback intercon-
nected linear systems extended to nonlinear passive systems using a Lyapunov-like
analysis, provides only a sufficient condition. Therefore,passivity is sought to ensure
robustness, but sometimes it may be too conservative, and stability can be achieved
also if the interacting systems are not passive.

With reference to the second goal, a number of different schemes have been pro-
posed to reshape the robot’s natural impedance or admittance.

The simplest approach is that of imposing a suitable static relationship between
the deviation of the end-effector position and orientationfrom a desired pose and the
force exerted on the environment by using the control law

hc = KP∆xde−KDve+ηe(q) (5.34)

whereKP and KD are suitable matrix gains, and∆xde is a suitable error between
a desired and the actual end-effector position and orientation. The position error
component of∆xde can be simply chosen aspD − pe. Concerning the orientation
error component, different choices are possible, which arenot all equivalent, but this
issue is outside the scope of this chapter.

The control input (Equation 5.34) corresponds to a wrench (force and moment)
applied to the end-effector, which includes a gravity compensation termηe(q), a
viscous damping termKDve, and an elastic wrench provided by a virtual spring with
stiffness matrixKP (or equivalently, compliance matrixK−1

P ) connecting the end-
effector frame with a frame of desired position and orientation. This control law is
known asstiffness controlor compliance control, and when the viscous damping
torque is chosen in the joint space as−KDq̇, it coincides with the task space control
law (Equation 5.20).

Using passivity, it is possible to prove the stability in thecase of interaction with
a passive environment. Moreover, at steady-state, the robot’s end-effector has the
desired elastic behavior

KP∆xde= he

It is clear that ifhe 6= 0, then the end-effector deviates from the desired pose, which
is usually denoted asvirtual pose.

The closed loop system (Equations 5.35 with 5.34) can be written as

Λe(q)v̇e+µe(q, q̇)ve+KDve−KP∆xde= he (5.35)
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corresponding to a 6-DOF nonlinear and configuration-dependent mechanical
impedance of mass-spring-damper type, with inertia (mass)matrixΛe(q), adjustable
dampingKD, and stiffnessKP, producing the external wrenchhe.

One problem of the aforementioned impedance control law, which does not re-
quire feedback of the interaction force and momenthe, is that is not possible to
modify the natural inertia of the robot (seen from the end-effector) or, the friction
torques which have not been considered here but which can be easily added to the
termµe(q, q̇)ve. Hence, the performance of the control scheme is poor in the case that
the natural robot inertia and friction are dominant with respect to the desired damp-
ing and stiffness. This happens, for example, when trying toimpose a low impedance
on a bulky industrial robot.

A partial solution to this problem is to use feedback of the interaction force and
momenthe in the following control law, known asimpedance control:

hc = Λe(q)α +µe(q, q̇)ve+ηe(q)+he (5.36)

whereα is chosen as

α = v̇d +K−1
M (KD∆vde+KP∆xde−he)

The following expression can be found for the closed loop system:

KM∆v̇de+KD∆vde+KP∆xde= he (5.37)

representing the equation of a 6-DOF configuration independent mass-spring-
damper system with adjustable inertia (mass) matrixKM, dampingKD, and stiffness
KP. This ideal behavior can be obtained only in the hypothesis that friction forces, in-
cluded into the termµe(q, q̇)ve, can be completely cancelled out using Equation 5.36,
which is unlikely to happen.

An alternative control scheme able to cope with friction andunmodeled dynam-
ics is known asadmittance control. In this case, an inner motion control loop is
used to ensure tracking of a reference motion trajectory, and thus, the robot becomes
an impedance producing force in response to motion. The reference trajectory for
the inner motion control loop is produced by an outer controller, which uses feed-
back of the interaction control force and momenthe. This latter control system is,
therefore, an admittance and can be designed so as to produce, in closed loop with
the motion-controlled robot, the dynamic behavior described by Equation 5.37. The
main difference, with respect to the impedance control scheme, is that friction rejec-
tion is not demanded to model-based cancellation but is robustly performed by the
inner motion control loop.

One common feature of the impedance and admittance control schemes described
before is that they allow the natural inertia of the robot reflected to the end-effector
to be modified thanks to the feedback of the interaction forceand momenthe.

In the case of rigid robots, the closed loop stability is ensured provided that the
impedance matrices in the impedance equation Equation 5.37are positive semidef-
inite in case of contact with a generic passive environment.For robots with non-
negligible joint elasticity, considering a simple linear 1-DOF case, it can be shown
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that passivity is guaranteed only if the desired mass of the impedance is higher than
the mass of the robot at the link side. The reason is related tothe fact that the in-
teraction force, used in the feedback control law, and the control actuation are not
physicallyco-located. The same result can be extended to the case of multi-variable
liner systems, but it is not easy to prove for nonlinear systems. In this latter case,
the passivity can be easily shown only if the robot’s inertiais left unchanged. There-
fore, to guarantee passivity in the nonlinear multi-variable case, usually the mass of
the desired impedance is set equal to the natural inertia of the robot reflected to the
end-effector. This conservative choice may often limit theperformance.

5.3.5 MULTIPRIORITY INTERACTION

A significant problem for robots with a high number of DOF is that of achieving a
decoupled behavior among a hierarchy of tasks with different priorities, also in the
presence of interaction.

An external force applied anywhere to the robot’s body produces an external
torqueτext, which contributes to the robot’s dynamics as follows:

B(q)q̈+C(q, q̇)q̇+g(q) = τ − τext (5.38)

By adopting the extended task space control formulation presented in Subsec-
tion 5.2.3, the inverse dynamics control law (Equation 5.2)with r chosen as

r = J−1
E (

(

ẍc

ν̇c

)

− J̇Eq̇) = J#(ẍc− J̇q̇)+Z(ν̇c− Ż#q̇) (5.39)

yields the closed-loop dynamics

q̈= J#(ẍc− J̇q̇)+Z(ν̇c− Ż#q̇)−B−1(q)τext (5.40)

Multiplying both sides of Equation 5.40 byZ#, and considering thaṫν = Ż#q̇+Z#q̈,
the null space closed-loop equation is obtained as

ν̇ = ν̇c−Z#B−1τext (5.41)

On the other hand, multiplying both sides of Equation 5.40 byJ gives the task space
closed loop equation

ẍ= ẍc−JB−1τext (5.42)

Notice that the null space velocity vectorν is, in general, non-integrable, and thus,
a null space position error cannot be easily defined. However, a projected joint space
errorZT q̃ can be used to define the null space command acceleration

ν̇c = ν̇d +Λ−1
ν ((µν +Bν)ν̃ +ZTkqq̃) (5.43)

with kq > 0, Bν symmetric and positive definite matrix, and̃ν = νd − ν . The
configuration-dependent quantitiesΛν = ZTMZ andµν are, respectively, the iner-
tia matrix and the Coriolis/centrifugal matrix in the null space defined in Subsec-
tion 5.2.3. The corresponding closed loop equation is

Λν ˙̃ν +(µν +Bν)ν̃ +ZTkqq̃= ZTτext (5.44)



100 Mechatronics and Robotics

whereZTτext is the projection of the external torque on the null space. Equation 5.44
can be interpreted as an impedance equation defined in the null space, with inertia
Λν , dampingBν , and projected elastic torqueZTkqq̃.

On the other hand, the following choice for the task space command acceleration

ẍc = ẍd +Λ−1
x ((µx+D) ˙̃x+Kx̃) (5.45)

produces the closed-loop equation

Λx ¨̃x+(µx+D) ˙̃x+Kx̃= J#Tτext (5.46)

which also represents an impedance equation in task space with inertiaΛx, damping
D, and stiffness torqueK.

The parameters of the two impedance equations (Equations 5.44 and 5.46) can be
set depending on the expected behavior in response to forcesand moments applied
anywhere to the robot.

Consider, for example, the following scenario: a robot assistant composed by an
anthropomorphic manipulator mounted on a mobile wheeled platform carries a glass
with some water, and for some reason, a human applies a force to the robot’s elbow.
If the robot is compliant, and the compliance is not selective, the force may produce
a change in the glass orientation, and the water can flow out. On the other hand,
if the robot is controlled so that, in the task space defined asthe glass (position
and) orientation, the impedance is set high (i.e., low compliance), while in the null
space, the impedance is set low (i.e., high compliance), then the robot’s structure will
comply mainly in the null space, keeping the (position and) orientation of the glass
close to the desired one.

5.4 FUTURE DIRECTIONS AND RECOMMENDED READING

The motion control problem for robot manipulators was a challenging research topic
from about the mid-1980s until the mid-1990s, when researchers started to exploit
the structural properties of manipulator dynamics, such asfeedback linearizability,
passivity, linearity in the parameters, and others. Many ofthese methods are well as-
sessed and can be found in standard robotics textbooks, suchas Siciliano et al. [33].
An incomplete list of fundamental references where more detailed treatment of these
topics can be found is: Arimoto and Miyazaki [4] for PD control with gravity com-
pensation, Paden and Panja [27] for PD+ algorithm, Slotine and Li [35] and Ortega
and Spong [24] for passivity-based adaptive control, and Abdallah et al. [1] and
Spong [37] for robust control.

Research in control of robot manipulators with flexible transmissions started in
the same years and is still continuing. The assumptions leading to the dynamic
model for robots with elastic joints considered in this chapter were introduced in
Spong [36]. The three versions of PD controller with gravitycompensation were
presented in Tomei [38], De Luca et al. [11] and Albu-Schäffer et al. [3]. To achieve
robust control performance, special interest has been devoted to joint torque feedback
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Albu-Scḧaffer and Hirzinger [2] and [25]. A detailed treatment of dynamic modeling
and control issues for flexible robots can be found in De Luca and Book [10].

The presence of joint elasticity, at the beginning, was seenas a limiting factor for
performance. Nowadays, joint elasticity is considered an explicit advantage for safe
physical human–robot interaction and for locomotion. A relatively new and active
area of research is the control of actuators with on-line controlled variable stiffness
and damping, which exhibit properties that look appealing to build the next genera-
tion of robots and humanoids.

Another challenging research area is the control of roboticstructures with a large
number of joints, like hyper-redundant robots, cooperating manipulators, multifin-
gered hands, vehicle-manipulator systems, or multiarm/multilegged robots, such as
humanoid robots. The motion control problem in task space isparticularly relevant
for such robotic structures, because the high number of DOF at their disposal may
be suitably exploited to satisfy a certain number of different tasks at the same time.
This problem was initially addressed for simple manipulation structures [17] under
the name of operational space control, using a torque-basedapproach, and then ex-
tended in more recent papers to more complex dynamics, like humanoids [18]. The
multi-priority acceleration-based approach was considered in Sadeghian et al. [30],
while an interesting comparison between the two methods waspresented in Nakan-
ishi et al. [21]. The decomposition of the robot dynamics in the task space and null
space can be found in Oh et al. [23], and the extension to the multi-priority case is
presented in Ott et al. [26].

The performance of a force-controlled robotic system or in general, of interac-
tion control depends on the dynamics of the environment, which is very difficult
to model and identify accurately. Hence, the standard performance indices used to
evaluate a control system, i.e., stability, bandwidth, accuracy, and robustness, cannot
be defined by considering the robotic system alone, as for thecase of robot motion
control, but must be always referred to the particular contact situation at hand. For
this reason, although force control in industrial applications can be considered as a
mature technology, standard design methodologies are not yet available.

Force control techniques are employed also in medical robotics, haptic systems,
telerobotics, humanoid robotics, and micro and nano robotics. An interesting field
of application is related to human-centered robotics, where control plays a key role
in achieving adaptability, reaction capability, and safety. Robots and biomechatronic
systems based on the novel variable impedance actuators, with physically adjustable
compliance and damping, capable of reacting softly when touching the environment,
necessitate the design of specific control laws [39]. The combined use of exterocep-
tive sensing (visual, depth, proximity, force, and tactilesensing) for reactive control
in the presence of uncertainty represents another challenging research direction [28].

The two major paradigms of force control (impedance and hybrid force/motion
control) presented in this section have a number of different implementations, deriv-
ing from the specific needs of the applications or exploitingmore advanced control
methods that have been developed in the last three decades. Adescription of the state
of the art of the first decade is provided in Whitney [41], whereas later advancements



102 Mechatronics and Robotics

are presented in Gorinevsky et al. [14] and Siciliano and Villani [34]. An exten-
sive treatment of this topic with related bibliography can be found in Villani and De
Schutter [40].

The original hybrid force/position control concept was introduced in Raibert and
Craig [29], based on the concepts of natural and artificial constraints proposed in Ma-
son [19]. The inclusion on constraints in the manipulator dynamics was considered
in Yoshikawa [42] and McClamroch and Wang [20], while the task frame formalism
was systematically developed in De Schutter and Van Brussel[13], Bruyninckx and
De Schutter [5] and De Schutter et al. [12].

The original idea of a mechanical impedance model used for controlling the inter-
action between the manipulator and the environment was presented in Hogan [15],
while the use of controlled stiffness or compliance was introduced in Salisbury [32].
The stability of impedance and admittance control based on passivity for rigid and
elastic joint robots is discussed in Colgate and Hogan [9], Newman [22], Hogan and
Buerger [16] and Ott et al. Ott-08. A less conservative stability concept for interac-
tion control, with the name of complementary stability, wasproposed in Buerger and
Hogan [6]. For spatial rotations and translations, the specification of task-relevant
impedance (and especially stiffness) is particularly challenging [7,8].

Finally, the interaction control problem of redundant robots in a multi-priority
framework is considered in Sadeghian et al. [31] and Ott et al. [26].
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