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Interaction Control

Fabrizio Caccavale, Ciro Natale, Bruno Siciliano, and Luigi Villani

PRISMA Lab, Dipartimento di Informatica e Sistemistica
Universita degli Studi di Napoli Federico 11
http://www.prisma.unina.it

In the framework of interaction control of robotic systems, impedance control
represents one of the most effective strategies when the model of the envi-
ronment is not available. In this chapter, a new impedance control strategy
is presented for six-degree-of freedom (six-DOF) tasks. The main features
are geometric consistency and absence of singularities. The case of a sin-
gle manipulator interacting with the environment is considered first. Then,
the case of redundant manipulators is analysed, and an algorithm ensuring
stabilisation of null-space velocities is presented. The redundant degrees of
mobility are exploited to optimise an additional task function. Finally, the
case of cooperative robots manipulating a common object is addressed: both
the problems of loose and tight cooperation are considered. The theoretical
findings are validated in experiments on a dual-robot industrial setup.

1 Introduction

Control of interaction between a robot manipulator and the environment
is crucial for successful execution of a number of practical tasks where the
robot end effector has to manipulate an object or perform some operation
on a surface. Typical examples include polishing, deburring, machining or
assembly. During interaction, the environment sets constraints on the geo-
metric paths that can be followed by the end effector. In such a case, the use
of pure motion control for controlling interaction is a candidate to fail, while
it is expected that enhanced performance can be achieved with an interaction
control provided that force measurements are available [25].

Interaction control strategies can be grouped in two categories; those per-
forming indirect force control and those performing direct force control. The
main difference between the two categories is that in the former force control
is achieved via motion control, without explicit closure of a force feedback
loop; in the latter, instead, the contact force is controlled to to a desired
value, thanks to the closure of a force feedback loop.

To the first category belong compliance control [21], stiffness control [23]
and also impedance control [14], where the position error is related to the
contact force through a mechanical stiffness or impedance of adjustable pa-
rameters.

If a detailed model of the environment is available, a widely adopted strat-
egy belonging to the second category is the hybrid position/force control [22],



122 F. Caccavale, C. Natale, B. Siciliano, L. Villani

[27], [17], [18]. In most practical situations, the model of the environment is
not available; in such a case, effective strategies still in the second category
are the inner/outer motion/force control [12] and the parallel control [10].

The focus of the present chapter is on impedance control for six-degree-of-
freedom (six-DOF) tasks. Impedance control is aimed at imposing a desired
dynamic behaviour to the end effector of a robot manipulator in the presence
of external forces and moments, described by a mechanical impedance. For
three-degree-of-freedom tasks (i.e. involving the sole end-effector position),
the impedance consists in three linear second order differential equations
corresponding to a mechanical system with desired mass, damping and stiff-
ness. If a minimal representation of the end-effector orientation is adopted
(e.g. Euler angles), the generalisation of the impedance to six-DOF tasks may
result to be geometrically inconsistent; moreover, representation singularities
may occur. In order to guarantee geometric consistency, the rotational part
of the impedance equation is expressed in terms of a class of geometrically
meaningful orientation representations based on the equivalent axis and an-
gle of rotation. Singularities are avoided by using the unit quaternion, which
is a four parameter angle/axis representation. An energy-based formulation
is adopted to derive the impedance equation whose rotational part results to
be nonlinear [7].

The geometrically consistent approach is applied also to the impedance
control of redundant manipulators, characterised by a number of degrees
of mobility greater than the number of degrees of freedom required for the
execution of a given task. The method adopted for redundancy resolution
allows complete decoupling of internal motion control from forces and mo-
ments acting on the end effector. Thus internal motion can be exploited to
meet additional task requirements, e.g. to improve robot dexterity, without
affecting or being affected by the execution of the interaction task [20].

In the framework of interaction control of cooperative robots manipulat-
ing a common object, both the problems of loose and tight cooperation are
addressed.

A cooperative control strategy can be termed loose when the manipulation
task is executed by controlling each robot in an independent fashion. Coop-
eration is realised only at the task planning level, e.g, mating rigid parts such
as a dual-robot assembly in a workcell. In this case limited mating forces are
achieved by adopting a geometrically consistent impedance control strategy
for one of the two manipulators [5].

A cooperative control strategy can be termed tight when the manipulation
task is executed by controlling the robots in a coordinated fashion. Cooper-
ation is realised not only at the task planning level, but also at the control
level. This is the typical task of two robots whose end effectors tightly grasp
a commonly held rigid object, thus creating a closed-kinematic chain. In this
case, interaction of the grasped object with the environment is successfully
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managed by enforcing a geometrically consistent impedance behaviour at the
object level [4].

The control strategies presented in this chapter have been experimentally
tested on a set-up composed by two industrial robots Comau SMART-3S each
of them equipped with a force/torque sensor ATI FT-30/100 mounted at the
wrist. A number of experiments for representative robotic tasks is illustrated.

2 Motion Control

In this section the kinematic and dynamic modelling of a robot manipulator
are briefly presented. Moreover, the motion control problem in the task space
is analysed, which is the base for developing interaction control.

2.1 Modelling

The kinematic model of an open-chain robot manipulator gives the relation-
ship between the (n x 1) vector of joint variables and the (3 x 1) position
vector p, and the (3x 3) rotation matrix R,, i.e. p, = p.(q) and R, = R.(q).
The quantities p,, R. characterise the end-effector frame ¥, (0O.—X.Y. Z.)
with respect to a fixed base frame X;,(0,—X;Y}, Z3) and no superscript is used;
instead, if a matrix or vector quantity is to be referred to a frame other than
the base frame, then a proper frame superscript shall precede the quantity.
Let ¢ denote the vector of joint velocities, p, the vector of end-effector
linear velocity, and w, the (3 x 1) vector of end-effector angular velocity.
The differential kinematics model gives the relationship between ¢ and v, =
[pT wT]" in the form
Ve = J(q)q (21)

where J is the (6 x n) end-effector geometric Jacobian matrix. A general
motion task for the end-effector position and orientation requires m degrees
of freedom with m < 6. Whenever the number of joints exceeds the number
of degrees of freedom, i.e. n > m, the manipulator is said kinematically
redundant.

The dynamic model can be written in the form

B(q)g+C(a,4)q + Fa+g(q) =7 — J " (q)h, (2.2)

where B is the (6 x 6) symmetric positive definite inertia matrix, Cq is the
(6 x 1) vector of Coriolis and centrifugal torques, g is the (6 x 1) vector
of gravitational torques, T is the (6 x 1) vector of driving torques, h =
[f7 uT]T is the (6 x 1) vector of contact force exerted by the end effector
on the environment.
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2.2 Motion Control in Task Space

The motion control problem for a robot manipulator can be formulated as
finding the joint torques which ensure that the end effector attains a desired
position and orientation. Since the present chapter is focused on the problem
of controlling the interaction between the manipulator end effector and the
environment, direct feedback of task-space variables (i.e. end-effector position
and orientation) is utilised.

A classical control strategy is inverse dynamics control, which is aimed at
linearising and decoupling the manipulator dynamics via feedback. The joint
torques are chosen as

T=B(g)a+C(q,9)a+ Fq+g(q) + I (q)h (2.3)

where « is a new control input to be properly designed.
Folding the control law (2.3) into the system model (2.2), and taking into
account that B(q) is always nonsingular, yields

j=—« (2.4)

which constitutes a linear and decoupled system, where the quantity a rep-
resents a resolved acceleration in terms of joint variables.
The new control input « in (2.4) can be chosen as

a=J"(q) (a=JI(a.9)4) (2.5)

which leads to
Ve =a (2.6)

where the time derivative of (2.1) has been used. The vector a attains the
meaning of a resolved acceleration in terms of task space variables.

In deriving (2.5), a nonredundant manipulator (n = 6) moving in a singu-
larity-free region of the workspace has been considered to compute the inverse
of the Jacobian.

It is appropriate to partition the vector a into its linear and angular
components, i.e. a = [a, al]", where a, and a, are (3 x 1) vectors.
Therefore, Equation (2.6) can be rewritten as

ﬁe = a’p (27)
We = Gy, (2.8)

where a, and a, shall be designed so as to ensure tracking of the desired
end-effector position and orientation trajectory, respectively.

The desired position trajectory is specified in terms of the position vec-
tor p,(t), linear velocity vector p,(t) and linear acceleration vector p,(t);
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the desired orientation trajectory is specified in terms of the rotation ma-
trix Ry4(t), angular velocity vector wg(t) and angular acceleration vec-
tor wq(t). The quantities p; and R, characterise the origin and the ori-
entation of a desired frame X.

A position error between the desired and the actual end-effector position
can be defined as Ap,, = p,— p, where the operator A denotes that a vector
difference has been taken, and the double subscript denotes the corresponding
frames. Then, the resolved linear acceleration can be chosen as

ap =Py + KppApy. + KpyApg, (2.9)

ensuring exponential tracking of the desired position trajectory for any choice
of the positive definite matrix gains K p;, and Kp,,.

The most natural way of defining an orientation error is to consider an
expression analogous to the position error, i.e. A, = ¢, — ., where @,
and ¢, are the set of Euler angles that can be extracted respectively from
the rotation matrices Ry and R, describing the orientation of ¥y and X,.

The resolved angular acceleration based on the Euler angles error can be
chosen as

ao = T(Qoe) (¢d + KDOAdee + KPOA¢de) + T(¢e; Qbe)Qbe (210)

where T is the transformation matrix relating the time derivative of the Euler
angles ¢, and the end-effector angular velocity w., i.e.

We = T(Qoe)()be' (211)

The control law (2.10) ensures exponential tracking of the desired orientation
trajectory for any choice of the positive definite matrix gains K p, and K p,,
provided that T'(¢,) is nonsingular.

The above Euler angles error becomes ill-conditioned when the actual
end-effector orientation ¢, becomes close to a representation singularity, i.e.
a configuration for which T'(¢,) becomes singular. In order to overcome this
drawback, an alternative Euler angles error can be considered which is based
on the rotation matrix describing the mutual orientation between Y; and X,
ie.“Ry = R;FRd. Let ¢, denote the set of Euler angles that can be extracted
from ¢ Ry. In this case, the resolved angular acceleration can be chosen as

a, =wg+ TE(Qode)(KDOdee + KPO(pde) - Te(‘)ode: Q.ode)gode (212)

where T, = R.T. The control law (2.12) ensures exponential tracking of the
desired orientation trajectory for any choice of the positive definite matrix
gains Kp, and K p,, provided that T'(¢,.) is nonsingular. The advantage
of the alternative over the classical Euler angles error is that, by adopting a
representation ¢, for which T'(0) is nonsingular (e.g. the XYZ Euler angles),
representation singularities occur only for large orientation errors.
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A different definition of orientation error can be obtained using an an-
gle/axis representation. The mutual orientation between X; and X, is de-
scribed by ¢ R4, and thus the orientation error can be defined in terms of the
general expression

eode = f(ﬂde)erdea (213)
where ¥4, and ¢rg4. are respectively the rotation and the unit vector cor-
responding to *Rg, and f(-) is a suitable scalar function with f(0) = 0.
Common choices for f(¢J) are reported in Tab. 2.1.

Representation f(9)
Classical angle/axis sin(¥)
Quaternion sin(d/2)
Rodrigues parameters tan(9/2)
Simple rotation 0

Table 2.1. Common choices for f(9)

A special type of angle/axis representation of the orientation error is
obtained with the quaternion, i.e.

9
€04, = sin %erde = ®€4e (2.14)

corresponding to the vector part of the quaternion Qg4 = {n4e, “€qe} that
can be extracted from the rotation matrix ¢ Ry4. A brief review of the basic
properties of the unit quaternion can be found, e.g. in [25].

The resolved angular acceleration based on the quaternion error can be

chosen as

a, = wg+ KDOAwde + KpoReeéde (215)
where Awg, = wg — w, is the relative angular velocity between X; and
Y. Control law (2.15) ensures asymptotic tracking of the desired trajectory

when the feedback gains are taken as scalar matrices, i.e. Kp, = kp,I and
Kp, = kpoI [6].

3 Six-DOF Impedance Control

When the manipulator moves in free space, the end effector is required to
match a desired frame Y. Instead, when the end effector interacts with the
environment, it is worth considering another (compliant) frame X, specified
by p. and R.; then, a mechanical impedance can be introduced which is
aimed at imposing a dynamic behaviour for the position and orientation
displacements between the above two frames.

In the following, six-DOF impedance control schemes are derived using
different types of orientation displacements.
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3.1 Classical Impedance Control

The mutual position between the compliant frame and the desired frame can
be described by the position displacement Ap,. = p; — p.. The impedance
equation is typically chosen so as to enforce an equivalent mass-damper-spring
behaviour for the end-effector position displacement under an external force
f acting on the end effector

MPAIN)dc + DPApdc + KPApdc = fa (31)

where M, D, and K, are positive definite matrices.

In order to ensure a proper end-effector behaviour for the successful exe-
cution of an interaction task, the selection of the stiffness matrix plays a key
role. Therefore, it is worth analysing the elastic term from a geometric point
of view. The stiffness matrix K, can be decomposed as K, = UpI’pU;f
where I', = diag{yp1,Vp2,Vps} and Up = [up1  Up2  Up3 | are respectively
the eigenvalue matrix and the (orthogonal) eigenvector matrix. Then, con-
sidering a position displacement of length A along the i-th eigenvector u,;
leads to an elastic force

fe=KpAp, = ypilup; (3.2)

which is aligned with the same axis. This implies that the translational stiff-
ness matrix can be expressed in terms of three parameters ,; representing
the stiffness along three principal axes wup;, and in turn it establishes the
property of task geometric consistency for the elastic force in (3.2).

The end-effector orientation displacement can be computed as a difference
of Euler angles, i.e. A¢,. = ¢,— ¢,, where ¢ and ¢, denote the set of Euler
angles corresponding to R, and R, respectively. In this case the rotational
part of the impedance at the end effector can be formally defined in the same
way as for the positional part (3.1), i.e.

MOAdec + DOAdec + KOAQOdc = TT(QOC)IJ,, (33)

where M ,, D,, K, are positive definite matrices describing the generalised
inertia, rotational damping, rotational stiffness, respectively, and p is the
contact moment at the end effector; all the above quantities have been re-
ferred to the base frame. Notice that, differently from (3.1), the dynamic
behaviour for the rotational part is not absolutely determined by the choice
of the impedance parameters but it does also depend on the orientation of the
compliant frame with respect to the base frame through the matrix T" (¢,).
Moreover, Equation (3.3) becomes ill-defined in the neighborhood of a repre-
sentation singularity; in particular, at such a singularity, moment components
in the null space of T do not generate any contribution to the dynamics of
the orientation displacement, leading to a possible build-up of large values of
contact moment. The effect of the rotational stiffness can be better under-
stood by considering an infinitesimal orientation displacement between X
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and X.. From (3.3), in the absence of representation singularities, the elastic
moment is puy; = T * (¢.) K oAy, In the case of an infinitesimal orientation
displacement about ¢, it is

d(Apge) = (@ =) | dt =T (p.) Awacdt, (3.4)
Pa = Pe
where Awg. = wg — w, is the relative angular velocity between Yy and Y.
Hence, the elastic moment for an infinitesimal displacement d(A¢g,,) is

e =T (0 ) KT (p,) Awedt. (3.5)

Equation (3.5) reveals that the relationship between the orientation displace-
ment and the elastic moment depends on the orientation of X.. It follows
that the property of task geometric consistency of the elastic force (3.2) is
lost, that is, the eigenvectors of the matrix K, do not represent the three
principal axes for the rotational stiffness.

The drawbacks discussed above can be mitigated by adopting the alter-
native Euler angles displacement ¢, that can be extracted from the rotation
matrix Ry = RCTRd. Then, a rotational impedance at the end effector can
be defined as

Mogbdc + DO{Odc + Kosodc = TT(Qodc)cﬂ' (36)

where M,, D, and K, are defined in a similar way to (3.3) and ‘u is re-
ferred to X.. An advantage with respect to (3.3) is that now the impedance
behaviour for the rotational part depends only on the relative orientation be-
tween ¥; and ¥, through the matrix T (¢,,). Hence, if XYZ Euler angles
are adopted, representation singularities have a mitigated effect since they
occur for large end-effector orientation displacements. From (3.6) the elastic
moment is “pp = T " (pg.) Ko 4.- The infinitesimal orientation displace-
ment about ¢, =0 is

dey. = Pye _odt= T~ (0) ACwgcdt. (3.7)
Pde =

Hence, the elastic moment for an infinitesimal displacement d¢,. is
‘=T T (dpg) KT (0)Awyedt = T™T(0) K T (0)ACwqcdt (3.8)

where the first-order approximation T (dgy.)dt ~ T~7(0)dt has been
made. Equation (3.8) reveals that the relationship between the orientation
displacement and the elastic moment is independent of the orientation of Y.
Notice, however, that the choice of Euler angles affects the resulting stiffness
through the matrix T(0) which must be invertible. It is convenient to adopt
the XYZ representation, which gives T'(0) = I and thus, for an infinitesimal
displacement,

‘b~ Ky Awgdt. (3.9)
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As regards the property of task geometric consistency for the elastic moment,
when K, is a diagonal matrix and the XYZ representation of Euler angles
is adopted, the i-th eigenvector u,; of K, = diag{vo1, Vo2, Vo3} is the i-th
column of the identity matrix. Hence, the orientation displacement of an
angle Y4, about wu,; is described by ¢,4. = J4.u0;, which, in view of the
expression of T'(p,,.) for XYZ Euler angles [25], leads to

‘g = YoiVdcUoi, (3.10)

representing an elastic moment about the same u,; axis; thus the vectors u,;
have the meaning of rotational stiffness principal axes. It can be recognised
that the same property does not hold in general for a nondiagonal K, [7].

3.2 Geometrically Consistent Impedance Control

The above analysis has revealed that the adoption of minimal representations
of orientation for the rotational part of the impedance does not preserve
properties analogous to those of the translational part. The main objective of
this section is to define a six-DOF impedance with a rotational part matching
the following desirable properties:

— the velocity used in the impedance equation should be dual to the mo-
ment p acting on the end effector, i.e. with no need of a transformation
matrix depending on the actual end-effector orientation;

— the equivalent rotational stiffness in case of small orientation displacements
should be always well defined;

— the elastic contribution should allow the specification of a rotational stiff-
ness matrix in a consistent way with the task geometry.

A class of geometrically meaningful representations of the mutual orienta-
tion between Yy and X, can be given in terms of the angle/axis displacement

Codc = f(ﬁdc)c’rdc; (311)

where ¥4, and °rg4. correspond to ‘R4, and f(J4.) is any of the functions
listed in Tab. 2.1. Those are strictly increasing smooth functions in an inter-
val (=9, 9ar) with ¥as > 0. Hence, the derivative f'(¢4.) of f with respect
to Y4, is strictly positive in that interval.

Differentiating (3.11), gives [7]

‘0qc = Q(CrdCaﬁdc)Acwdc (312)
with
1
2 = [ Wa)Tac T o+ 55 0ae) (c0tWac/2) (L= racT]) = S(ac) ) (3.13)

where S(-) is the (3 x 3) skew-symmetric matrix operator performing the
cross product. Notice that the following property of £2 holds
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2(“r4.,0) = f(0)I (3.14)

which will be useful in the following.
In order to derive the impedance equation for the rotational part, it is
convenient to refer to the following energy-based argument. Let

1
T, = §Acw;lrcM0Acwdc (3.15)

express a rotational pseudo-kinetic energy of a rigid body with inertia tensor
M, and angular velocity A°wg.. Then consider the potential energy

U, =¢0s K 04, (3.16)

where 1 is a positive constant depending on the particular choice of f(-), and
K, is a symmetric positive definite matrix. Having defined the various energy
contributions, the terms in the rotational impedance equation can be derived
by considering the associated powers. Taking the time derivative of (3.15)
yields

To = ut Awg, (3.17)

where
‘ur = M, Awq, (3.18)

is the inertial moment. Further, taking the time derivative of (3.16) and
accounting for (3.12) yields

U, = ‘pEAwy, (3.19)

where
‘g =2027 (“rge, 94.) K 04e (3.20)

is the elastic moment. Finally, a dissipative contribution can be added as
‘up =D, Awge, (3.21)

where D, is a positive definite matrix characterising a rotational damping at
the end effector.

Therefore, a rotational impedance at the end effector can be defined by
adding the contributions (3.18), (3.21) and (3.20), i.e.

M AWy + D, Awge + I{;COdC = C;L, (322)
where the equality ‘p = ‘p; + pp + ‘g has been imposed, and
K = 20027 (“rge, 94.) K. (3.23)

Notice that the rotational part of the impedance equation has been de-
rived in terms of quantities all referred to X.; this allows the impedance
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behaviour to be effectively expressed in terms of the relative orientation be-
tween Y, and Y., no matter what the absolute orientation of the compliant
frame with respect to the base frame is. It is worth remarking that the ve-
locity used in the impedance equation is dual to the moment “u exerted by
the end effector, i.e. there is no need of a transformation matrix depending
on the actual end-effector orientation.

In the following, the analysis for small orientation displacements is car-
ried out and consistency with the task geometry is investigated. Consider an
infinitesimal orientation displacement expressed as

dCOdC = dec 9 0 dt = .Q(C’l"dc,O)Adecdt = fl(O)Adecdt (324)
dec —
where the property (3.14) has been exploited. Folding (3.24) into (3.20),
written for an infinitesimal displacement about 94, = 0, gives

CM'E = 2¢QT(C7‘dCad'l9dc)K0dcodc (325)
~ 2 (1'(0))° Ko Awaedt = Ko Awgedt, (3.26)

where the first-order approximation £2(°r 4., ddq.) ~ {'(0)I has been consid-
ered and the choice 1) = 1/2(f'(0))? has been made. Equation (3.25) clearly
shows how the relationship between the orientation displacement and the
elastic moment is independent of the orientation of X., and the problem of
representation singularities is not of concern since f'(0) is finite.

As regards the property of task geometric consistency, the stiffness
matrix in (3.20) can be decomposed as K, = UOI'OU;F, where I', =
diag{vo1,Vo2,Ve3} and U, = [we1 U, U,3] are respectively the eigen-
value matrix and the (orthogonal) eigenvector matrix. Then, considering an
orientation displacement by an angle 94. about the i-th eigenvector

COdc = f(ﬂdc)uoia (327)
and taking into account the expression of £2 in (3.13), yields
‘up =20 f (Vac) f(Dac)Voithoi- (3.28)

This represents an elastic moment about the same wu,; axis which is in the
same direction of the orientation displacement since f'(¢4.) > 0. Therefore,
the rotational stiffness matrix can be expressed in terms of three parame-
ters 7y,; representing the stiffness about three principal axes wu,;, i.e. in a
consistent way with the task geometry.

A special case among angle/axis representations of orientation displace-
ment is constituted by the quaternion displacement. Such a representation has
the advantage over other angle/axis representations to avoid representation
singularities. The mutual orientation between X; and X, can be described by
the quaternion Qg. = {n4c, “€4.} extracted from ¢ Ry. Indeed, the orientation
displacement to be considered in (3.22) is given by the vector part “€4. and,
in view of (3.16), the expression of the potential energy becomes
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U, =2} K, €qe, (3.29)

where it has been set ¢y = 2. Even though the potential energy is expressed in
terms of the vector part of the quaternion, it can be shown that U/, coincides
with the rotational elastic energy associated with a torsional spring of stiffness
K, acting so as to align X, with X4 [7].
In view of (3.22), the resulting impedance equation for the rotational part
becomes
M Awy. + D, Awy, + Kgcédc = C;L, (330)

where the rotational stiffness matrix is
K! =2E" (n4.,%€4.) K, (3.31)

where E = ’I]ch — S(Cedc).

A generalisation of the proposed approach leads to an impedance equation
characterised by coupling elastic terms between the translational and the
rotational part; they may be useful for the execution of assembly tasks. The
details can be found in [8].

3.3 Inner Motion Control Loop

The impedance behaviour at the end-effector can be enforced by resorting to a
model-based control law designed so as to give closed-loop dynamic equations,
for both position and orientation, coinciding with those describing the desired
impedance [24]. However, the selection of good impedance parameters that
guarantee a satisfactory compliant behaviour during the interaction may turn
out to be inadequate to ensure accurate tracking of the desired position and
orientation trajectory when the end effector moves in free space. A solution
to this drawback can be devised by separating the motion control action
from the impedance control action as follows. The motion control action is
purposefully made stiff so as to enhance disturbance rejection but, rather
than ensuring tracking of the desired end-effector position and orientation,
it shall ensure tracking of a reference position and orientation resulting from
the impedance control action [1]. In other words, the desired position and
orientation together with the measured contact force and moment are input
to the impedance equation which, via a suitable integration, generates the
position and orientation to be used as a reference for the motion control
action.

In detail, the control input a, in (2.6) has to be designed to match the
desired impedance for the translational part and the rotational part, respec-
tively. In view of (3.1), a,, is taken as in (2.9), by simply replacing the variables
referring to the desired frame (subscript d) with the variables referring to the
compliant frame (subscript ¢). The latter can be computed by forward inte-
gration of the translational impedance equation (3.1) with input f available
from the force sensor.
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As regards the orientation loop, a, can be chosen according to the differ-
ent representations of orientation displacement illustrated above. Similarly
to what has been conceived for a,, the control input a, is taken as in (2.10),
(2.12) or (2.15) by simply replacing the variables referring to the desired frame
(subscript d) with the variables referring to the compliant frame (subscript
¢). The latter can be computed by forward integration of the corresponding
rotational impedance equations (3.3),(3.6) or (3.30) with input p available
from the force sensor.

3.4 Redundancy Resolution

In case the manipulator is kinematically redundant, there exist infinite joint
motions that produce the same end-effector motion. In particular, even when
the end effector is at rest, it is possible to generate an internal motion at the
joints. As a minimal requirement, such motion should be made stable [16].
In addition, it could be exploited to meet additional task requirements be-
sides the execution of the end-effector trajectory, thus providing redundancy
resolution [19].

Redundancy can be solved either at kinematic level, that is in the first
stage of a kinematic control strategy, or at dynamic level by suitably modi-
fying the inverse dynamics control law [13]. The latter approach is pursued
hereafter.

Since the Jacobian matrix for a redundant manipulator has more columns
than rows (n > 6), a suitable right inverse of J is to be used in lieu of J .
Hence, in lieu of (2.5), the new control input in (2.3) can be chosen as

a=J(q) (a - J(q)q) +a, (3.32)

where .
Jt=w-1g"t (JW”JT) (3.33)

denotes the right pseudo-inverse of J weighted by the positive definite (n x n)
matrix W. Also, in (3.32), a,, denotes a joint acceleration vector lying in the
null space of J which is available for redundancy resolution. It can be shown
that plugging (3.32) in (2.4) yields the same end-effector resolved acceleration
as in (2.6) [20].
The matrix projecting arbitrary joint accelerations into the null space of
J is given by (I — J'J), no matter what choice is made for the weighting
matrix W in (3.33). Therefore, it is significant to choose W so that the
redundancy resolution scheme for motion control should not be altered when
interaction with the environment occurs. To this purpose, from (2.2) the joint
accelerations induced by the external end-effector force and moment are given
by
4. = -B ' (a)J " (q)h. (3.34)

Projecting these accelerations in the null space of the Jacobian gives
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ien =~ (1-7"@)7(@) B~ (@I (@)h. (3.35)

Choosing W = B in (3.33) and plugging the resulting J' in (3.35) yields
4., = 0, meaning that the external force and moment produce no null space
joint accelerations. Therefore, in view of this choice, in the design of the joint
resolved acceleration in (3.32) the vector ., can be used to solve redundancy
independently of the occurrence of interaction with the environment. The
matrix

Jt=B"1J7T (JB_IJT)A (3.36)

weighted by the inertia matrix is termed dynamically consistent pseudo-
inverse of the Jacobian.
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Figure 3.1. Spatial impedance control with redundancy resolution

The next step consists of designing a redundancy resolution control in
terms of the null space joint accelerations a,, in (3.32). To this purpose, o,
shall be chosen so as to ensure stabilisation of the null space motion and
possibly optimisation of an additional task function. Let

en=(I-7'@)J(@) (B-4) (3.37)

denote the null space velocity error where 3 is a joint velocity vector which
is available for redundancy resolution. The goal is to make e,, asymptotically
converge to zero. Choosing

a, = (I —J'J) (B 3 IB-@ + B (Kaen + Cen)) (3.38)

where K, is a positive definite matrix, it can be shown that e,, — 0 asymp-
totically [20].
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Regarding the utilisation of redundancy, a typical choice for 3 is

B=ksB™' <81g_51q)> (3.39)

where kg is a signed scalar and w(q) is an additional task function that can
be locally optimised.

A block diagram summarising the overall spatial impedance control with
redundancy resolution is sketched in Figure 3.1.

4 Cooperative Robots

4.1 Loose Cooperation

Consider a system of two robots manipulating an object. A cooperative con-
trol strategy can be termed loose when the manipulation task is executed by
controlling the two robots in an independent fashion. Cooperation is realised
only at the task planning level.

A typical task requiring loose cooperative control is constituted by mating
rigid parts such as dual-robot assembly in a workcell. The archetype is the
classical peg-in-hole, where one robot carries the peg and the other holds
the hollow part. It should be clear that the task is successfully executed
provided that mating forces are suitably reduced during the insertion so as
to avoid undesirable jamming and wedging. This concept can be brought to
fruition by resorting to special mechanical devices such as the Remote Center
of Compliance in [28] or the compliant end effectors in [11], [15].

An alternative strategy [5] is to assign complementary roles to the two
robots, i.e. to operate one robot using pure positional control while controlling
the other so as to achieve a programmable impedance at the end effector.
In detail, the motion of the position controlled robot is planned to match
the nominal requirements of the assigned task, while the active compliant
behaviour imposed to the impedance controlled robot is devoted to mitigating
the effects of imperfect knowledge of the task geometry and unavoidable
tracking errors.

The position controlled robot can be operated using the standard indus-
trial control unit, i.e. by exploiting the set of motion planning instructions of
the native programming language.

On the other hand, assuming that an open control architecture is available
for the other robot, an impedance control is realised at the end-effector level
where the object is either the peg or the hollow part; the end-effector frame
of such a robot coincides with the object frame.
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4.2 Tight Cooperation

A cooperative control strategy can be termed tight when the manipulation
task is executed by controlling the robots in a coordinated fashion. Cooper-
ation is realised not only at the task planning level, but also at the control
level. This is the typical task of two robots whose end effectors tightly grasp
a commonly held rigid object, thus creating a closed-kinematic chain.

Consider a two-robot system tightly grasping a rigid object in contact
with the environment. Let X, be the frame attached to the object; its origin
and orientation with respect to the base frame are characterised by the (3x 1)
position vector p, and the (3 x 3) rotation matrix R,, respectively.

The object motion must be related to the motions of the end effectors of
the robots. This can be done by resorting to the task-oriented formulation
for coordinated motion of dual-robot systems developed in [9], [3].

For each manipulator (k = 1,2) let X} denote a frame attached to the
end effector; its origin and orientation with respect to the base frame are
characterised by the (3 x 1) position vector p;, and the (3 x 3) rotation
matrix Ry, respectively. Then, Qr = {7, €x} represents the unit quaternion
corresponding to Ry,. Let also vy = [p; w} ]" be the (6 x 1) end-effector
(linear and angular) velocity vector.

The object position is chosen as

1
D, = 5(101 +ps), (4.1)

while the rotation matrix defining the orientation of X, is chosen as
Ro = RllR(l’l"zl,’ﬁzl/2), (42)

where 'ry; and ¥ are respectively the unit vector and the angle that realise
the rotation described by
'R, = R'R, (4.3)

and 'R('721,121/2) is the rotation matrix corresponding to a rotation of
21 /2 about the axis !72;. Then the absolute orientation can be expressed as

Q, = Q1 % {cos ﬁi,sin @%21} (4.4)
4 4
where Q, is the unit quaternion corresponding to R, and “x” denotes the
quaternion product (see the appendix in [25]); the second factor on the right-
hand side of (4.4) is the unit quaternion extracted from ! R(*ra;, 1921 /2).
From (4.1) and (4.2), the object linear velocity p, and angular velocity w,
can be expressed as

v, = %(vl + v2) (4.5)

T]T.

where v, = [p}  w]
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Let f,, and p, (k = 1,2) respectively denote the (3 x 1) end-effector force
and moment vectors for either manipulator. Then, according to the kineto-
statics duality concept [26] applied to (4.5), the object force and moment can
be expressed as

ho = hy + hs (4.6)

where hy = [fi pF )" and h, = [f1 wul]T.

In order to fully describe a coordinated motion, the position and orienta-
tion of one manipulator relative to the other is also of concern. The mutual
position between the two end effectors is the vector

Apyy =Py — Py- (4.7)

The mutual orientation between the two end effectors is defined with reference
to X in terms of the rotation matrix ! Rs, and then in terms of the quaternion
product

Qo1 = Ql_l * O, (4.8)

where Q7! = {1, —e; } is the unit quaternion corresponding to R} (i.e. the
conjugate of Q).
From (4.3) and (4.7), the mutual velocity can be expressed as

A’021 = V2 — V1. (49)

Once the position and orientation variables describing the cooperative
system have been defined, reference end-effector position p, ; and orienta-
tion Q, j variables, as well as reference end-effector velocities v, (k = 1,2),
must be generated with a twofold objective; namely, realising an impedance
behaviour at the object level, while assigning a mutual position and ori-
entation between the two end effectors that is compatible with the object
geometry.

The first objective can be fulfilled as follows. Let the desired object posi-
tion p, and orientation Q4 (extracted from the desired rotation matrix R;)
be assigned with the associated linear and angular velocities and accelera-
tions. Also, the object force and moment can be computed from (4.6) with
the end-effector forces and moments available from the wrist force/torque
sensors. Then, the translational and rotational impedance equations (3.1)
and (3.30) are integrated, with input f_ and “p,, to compute p, and ‘w., p,
and ‘w,, and then p, and Q. via the quaternion propagation.

The second objective can be fulfilled by assigning a reference mutual po-
sition Apml and orientation @, 2;. In particular, Ap,q’21 and Q, o1 are taken
as constant and equal to the initial values of Ap,; in (4.7) and Qo; extracted
from (4.3), respectively, that can be computed via the direct kinematics of
the two manipulators.

The two objectives are combined by choosing the above reference position
and orientation for the two end effectors so as to satisfy (4.1), (4.7), and (4.4),
(4.8), i.e.
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1
Pr1 = Pe— 5P (4.10)
1
Pry = Pet 5P (4.11)
9, .Yy
Qp1 = Q. % {cos %, —sin Zl 1’I"T’21} (4.12)
Qro = Q1 xQrot. (4.13)
Further, the reference velocities for the two end effectors are chosen as
1
Vr1 = Ve — EA/UT’?l (414)
1
Vr2 = U¢ + EA/UT’?l (415)

where v, = [p} wX]T. Then, the reference accelerations can be computed

via a formal time derivative of the terms in (4.14) and (4.15).

The above reference trajectories can be tracked by resorting to an an inner
motion control loop based on an inverse dynamics strategy as for the case of
the single manipulator.

5 Experimental Validation

The setup in the PRISMA Lab consists of two industrial robots Comau
SMART-3 S (Figure 5.1). Each robot arm has a six-revolute-joint anthropo-
morphic geometry with nonnull shoulder and elbow offsets and non-spherical
wrist. One arm is mounted on a sliding track which provides an additional de-
gree of mobility. The joints are actuated by brushless motors via gear trains;
shaft absolute resolvers provide motor position measurements. Each robot is
controlled by the C3G 9000 control unit which has a VME-based architec-
ture. Independent joint control is adopted where the individual servos are
implemented as standard PID controllers. The native robot programming
language is PDL 2, a high-level Pascal-like language with typical motion
planning instructions.

An open version of the control unit is available [2] which allows testing of
advanced control algorithms on a conventional industrial robot. Connection
of the VME bus of the C3G 9000 unit to the ISA bus of a standard PC is
made possible by a BIT 3 Computer bus adapter board; for the experiments,
a PC Pentium MMX /233 was used.

Various operating modes are available in the control unit, allowing the
PC to interact with the original controller both at trajectory generation level
and at joint control level. To implement model-based control schemes, the
operating mode number 4 is used in which the PC is in charge of comput-
ing the control algorithm and passing the references to the current servos
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Figure 5.1. Experimental setup available in the PRISMA Lab

through the communication link at 1 ms sampling time. Joint velocities are
reconstructed through numerical differentiation of joint position readings.

A six-axis force/torque sensor ATI FT30-100 with force range of +130
N and torque range of £10 N-m can be mounted at either arm’s wrist. The
sensor is connected to the PC by a parallel interface board which provides
readings of six components of generalised force at 1 ms.

5.1 Single Manipulator

The above impedance control schemes have been tested in a number of ex-
periments. An end effector has been built as a steel stick with a wooden disk
of 5.5 cm radius at the tip. The end-effector frame has its origin at the center
of the disk and its approach axis normal to the disk surface and pointing
outwards.

First case study: Interaction with environment. The first case study has been
developed to analyse interaction with environment. This is constituted by a
flat plexiglas surface. The translational stiffness at the contact between the
end effector and the surface is of the order of 10* N/m, while the rotational
stiffness for small angles is of the order of 20 Nm/rad.

The task consists of taking the disk in contact with the surface at an
angle of unknown magnitude (Figure 5.2). The end-effector desired position
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is required to make a straight-line motion with a vertical displacement of
—0.24 m along the Zy-axis of the base frame. The trajectory along the path
is generated according to a fifth-order interpolating polynomial with null
initial and final velocities and accelerations, and a duration of 7 s. The end-
effector desired orientation is required to remain constant during the task.
The surface is placed (horizontally) in the X;Yj-plane in such a way as to
obstruct the desired end-effector motion, both for the translational part and
for the rotational part.

Figure 5.2. End effector in contact with plexiglas surface

The parameters of the translational part of the six-DOF impedance equa-
tion (3.1) have been set to M, = 9I, D, = 20001, K, = 7001, while the
parameters of the rotational part of the six-DOF impedance equation (3.30)
have been set to M, = 0.41I, D, = 51, K, = 2I. Notice that the stiffness
matrices have been chosen so as to ensure a compliant behaviour at the end
effector (limited values of contact force and moment) during the constrained
motion, while the damping matrices have been chosen so as to guarantee a
well-damped behaviour.

The gains of the inner motion control loop actions in (2.9),(2.15) have
been set to K p, = 20251, Kp, = 45001, Kp, = Kp, = 651.

The results in Figure 5.3 show the effectiveness of the quaternion-based
six-DOF impedance control. After the contact, the component of the posi-
tion error between Xy and ¥, Ap,. = p, — p, along the Z-axis significantly
deviates from zero, as expected, while small errors can be seen also for the
components along the X;- and the Yj-axis due to contact friction. As for
the orientation error, all the components of the orientation displacement be-
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tween Yy and X, (®€qe) significantly deviate from zero since the end-effector
frame has to rotate with respect to the base frame after the contact in order
to comply with the surface. Also, in view of the imposed task, a prevailing
component of the contact force can be observed along the Zy-axis after the
contact, while the small components along the X;- and the Y;-axis arise as a
consequence of the above end-effector deviation. As for the contact moment
referred to Yy, the component about the Zp-axis is small, as expected. It
can be recognised that all the above quantities reach constant steady-state
values after the desired motion is stopped. The oscillations on the force and
moment during the transient can be mainly ascribed to slipping of the disk
on the surface after the contact.

position error

orientation error
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Figure 5.3. Experimental results under six-DOF impedance control based on
quaternion in the first case study

In sum, it can be asserted that a compliant behaviour is successfully
achieved. A similar performance has been obtained also with the six-DOF
impedance control schemes based on the Euler angles error, i.e. by using
either (3.3) or (3.6) in lieu of (3.30). This fact can be explained because
both the absolute end-effector orientation in (3.3) and the relative orientation
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in (3.6) keep far from representation singularities. The results are not reported
here for brevity.

Second case study: Representation singularity. The second case study is
aimed at testing the performance of the quaternion-based compared to the
Euler angles-based six-DOF impedance control, when the end-effector orien-
tation is close to a representation singularity of T'. The end effector and the
surface are the same as in the previous case study.

The end-effector desired position is required to make a straight-line mo-
tion with a horizontal displacement of 0.085 m along the Xj-axis of the base
frame. The trajectory along the path is generated according to a fifth-order
interpolating polynomial with null initial and final velocities and accelera-
tions, and a duration of 5 s. The end-effector desired orientation is required
to remain constant during the task. The surface is now placed vertically in
such a way as to obstruct the desired end-effector motion, only for the rota-
tional part though. Therefore, no impedance control has been accomplished
for the translational part, i.e. p, in (2.9) coincides with p,.

The parameters of the quaternion-based impedance equations (3.1),(3.30)
are set to M, = 101, D, = 6001, K, = 1000I, M, = 0.25I, D, = 3.51,
K, = 2.51I. In order to carry out a comparison, the impedance control based
on the Euler angles has also been tested. The parameters of the rotational
impedance equation (3.3) have been set to the same values as for the quater-
nion. As regards the gains of the inner motion control loop, these have been
chosen equal to those in the previous experiment for both types of impedance
control schemes.

contact force , contact moment
20 , 1 ,
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Figure 5.4. Experimental results under six-DOF impedance control based on
quaternion in the second case study

The results in Figures 5.4 and 5.5 show the significant differences occur-
ring in the performance of the two schemes. For the impedance control based
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Figure 5.5. Experimental results under six-DOF impedance control based on the
classical Euler angles in the second case study

on (3.3), large values of contact force and moment are generated since the ro-
tational impedance equation suffers from ill-conditioning of the matrix T'(¢,);
this phenomenon is not present for the quaternion-based impedance control
based on (3.30) since representation singularities are not involved in the ro-
tational impedance equation. On the other hand, testing of the impedance
control based on the alternative Euler angles in (3.6) has revealed a perfor-
mance as good as the quaternion-based impedance control, since the orien-
tation displacement ¢, is kept far from a representation singularity. Hence,
the results are not reported here for brevity.

In sum it can be concluded that both the impedance control based on the
alternative Euler angles and the quaternion-based impedance control perform
better than the impedance control based on the classical Euler angles, as far
as interaction with the environment is concerned.

Third case study: Task geometric consistency. Another case study has been
developed to analyse task geometric consistency when an external moment
is applied at the end effector. The quaternion-based impedance control and
the impedance control based on Euler angles have been tested.

The stiffness matrices of the rotational impedance equations (3.30), (3.3)
have been taken as diagonal matrices; K, = U;F I',U, has been chosen with
U, =1 and I', = 2.51I for both schemes. The remaining parameters of the
rotational impedance have been set to M, = 0.25I and D, = 1.51I for both
schemes. No impedance control has been accomplished for the translational
part. The gains of the inner motion control loop have been chosen equal to
those in the previous case study.

The position and orientation of the desired frame are required to remain
constant, and a torque is applied about the approach axis of X;; the torque
is taken from zero to 2.5 Nm according to a linear interpolating polynomial
with 4th-order blends and a total duration of 1 s.
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Figure 5.6. Experimental results under six-DOF impedance control based on
quaternion in the third case study
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Figure 5.7. Experimental results under six-DOF impedance control based on clas-
sical Euler angles in the third case study

The results in Figures 5.6 and 5.7 show the different performance in terms
of the orientation misalignment é which has been defined as the norm of the
vector product between the orientation error and the unit vector u,3 of the
approach axis of Xy, i.e.

= |IS(“€qc)uos]|-
For the impedance control based on (3.3) the instantaneous axis of rotation
of XY, changes, while remarkably no misalignment occurs for the impedance
control based on (3.30). The impedance control based on (3.6) has also been
tested and its performance is as good as that of the quaternion-based control;
hence, the results are not reported for brevity.

Fourth case study: Nondiagonal rotational stiffness. In the fourth case study,
the quaternion-based impedance control and the impedance control based on
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the alternative Euler angles have been tested when a nondiagonal rotational
stiffness is chosen. The impedance control based on the classical Euler angles
has been ruled out in view of the poor results of the previous experiment.

The principal axes of the stiffness matrices of the rotational impedance
equations (3.30),(3.6) are rotated with respect to the coordinate axes of Xg;
K, = U;FFOUO has been chosen with

0.8047 —0.3106 0.5059 4 0 O
U,=| 05059 08047 —0.3106 I's=101 0
—0.3106 0.5059  0.8047 0 0 25

for both schemes. The remaining parameters of the rotational impedance
have been set to M, = 0.25I and D, = 1.51 for both schemes. As above,
no impedance control has been accomplished for the translational part, and
the gains of the inner motion control loop have been chosen equal to those
in the previous case study. A torque has been applied about the axis whose
unit vector is u,3; the torque is taken from zero to —1.5 Nm according to a
linear interpolating polynomial with 4th-order blends and a total duration of
1s.
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Figure 5.8. Experimental results under six-DOF impedance control based on
quaternion in the fourth case study

The results in Figures 5.8 and 5.9 show the significant differences oc-
curring in terms of the orientation misalignment . It can be seen that the
instantaneous axis of rotation of X, does not appreciably rotate with the
impedance control based on (3.30), given the performance of the inner loop
acting on the end-effector orientation error. Instead, a significant misalign-
ment occurs with the impedance control based on (3.6).

In sum, it can be concluded that the quaternion-based impedance control
performs better than both impedance control schemes based on the Euler
angles as far as task geometric consistency is concerned.
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Figure 5.9. Experimental results under six-DOF impedance control based on al-
ternative Euler angles in the fourth case study

Fifth case study: Redundancy resolution. The six-DOF quaternion-based
impedance control has been tested in a case study when a redundancy reso-
lution scheme is incorporated into the motion control.

The environment is constituted by a cardboard box. The translational
stiffness at the contact between the end effector and the surface is of the
order of 5000 N/m, while the rotational stiffness for small angles is of the
order of 15 Nm/rad.

The task in the experiment consists of four phases; namely, reconfiguring
the manipulator, approaching the surface, staying in contact, and leaving the
surface. To begin, the additional task function in (3.39) has been chosen as

1

w(q) = E(QS - QSd)2

where g3 is the elbow joint and ¢34 is a desired trajectory from the initial value
of g3 to the final value of 1.1 rad in a time of 4 s with a fifth-order interpolating
polynomial with null initial and final velocity and acceleration. This function
is aimed at reconfiguring the manipulator in a more dexterous posture before
contacting the surface. After a lapse of 4 s, the disk is taken in contact with
the surface at an angle of 77/36 rad. The end-effector desired position is
required to make a straight-line motion with a horizontal displacement of
0.08 m along the Z;, axis of the base frame. The trajectory along the path is
generated according to a fifth-order interpolating polynomial with null initial
and final velocities and accelerations, and a duration of 2 s. The end-effector
desired orientation is required to remain constant during the task. The surface
is placed (vertically) in the X;Y;-plane of the base frame in such a way to
obstruct the desired end-effector motion, both for the translational part and
the rotational part. After a lapse of 13 s in contact, the end-effector motion
is commanded back to the initial position with a duration of 4 s.
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Figure 5.10. Experimental results under six-DOF impedance control based on
quaternion with redundancy resolution in the fifth case study
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The parameters of the translational impedance (3.1) have been set to
M, =161, D, = diag{800, 800, 250} and K, = diag{1300, 1300, 800}, while
the parameters of the rotational impedance (3.30) have been set to M, =
0.7 and D, =41, K, = 2.51.

The gains of the inner motion control loop in (2.9),(2.15) have been set to
Kp, = 22501 and Kp, = 40001, Kp, = 701 and K p, = 751. The gains of
the redundancy resolution control in (3.38),(3.39) have been set to K, = 201
and kg = 250.

The results in Figure 5.10 show the effectiveness of the six-DOF impedance
control with redundancy resolution. During the reconfiguration (8 s), the
components of the position error Ap,;, = p, — p. between ¥; and X, and of
the orientation error ¢egz. between Y; and X, are practically zero, meaning
that the dynamics of the null space motion does not disturb the end-effector
motion. Such error remains small during the approach (2 s). During the con-
tact (13 s), the component of the position error along the Z,-axis significantly
deviates from zero, as expected; as for the orientation error, the component
of the orientation error along the Y.-axis significantly deviates from zero
since X, has to rotate about Y, in order to comply with the surface. Also,
in view of the imposed task, a prevailing component of the contact force can
be observed along the Z,-axis after the contact, whereas the sole component
of the contact moment about the Y,.-axis is significant, as expected. During
the takeoff (4 s), both the errors and the contact force and moment return
to zero.

The same task has been executed again for the impedance control with-
out redundancy resolution (kg = 0). The performance in terms of the contact
between the end effector and the surface is the same as above since the ad-
ditional task does not interfere with the primary interaction task; hence, the
time history of the relevant quantities is omitted for brevity. Nevertheless, a
comparison between the two cases in Figure 5.11 shows that the task func-
tion is successfully optimised when redundancy is exploited (solid) other than
when redundancy is not exploited (dashed).

5.2 Loose Cooperation

A typical assembly task has been performed to test the effectiveness of the
quaternion-based impedance control strategy for execution of interaction
tasks where the geometry of the contact plays a crucial role. The task is
the classical peg-in-hole, which can be executed by a dual-arm system if one
robot carries the peg and the other holds the hollow part.

The task for the seven-joint manipulator is planned as follows. From a
given posture a joint space motion is commanded to reach a suitable inter-
mediate posture which facilitates the subsequent phases of the task; then,
a Cartesian space motion along a straight-line path is commanded to drive
the tip of the peg in the proximity of the mouth of the hole and align the
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approach axis of the peg with the axis of the hole, as accurately as possi-
ble. Finally, a straight-line motion along the approach axis —typically at a
reduced speed with respect to the previous phase— is commanded to realise
the insertion. The described task is specified in the following PDL 2 program:

PROGRAM insertion CONST spd=3
dpt=50
VAR  int: JOINTPOS
pro: POSITION
BEGIN
--move joints to intermediate posture
MOVE TO int
--move tip to proximate pose
MOVE LINEAR TO pro
--set arm speed override at spd %
$ARM_OVR := spd
--move tip along approach axis by dpt mm
MOVE RELATIVE VEC(0,0,dpt) IN TOOL
END insertion

where the joint position int and the end-effector pose pro are taught before-
hand, while the constants spd and dpt are set according to task requirements.

The six-joint manipulator is controlled using the open operating mode so
that the end effector behaves as the programmed six-DOF impedance. To
this purpose, the force/torque sensor is mounted at the wrist.

For the task at issue, the position and orientation of the desired frame is
taken as a constant, i.e. the six-joint manipulator is controlled to stay still.
Whenever a contact force and/or moment is experienced at the end effector,
this reacts according to the programmed impedance where the origin of the
desired frame determines the location of the Remote Center of Compliance.

The peg is a wooden cylinder of 17 mm diameter and 80 mm height, while
the hollow part is a wooden block with a hole of 18 mm diameter and 70 mm
depth; that is, a 0.5 mm radial tolerance is present during the insertion.

The insertion task is programmed in terms of a planned motion for the
seven-joint manipulator described by spd = 3 and dpt = 50.

The six-joint manipulator is impedance-controlled so that the Remote
Center of Compliance is located at p; = p, — [0 165 0] mm since
the insertion direction is along the Yj-axis of the base frame. Also, it is
R, = Ry. The parameters of the impedance equation in (3.1),(3.30) are re-
spectively set to M, = diag{15,40,15}, D, = diag{300, 950, 300}, K, =
diag{400,1300, 400}, for the translational part, and M,91I, D, = 13.51,
K, = I, for the rotational part.

Since the experiment is aimed at testing the robustness of the proposed
strategy in the case of incorrect task planning, an additional misalignment
has been intentionally introduced by rotating the end-effector frame of the
seven-joint manipulator by 2 deg about the X;- and the Z;-axis of its base
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frame. Further, the length of the path along the approach axis of the peg
has been set to dpt = 90, corresponding to a 20 mm overshoot beyond the
bottom of the hole. The same impedance parameters as above are chosen.

mating force mating moment
50 5

[N]
o
[Nm]

5 10 0 5 10
[s] [s]

Figure 5.12. Force and moment in the peg-in-hole task

The results are illustrated in Figure 5.12 in terms of the time history
of the three components of mating force and moment. Interestingly enough,
the values of force and moment keep limited despite of the incorrect task
planning; moreover at steady state, nonnull values of force and moment can
be observed which are obviously caused by the planned misalignment and
overshoot.

5.3 Tight Cooperation

In the experiment devoted to testing the proposed tight cooperative control
strategy, the two robot end effectors tightly grasp the ends of a wooden bar
of 1 m length. At the center of the bar is fixed a steel stick with a wooden
disk of 5.5 cm radius at its tip.

The environment is constituted by a cardboard box; the translational
stiffness at the contact between the disk and the surface is of the order of
5000 N/m, while the rotational stiffness for small angles is of the order of
15 Nm/rad.

The task in the experiment consists in taking the disk in contact with
the surface; that is placed at an unknown distance with an angle of unknown
magnitude. The origin of X, is required to make a desired motion along a
straight line with a vertical displacement of —0.275 m along the Z;-axis of X.
The trajectory along the path is generated according to a 5th-order interpo-
lating polynomial with null initial and final velocities and accelerations, and
a duration of 6 s. The desired orientation of the object frame is required to
remain constant.
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Figure 5.13. Experiment of tight cooperative control: Left: Object position and
orientation displacement between ¥y and X,. Right: Contact force and moment
acting on the object

The parameters of the translational part of the impedance equation (3.1)
have been set to M, = 301, D, = 5551, K, = 13001, while the parameters
of the rotational part of the impedance equation (3.30) have been set to
M, = diag{10,2,10}, D, = diag{35,20,35}, K, = diag{20, 8,20}. Notice
that the stiffness matrices have been chosen so as to ensure a compliant
behaviour (limited values of contact force and moment) during the contact,
while the damping matrices have been chosen so as to guarantee a well-
damped behaviour. The feedback gains in (2.9, (2.15) have been set to kp, =
65, kpp, = 1800 for the position loop, and kp, = 65, kp, = 3600 for the
orientation loop, respectively.

From Figure 5.13 (left), after the contact, the component along the Z-
axis of the position displacement between the desired frame X'; and the object
frame Y, expressed in Xy, significantly deviates from zero, as expected; a
smaller displacement can also be seen for the component along the Xj-axis,
due to contact friction. As for the orientation displacement between Y, and
X4, expressed in Yy, only the component along the Yy-axis significantly de-
viates from zero since the object frame has to rotate about the Yj-axis of Xy
in order to comply with the surface after the contact.
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From Figure 5.13 (right), in view of the imposed task, a prevailing compo-
nent of the contact force can be observed along the Z;-axis after the contact,
while a significant component along the X;-axis arises, corresponding to the
above position displacement. As for the contact moment, the only nonneg-
ligible component is that along the Y -axis of X;, which corresponds to the
above orientation displacement. It can be recognised that all the above quan-
tities reach constant steady-state values after the desired motion is stopped.
The oscillations on the force and moment can be ascribed to the flexibility
effects of the commonly held object.

6 Conclusion and Future Directions

An impedance control strategy has been presented for six-DOF tasks. By
considering an angle/axis representation of the end-effector orientation dis-
placement, a six-DOF impedance equation has been derived, which exhibits
a physically meaningful behavior and task geometric consistency properties.
Among the different angle/axis representations, the unit quaternion has been
chosen which avoids the occurrence of representation singularities. The supe-
rior performance of the proposed angle/axis-based impedance controller over
two different impedance controllers based on Euler angles has been shown
both in theory and in practice.

For the case of redundant manipulators, the dynamically consistent pseu-
doinverse of the manipulator Jacobian has been adopted to decouple the
dynamics of the end-effector motion from the null-space motion. Moreover,
redundancy is exploited to stabilise null-space joint velocities and optimise
an additional task function.

Finally, the problem of two cooperative robots manipulating a common
object has been considered and both loose and tight cooperation have been
addressed. In the case of loose cooperation, limited interaction forces have
been achieved by adopting the geometrically consistent impedance control
strategy for one of the two manipulators. In the case of tight cooperation,
interaction of the grasped object with the environment has been managed by
enforcing a geometrically consistent impedance behaviour at the object level.

The proposed control strategies have been experimentally tested on a
set-up composed by two industrial robots Comau SMART-3S with two
force/torque sensors ATI FT-30/100 mounted at the wrist.

Future work will be devoted to extending the use of geometrically con-
sistent impedance for cooperative manipulators. Namely, the adoption of an
impedance control strategy for controlling the internal forces at the grasped
object is currently under investigation. Under this regard, an open problem is
the cooperative manipulation of flexible objects. It is expected that the adop-
tion of impedance control may provide a simple and robust way to cope with
manipulation of flexible objects or manipulation of rigid objects via elastic
grasp.
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Promising future research will be directed towards the integration of the
interaction control strategies, based on the use of position and force/torque
sensors, with information coming from vision sensors. Indeed, the adoption of
sensory feedback coming from cameras is expected to enhance the robustness
of the control loop as well as may represent a decisive step towards robotic
systems capable of autonomous interaction with the surrounding environ-
ment, even partially.

Last but not least, it should be mentioned that the problem of ensuring
a safe interaction between the robot the environment can be considered as a
major objective to be pursued in the next few years. In the case of interaction
with an artificial environment, suitable strategies must be adopted aimed
at preventing and/or managing robot failures and abrupt changes of the
environment conditions, so as to avoid damage for the various devices involved
in the contact and ensure task completion. On the other hand, when the
human /robot interaction is of concern (e.g. in anthropic and service robotics),
safety of the human subject becomes the primary objective to be achieved,
even at the expense of the task assigned to the robot.
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