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Abstract

Dynamic modelling of multilink flexible manipulators poses a number of interesting
issues, due to the distributed nature of link elasticity and to the inherent complexity of
the interaction between rigid and flexible components. Obtaining a model in explicit
form plays a significant role both for the analysis of simple control laws and for the
synthesis of effective model-based strategies. We show how to suitably exploit dynamic
model properties in order to prove asymptotic stability of joint collocated Proportional-
Derivative (PD) control and to design inverse dynamics controllers for trajectory track-
ing. In particular, we investigate the implications on the control of using different joint
boundary conditions (clamped vs. pinned) in connection with a Lagrangian-assumed
modes model of the system.

1. INTRODUCTION

Lightweight materials are increasingly being used in the construction of manipu-
lators with the advantage of a higher payload-to-structure weight ratio and of faster
motion. The major drawback is the vibration induced by the structural flexibility dis-
tributed along the links.

As opposed to the case of rigid arms, where dynamic issues are often of limited
importance, the availability of dynamic models is quite relevant for flexible manipulators.
The Lagrangian approach provides a natural framework for deriving the equations of
motion of mechanical systems undergoing structural deformations [1]. One critical point
in modelling flexibility is the method used to derive a finite-dimensional model from
an inherently distributed parameter description. In practice, this approximation is
unavoidably needed for simulation and control purposes.

Computer simulation of flexible manipulators, aimed at forecasting the behaviour
of the structure under various operative conditions, will benefit by the knowledge of an
accurate dynamic model. In particular, the generation of reference trajectories that do
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level; this also provides a way to calculate convenient feedforward motion commands,
see e.g. [2].

On the other hand, motion control of flexible manipulators should address not only
the classical joint position regulation and trajectory tracking problems but also the
active suppression of link vibrations. This is complicated by the nonlinear and coupled
nature of the equations of motion.

Several control strategies can be devised for flexible manipulators which attempt
to extend well established results for rigid arms [3]. In this respect, model completeness
is helpful for a rigorous analysis of the performance that can be achieved with simple
control laws, not requiring explicit knowledge of model parameters for their implementa-
tion. Nonetheless, more advanced model-based control strategies rely for their synthesis
not only on a complete model but also on its accuracy for a successful execution of fast
trajectories.

In the present work, we focus our attention on the use of a complete nonlinear dy-
namic model based on assumed modes [4] for approximating link deflections. Some im-
portant aspects are analyzed that arise in conjunction with the choice of different bound-
ary conditions for the deformation modes at the actuator side: clamped vs. pinned. The
implications on the design of Proportional-Derivative (PD) controllers [5] as well as of
inversion-based controllers [6,7] are evaluated in terms of the structure and complexity
of the resulting control laws.

2. DYNAMIC MODELLING

Consider a robotic manipulator composed of a serial chain of links, some of which
are flexible. The Lagrangian technique can be used to derive the dynamic model,
through the computation of global kinetic and potential energy of the system [1]. Due
to link flexibility, the dynamic model is of distributed nature. Slender links can be
modelled as Euler-Bernoulli beams satisfying proper boundary conditions for the ac-
tuated joint and the link tip. While a linear model is in general sufficient to capture
the dynamics of a single flexible link, the interplay of rigid body motion and flexible
deflection in the multilink case gives rise to fully nonlinear dynamic equations,

In order to obtain a finite-dimensional model for convenient analysis and synthesis
of control laws, basis functions for describing link deformation shapes are to be chosen
with an associated set of generalized coordinates. Let 8 denote the n x 1 vector of joint
coordinates, and é the m x 1 vector of link coordinates of an assumed modes description
of link deflections.

For simplicity, we suppose to include only bendin g deformations limited to the plane
of horizontal motion (no gravity is considered). The closed-form dynamic equations of
the manipulator can be written as n+m second-order nonlinear differential equations
in the general form (3]

(sitosy mera) () + (028 0Y o (2 ) = (L)w @
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In (1), the (n+m) x (n+m) positive definite symmetric inertia matrix B is partitioned
into blocks according to the joint (rigid) and link (flexible) coordinates. The (n+m) x 1
vector h contains Coriolis and centrifugal forces, and can be computed via the Christoffel
symbols, i.e. via differentiation of the inertia matrix elements; it can be shown that a
factorization of h exists

h(6,8,6,5) = (zi) - (gi: g:‘:) (g) — 5(6,6,6,4) (g) @)

such that the matrix B — 25 is skew-symmetric, similarly to the rigid case [9]. Further,
the positive definite —typically diagonal— matrices K and D in (1) describe modal
stiffness and damping of flexible links, respectively.

Several simplifying assumptions can be introduced affecting the actual dependence
of terms in the inertia matrix. Typically, Bys may become a function of § only and Bj;
a constant matrix.

In any case, the terms in (1) assume different analytical expressions and numerical
values, depending on the choice of the assumed modes of link deflection and of the
related geometric/dynamic boundary conditions. Assume that a complete set of correct
mode shapes has been obtained. For each link, the kinematic description of bending
deformation is usually given in terms of two alternative frames; namely, the clamped
frame, aligned with the direction of the undeformed link at the joint location, and
the pinned frame, pointing at the instantaneous center of mass of the deformed link.
Accordingly, the joint and link coordinates attain different meanings and the terms in
the dynamic equations (1) assume different expressions; however, it is always possible to
transform one set of coordinates into the other [10]. Eigenfrequencies of the system are
the same in both representations, but simplifications may occur in the model. From the
model structure point of view, the main difference resides in the m x n matrix Qs that
weights the n x 1 vector of joint input torques u in the lower equations. In particular,
using the principle of virtual work, it can be shown that Q5 = O in the clamped case,
while in the pinned case Qs will be a constant matrix depending on the mode shapes.

3. PD CONTROL

To perform a task of robot arm positioning, simple control laws can be derived.
For a rigid manipulator in the absence of gravity, it is well known that a PD control
based on joint feedback errors ensures asymptotic stability of any desired constant arm
posture [9]. Below we show that a similar result holds also for flexible manipulators,
with different implications on the controller structure in the pinned and clamped cases.

Consider the linear feedback law
u = Kp(Baes — 0 — QY 6) — Kp(6 + QT ), (3)

where 845 is the desired arm configuration with no deformation involved, and Kp,
Kp are positive definite symmetric matrices. It must be pointed out that the model
structure is highly important for the analysis, although the control law is practically
model-independent (except for Qs).
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Theorem 1. The equilibrium state (6,6,0,6) = (Baes, 0,0,0) of system (1) is asymptot-

ically stable under the control (§). .

Proof. Let ¢ = (6T 6T )T denote the arm configuration and e = 64,5 — 6 the joint
error. Consider the energy-based Lyapunov function candidate

1 ..
V= 2qTBi+ 28TK6 + (e — QT8 Kp(e — QF8) > 0, @)

vanishing only at the desired equilibrium state. The time derivative of (4) along the
trajectories of system (1) is

. 1. L. A .
V =q"(Bi+ 5Bq) +6 Kb~ (e — Q5 6)"Kp(6 + QF )
. 0 I T rr i Py :
=47 (_ (m L D$) + (Qa) u) +6TKé— (e — QT6)TKp(6 + QT 6),

where identity (2) and the skew-symmetry of the matrix B — 25 have been used. Plug-
ging the control (3) into (5) and simplifying terms yields

. . Y "aOT )
Vi==-(oT ) (Q‘;}?D D +IZJL§%DQ}) (g) =0 ©
where the last inequality follows from the factorization of the core matrix in (6) as
(I O) (I{D O)(I Q}“)
Qs 1 O D o I )
When V =0, it is § = 0 and § = 0, so that the closed-loop system (1,3) collapses into
Bj = (*’}';’ _If‘}?;r) (2) ! (7)

showing that § = 0 if and only if e = 0 and § = 0. Invoking LaSalle invariance set
theorem [9], asymptotic stability of the desired state follows. Q.ED

()

Notice that, in the general pinned case (Qs # O), full state feedback would be
required. On the other hand, in the clamped case, the above proof goes through similarly
by setting @5 = O. The PD control law reduces to

u = R’P(Sdcs - gc) - I(Déc: (8)

which uses only joint measurements and no information about the mode shapes; since
the effects are the same, partial state feedback is enough for guaranteeing asymptotic
stability in a flexible robot arm. Remarkably, the clamped joint variables 6, and 6, are
directly measurable by means of ordinary actuator sensors, e.g. encoders and tachome-
ters.



165

4. INVERSION CONTROL

Trajectory tracking in nonlinear systems is usually achieved by input-output inver-
sion control techniques [11]. For rigid manipulators, this approach yields the so-called
computed torque method that provides exact reproduction of smooth desired trajectories
in nominal conditions; the output can be taken either at the joint or at the end-effector
level [12]. The extension of this result to flexible manipulators is not trivial, since the
stability of the resulting closed-loop system is not always guaranteed [6,7].

In what follows, only the case of joint output trajectory is considered and the effects
of clamped vs. pinned representations on the synthesis of the control law are assessed.
For the purpose of control derivation, it is convenient to extract the flexible accelerations
from (1) as

6 = B35 (Qsu — (hs + K6 4+ D6) — Bgy6) (9)
which, substituted into the upper part of (1), gives
(ng —BgaB“lB )9+h9 —ngB“ (hs +I\§+D5] u, (10)
with
F =1- BysB;;'Qs. (11)

Notice that Eq. (10) describes the modification that undergoes the rigid body dynamics
obtained by imposing § = 0 in (1), Bgef + hg = u, due to the effects of link flexibility.

The n x n matrix Bgg — Bys B.s.s Bjs in (10) has full rank, as can be seen from the
following identity

(Bes Baa) ( I O) _ (1399 — Bys B B Bs.s) (12)
Bgs Bss ~Bg'Bgs I 0 Bss )

and from the positive definiteness of the inertia matrix. Further, physical arguments
can be used to show that the n x n matrix F' in (11) has full rank. For instance, consider
the arm in an undeformed rest configuration, i.e. § = 6=0,60=0.If F were singular,
a non-zero input torque u would exist that yields 6= 0, thus keeping the arm at rest;
this is clearly in contrast with the mechanical intuition.

Let a denote a given joint acceleration. Setting 6 = ain (10) and solving for u
yields the feedback law

w = F~'((Bgg — BgsB;5 Bys)a + hg — BgsBy3' ns), (13)
where nsg = hs + N6 + Dé. In the pinned case, a computationally efficient expression

for F~1 is [13]
F~' = I+ Bys(Bss — QsBss) ™' Qs. (14)

The control (13) transforms the closed-loop system into the input-output linearized form

f=a (15)
§=—(I+QsF~ ' Bgs)B;; (Bgsa + ns) + Byy Qs F 'y, (16)
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where u, = Bgga + hg is the computed torque control for the equivalent rigid system.
At this point, we observe that in the clamped case Eq. (13) becomes

U = (39=3= - BQC‘SEBJ:ECBE;&C){I + hgc - Bgcgc B;;lﬁcn,sc, (17)

where subscript ¢ denotes quantities in the clamped model. Notice that only the inver-
sion of the m x m block relative to the flexible variables is required for implementation
of the control law (17). Therefore, the complexity of this nonlinear feedback strategy
increases only with the number of flexible variables; in particular, whenever Bj s, is
constant, the inversion can be conveniently performed off-line once for all. Using (17),
Egs. (15,16) remarkably simplify to

. =a (18)
8 = =By 5 (Bj.s.a+ns,). (19)

At this point, in order to track a twice-differentiable desired trajectory f4.s(t), the given
joint acceleration is chosen as

a= édes + JI"kﬁl"_)(édes - 9(:) + I{P(gdes - 8:: )s (20)

where Kp > 0, KK'p > 0 allow pole placement in the open left-hand complex half plane
for the linear input-output behaviour in (18). However, the feasibility of this approach is
based on the stability of (19). For, it is sufficient that the associated zero-dynamics [11]
is asymptotically stable. This dynamics is obtained by forcing to zero (or to a constant
value) the output 6. of the nonlinear system. Accordingly, we have

bc = =By s (hs, + Ké. + D§.), (21)

where a factorization of the type hs, = Ss_s. (6,_-,5,_-)5,; exists, with Bﬁcﬁc — 2555, skew-
symmetric, see also (2). The following result holds.

Theorem 2. The equilibrium state (§.,6.) = (0,0) of system (21) is asymptotically

stable.
.

Proof. Consider the energy-based Lyapunov function candidate
1.7 : 1op,.
V= 565 Bs_s5.6. + §5C Ké,, (22)

vanishing only at the desired equilibrium state. The time derivative of (22) along the
trajectories of system (21) is

V =60 (Bs.s.6c + 5Bs.5.0:) + 6] Kb, = =67 Dé, < 0. (23)

Since &, = —Bi;c.ﬁ'& when §, = 0 (viz. V = 0), asymptotic stability of the origin
follows from LaSalle theorem. Q.ED
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Similar arguments can be used in the pinned case, although the developments are
much more involved and omitted here for brevity.

From (23), the rate of asymptotic convergence to zero of the flexible variables is
established by the arm damping matrix D, generally resulting in a poorly damped
behaviour. This may still be satisfactory during the large maneuvering phase of the
manipulator, but it may represent a major concern near the end of the trajectory. The
standard remedy is to resort to an active linear stabilizer for the deflection variables,
designed for a linearized version of the system around the final configuration. It is con-
venient, indeed, to superimpose such a stabilizing control to the nonlinear one (17,20);
in this way, the synthesis can be advantageously performed on the system (18,19) rather
than on the original system [14]. Alternatively, damping can be increased in a passive
fashion by a mechanical treatment of the lightweight structure, e.g. attaching thin layers
of viscoelastic material to the link surfaces.

It should be pointed out that, even in the clamped case, the inversion-based con-
trol (17,20) requires full state feedback, as opposed to the PD control (8). For measuring
link deflection, different apparatus can be used ranging from strain gauges to accelerom-
eters, or optical devices. In spite of the availability of these direct measurements, it may
be convenient to avoid their use within the computation of the nonlinear part of the
controller. The joint-based approach naturally lends itself to a cheap implementation in
terms of joint variable measures only. In fact, one can preserve the robustifying linear
feedback (20) and perform the nonlinear compensation (17) as a feedforward action [15].

5. CONCLUSIONS

The relevance of a Lagrangian-assumed modes dynamic model for the analysis and
synthesis of control laws for multilink flexible robot arms has been explored in this work.

On the basis of the complete nonlinear dynamic equations, we have shown that
a PD joint collocated linear controller leads to the asymptotic stability of any desired
arm configuration. When using the pinned description, the resulting control law is still
linear but requires feedback also from the deflection variables. This result has been
obtained in the absence of gravity; its generalization requires a suitable compensation
of the gravitational terms.

The design of inversion-based nonlinear control laws that allow exact reproduction
of smooth joint trajectories has been investigated. The clamped case has been presented
in detail, in view of the reduced complexity of the control law in this case. It has
been proved that the associated zero dynamics is always asymptotically stable, thus
guaranteeing bounded internal deformations of the flexible arm during motion. Inclusion

of gravity for this type of controllers is straightforward, as shown in a preliminary version
of this work [16].

The above laws handle the positioning and tracking problems at the joint level.
If enough structural damping is present, satisfactory performance is obtained also for
the end-effector motion. In any case, the design of robust and effective non-collocated
controllers for the arm tip that do not violate the stability requirements is a challenging
topic that deserves further investigation.
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